Abstract

We report on 4x20 silicon photonic MEMS switch that is capable of multicasting. The switch is built on passive optical crossbar network with gap-adjustable directional couplers. The switch has high on-off extinction ratio (59 dB), low insertion loss (< 4.0 dB), small footprint (1.2x4.5 mm2), and fast response (9.8 µs). The switching voltage is 9.6 V and 20 dB bandwidth is 31.5 nm. One-to-two and one-to-four multicast operations are demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Due to the rapid growth of datacenter traffic, there is an increasing interest in the reconfigurability and scalability of data center network. There have been extensive studies on fast optical circuit switches in datacenter network [1–6]. Silicon photonic switches are considered as a serious candidate for such applications, and several groups have developed silicon photonic switches based on thermo-optic and electro-optic effects [7–12]. However, optical losses of the switches increase rapidly with port-count in these switches, constraining their scalability. Our group have previously demonstrated several versions of micro-electro-mechanical-system (MEMS)-based silicon photonic switches. They have highest port-count (128x128) [13] or lowest insertion loss per port (0.058 dB) [14] among all silicon photonic switches. They also have desirable characteristics such as short switching time (<1μs) [14] and polarization-insensitivity [15]. However, those switches provide 1-to-1 connections only, like most of other optical switches. In many applications that require high bandwidth interconnects between one source to multiple destinations, such as video streaming servers and video conference systems, multicast optical switches are desirable. Some multicast silicon photonic switches have been reported. However, the scale of the switch is small [16] or it has unnecessary high excess optical loss due to its split-and-select architecture [17,18].

In this paper, we report on a 4x20 silicon photonic MEMS switch capable of multicasting. We kept the same architecture as our previous switches (passive optical crossbar) [19], but switching elements are replaced by gap-adjustable directional couplers, which can precisely select any arbitrary switching ratio between 0 to 100%. In addition to one-to-one switching, we demonstrated 1-to-2 and 1-to-4 multicast switching on 4x20 switch. Light is only delivered to the selected 2 or 4 ports without wasting optical power in other ports. On-off extinction ratio of the switch is 59 dB. Rise and fall time of the switch are 9.8 and 4.8 µs respectively. The total chip area for 4x20 switch is only 1.2x4.5 mm2, and the maximum on-chip insertion loss is 4.0 dB.

2. Switch design and fabrication

Figure 1(a) shows the architecture of the multicast silicon photonic MEMS switch. It consists of a passive optical crossbar network with pairs of gap-adjustable directional couplers that control the optical path. A low-loss waveguide crossing with an insertion loss of 0.015 dB was placed at the intersection of the crossbar network, which was designed and used in our previous switches [14,20]. Figure 1(b) shows how the optical path is controlled in the switch. One unit-cell in the switch has two pairs of gap-adjustable directional couplers. When the gap is large, the light from the in-port is transmitted to the through-port. However, by reducing the gap with the MEMS actuator, light from the in-port can be transmitted to the drop-port. In addition, the amount of light transmitted to the drop-port can be precisely controlled by adjusting the size of the gap using the MEMS actuator. The remaining light that is not passed to the drop-port is sent to the through-port that carries light to the next adjacent unit-cell. In this way, light can be divided into multiple selected unit-cells for multicast operation.

 figure: Fig. 1

Fig. 1 (a) The architecture of multicast silicon photonic switch. Light from the in-port can be divided into multiple ports. (b) The structure of the unit-cell of the switch. The actuator attached to the gap-adjustable directional couplers adjusts the gap to control the amount of light transmitted to the drop-port and the through-port. At large gaps, all input light goes to the through-port (left). By moving the actuator to make the gap smaller, input light is divided between the through-port and the drop-port (middle). By reducing the gap further, one can switch all the light to the drop-port (right).

Download Full Size | PPT Slide | PDF

Figure 2(a) shows the optical image of the 4x20 switch. The unit cell size of the switch is 170x170 µm2 and the size of the 4x20 switch chip is 1.2x4.5 mm2 including grating couplers and one actuator test structure. We fabricated the switch on a 6-inch silicon-on-insulator (SOI) wafer with a 220 nm-thick device layer and a 3 µm-thick buried-oxide (BOX) layer. The switch was fabricated at Marvell Nanolab of the University of California, Berkeley using process similar to the standard silicon photonics. Three lithography steps were applied at wafer scale using a 248 nm deep-UV stepper. The first lithography for 70-nm partial silicon etch defined ridge waveguides, waveguide crossings and grating couplers. The second lithography for full silicon etch defined directional couplers and MEMS actuators. The third lithography defined metal pads, followed by e-beam evaporation of Cr/Au and metal lift-off process. After metalization, HF vapor etching was used to release the MEMS actuators and directional couplers.

 figure: Fig. 2

Fig. 2 Optical and SEM images of fabricated 4x20 silicon photonic MEMS switch. (a) The optical image of the 4x20 silicon photonic MEMS switch with grating couplers and an actuator test structure. The entire switch is integrated on a 1.2mm x 4.5mm area. (b) Optical image of the unit-cell. There are two pairs of gap-adjustable directional couplers, four folded spring, 44 pairs of comb-fingers, and one waveguide crossing. (c) SEM image of the comb-fingers. The width and the gap of the comb-fingers are 300 and 400 nm, respectively.

Download Full Size | PPT Slide | PDF

Figure 2(b) shows the optical image of the switch unit-cell. There are two directional couplers in the unit-cell. One waveguide from each directional coupler is attached to the MEMS actuator for gap adjustment. The waveguides in the directional couplers are 20 µm long (straight section), 500 nm-wide, 220 nm-thick. The initial gap between the waveguides is 500 nm (Fig. 3(a)). In this state, the coupling between the two waveguides are off and light propagates to the through-port. By reducing the coupling gap, various amount of light can be directed to the drop port. Our simulations show that nearly 100% of light is coupled to the drop-port at 95 nm gap spacing (Fig. 3(b)). We can tune the coupling ratio between 0% to 100% by selecting the gap spacing between 500 nm and 95 nm. Figure 3(c) shows the simulated transmission characteristics of the directional coupler versus the gap. The transmission characteristics shows an extinction ratio of 27.4 dB per directional coupler can be achieved with a gap change of only 405 nm ( = 500 nm – 95 nm). Since there are two directional couplers per unit-cell, extinction ratio of the switch unit-cell is 54.8 dB.

 figure: Fig. 3

Fig. 3 Optical simulation results of the gap-adjustable directional coupler. (a) Optical field profile of the coupler at 500 nm gap. All light goes to the through-port. (b) Optical field profile of the coupler at 95 nm gap. All light goes to the drop-port. (c) Simulated transmission of the coupler versus the gap spacing. We can control the transmission to through- and drop-ports by changing the gap spacing.

Download Full Size | PPT Slide | PDF

The MEMS actuator is an electrostatic comb-drive actuator capable of planar motion, similar to [21,22]. The actuator has four half-folded-beam springs and 44 pairs of comb-fingers (Fig. 2(c)). We set the thickness of the springs and comb-fingers to 220 nm, the thickness of the Si device layer of the SOI wafer we used. The length and the width of the spring are 30 μm and 300 nm respectively. The width of comb-fingers is 300 nm, and the gap between the comb-fingers is 400 nm. The spring constant of the half folded-beam spring was calculated as 0.0165 N/m using the following equation [23]:

k = 12Etw3L3
where E = 150 GPa (Young’s modulus of silicon), t = 220 nm (thickness of the springs), w = 300 nm (width of the spring), and L = 30 μm (length of the spring). Since there are four springs in the actuator, the total spring constant is 0.066 N/m ( = 4x0.0165 N/m). We estimated the moving mass of the actuator to be 0.49 ng based on the area of the movable part. The resonant frequency of the actuator was calculated as 58.4 kHz [24]:
f = 12πkm
where k = 0.066 N/m (spring constant), and m = 0.49 ng (mass). The voltage required to move the actuator can be estimated by equating the restoring force of spring and the electrostatic force of the comb-fingers. The restoring force of spring and the electrostatic force of the comb-fingers are [25]:
Fspring = kx
Fcomb = nε0V2tg
where k, x, n, ε0, V, t, and g are spring constant of spring, displacement, number of comb fingers, permittivity of air, voltage applied to the comb-fingers, thickness of comb-fingers, and gap between comb-fingers. By equating the two equations, we get the following equation:
V = kgxε0tn
Actuator can move until the gap of the directional coupler becomes zero, and since the actuator moves in diagonal direction, the maximum travel range of the actuator is 707 nm ( = 2×500nm). The voltage required to move 707 nm was 15.1 V using Eq. (5) with k = 0.066 N/m, g = 400 nm, x = 707 nm, ε0 = 8.85×1012F/m, t = 220 nm, n = 44.

3. Switch measurement

Figure 4 shows the measured transmission characteristics of switch unit-cell at 1550 nm wavelength. At 0 V, optical transmission at drop-port is −60 dB and almost all the optical power goes to the through-port. At 9.6 V, the optical transmission to the drop-port reaches maximum (−0.57 dB) while the optical power transmitted to the through-port is minimum (−31 dB). The on-off extinction ratios are 59 dB for the drop-port and 31 dB for the through-port.

 figure: Fig. 4

Fig. 4 Measured optical transfer characteristics of the switch unit-cell. At 9.6 V, optical power transmitted to drop-port is maximum and optical power transmitted to through-port is minimum.

Download Full Size | PPT Slide | PDF

Figure 5(a) shows the spectral response of the switch unit-cell when the maximum power is transmitted to drop-port at 1550 nm wavelength. The 20-dB bandwidth of the through-port is measured to be 31.5 nm. The spectral response of the gap-adjustable directional coupler can be finely tuned by the MEMS actuator. Figure 5(b) shows the spectral responses at three different voltages. The minimum transmission wavelength of the through-port is tuned from 1530 nm to 1570 nm by changing the voltage from 9.496 V to 9.414 V. In this way, one can minimize unwanted power leakage to the through-ports of the switch network (Fig. 1(a)) at a specific wavelength.

 figure: Fig. 5

Fig. 5 Spectral responses of the switch unit-cell. (a) Measured and simulated spectral response of the switch unit-cell for maximum transmission at 1550 nm wavelength. (b) Measured spectral response of the switch unit-cell when the switch is optimized for operation at 1530, 1550, and 1570 nm.

Download Full Size | PPT Slide | PDF

Figure 6 shows the temporal response of the switch. Figure 6(a) shows optical power at drop-port versus time when a single step voltage is applied to the actuator. Significant ringing is observed before the optical power settles at 36.2 µs. The ringing can be suppressed by feed-forward control with a two-step voltage [26]. The response time has been reduced to 9.8 µs in Fig. 6(b). Similarly, a switching time of 4.8 µs is measured when the switch turns off, as shown in Fig. 6(c). Response time can be further reduced by using shorter springs, at the expense of higher switching voltage.

 figure: Fig. 6

Fig. 6 Measured temporal response of the switch unit-cell in. (a) Optical response for a single-step bias voltage. Long switching time (36.2 µs) is observed due to ringing. (b) Optical response for a two-step feed-forward bias voltage. Ringing of the optical power is greatly reduced, and the on-time is reduced to 9.8 µs. (c) Optical response for turning-off with a two-step feed-forward voltage similar to (b). The off-time is 4.8 µs.

Download Full Size | PPT Slide | PDF

We measured various configurations of the 4x20 switch to study path dependence of the insertion loss (Fig. 7(a)). The loss per unit-cell and switching loss are extracted from the slope and the y-intercept of the linearly fitted line. The loss per unit-cell is 0.087 dB and the switching loss is 1.38 dB. The maximum on-chip insertion loss was 4.0 dB. The loss per unit cell is higher than the two-level waveguide switch in our previous demonstration [14] because the rib waveguides have higher scattering loss than the ridge waveguides. The loss of the waveguide crossings (0.021 dB) is measured by the test structures with 108, 216, and 324 cascaded waveguide crossings on the same chip (Fig. 7(b)). It is slightly higher than the simulated value of 0.015 dB [20], possibly due to deviation of the etch depth of the ridge waveguide.

 figure: Fig. 7

Fig. 7 (a) Measured on-chip loss of the 4x20 switch versus the number of unit cells in the light path. Optical loss per cell and switching loss are extracted as 0.087 dB and 1.38 dB, respectively. (b) Measured transmission with various number of cascaded waveguide crossings. Optical loss per waveguide crossing is extracted as 0.021 dB.

Download Full Size | PPT Slide | PDF

4. Multicast operation

An important feature of the switch is the ability to control the amount of optical power tap to each port precisely. This feature can be used for multicast operation. We demonstrated 1-to-2 and 1-to-4 multi-cast operation by utilizing the feature. The maximum number of multicasted drop-ports is limited to 4 in this paper due to the number of voltage sources we have in our laboratory. However, there are no limit on the number of multicasted drop-ports as long as there is sufficient optical power budget for fundamental splitting loss. Figure 8 (a) shows the light paths of 1-to-2 multicast operation. To deliver equal amount of optical power to the 19th and the 20th drop-ports, the following procedure is done. The switching ratio of cell <4,20> is set and fixed to 100% while the switching ratio of cell <4,19> is adjusted until the optical power go to the 19th and 20th drop-port become equal. In this configuration, the voltage applied to cell <4,19> and cell <4,20> are 9.018 V and 9.555 V, respectively. The optical transmission to each port was −6.75 dB. Since power delivered to each port is −3dB (or 50%) for ideal 1-to-2 multicast operation, the excess loss for the switch is 3.75 dB. Figure 8 (b) shows the 1-to-4 multicast operation. The switching ratio of the 4 cells (<4,17>, <4,18>, <4,19>, <4,20>) are adjusted with the similar procedure to the 1-to-2 multicast operation. The voltage applied to cell <4,17>, cell <4,18>, cell <4,19>, and cell <4,20> are 8.731 V, 8.850 V, 9.003 V, and 9.570 V, respectively. The corresponding optical transmissions to the 17th, 18th, 19th, and 20th drop-ports are −11.54 dB, −11.52 dB, −11.56 dB, and −11.58 dB, respectively. Since power delivered to each port is −6dB (or 50%) for ideal 1-to-4 multicast operation, the excess loss is about 5.5 dB. The path dependent insertion loss of the switch contributes about 3 dB to the excess loss (Fig. 7 (a)) since there are about 20 cells in the tested light paths (e.g. 23 cells for the light path going through cell <4,20>). In addition, the current switch has the same coupling ratios for the input and output directional couplers because the actuators are moving at the 45-degree direction. Ideally, the directional couplers for the drop-ports should have 100% coupling ratio for the selected cells, while the directional couplers for the through-ports have variable coupling ratios. Therefore, the excess loss can be substantially reduced by reducing the insertion loss of the switch and by independently controlling each directional coupler with two actuators in future switch design.

 figure: Fig. 8

Fig. 8 Experimental demonstrations of multicast operation with the 4x20 switch. The applied voltages to each unit-cell are marked with arrows and unit-cell coordinates. (a) 1-to-2 multicast operation. Optical power from 4th input-port is divided equally between the 19th and 20th drop-ports. (b) 1-to-4 multicast operation. Optical power from 4th input-port is divided equally among the 17th, 18th, 19th, and 20th drop-ports.

Download Full Size | PPT Slide | PDF

5. Conclusion

We have designed and experimentally demonstrated a 4x20 silicon photonic MEMS switch with gap-adjustable directional coupler. The coupling ratios of the gap-adjustable directional couplers are precisely controlled by the MEMS actuators, and they enabled multicast operations as well as fast switching response (9.8 µs) and high extinction ratio (59 dB). We have demonstrated 1-to-2 and 1-to-4 multicast operations with the switch. The switch can also minimize power leakage at selected wavelength. The maximum on-chip loss is 4 dB for single-cast operation. We believe that the unique capabilities of this switch can broaden the application of silicon photonic optical circuit switches.

Funding

National Science Foundation (NSF) Center for Integrated Access Network (CIAN) (grant number EEC-0812072, 0939514); Defense Advanced Research Projects Agency (DARPA) Electronic-Photonic Heterogeneous Integration (E-PHI) program (grant number HR0011-11-2-0021).

References

1. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-Through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM 2010 Conference (ACM, 2010), 327–338 (2010). [CrossRef]  

2. N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013). [CrossRef]  

3. G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), 447–458 (2013). [CrossRef]  

4. J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications (Optical Society of America, 2014), paper PM2C.4.

5. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015). [CrossRef]  

6. L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1. [CrossRef]  

7. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012). [CrossRef]   [PubMed]  

8. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014). [CrossRef]   [PubMed]  

9. K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017). [CrossRef]   [PubMed]  

10. S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. 4(5), 202–207 (2016). [CrossRef]  

11. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24(9), 9295–9307 (2016). [CrossRef]   [PubMed]  

12. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol .37 (1), 116-122 (2019).

13. K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4. [CrossRef]  

14. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016). [CrossRef]  

15. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018). [CrossRef]  

16. C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6. [CrossRef]  

17. K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

18. T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in OFC/NFOEC Technical Digest (2012), paper OTh3D.1.

19. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016). [CrossRef]  

20. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015). [CrossRef]  

21. Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012). [CrossRef]  

22. H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014). [CrossRef]  

23. Z. Zhou, Z. Wang, and L. Lin, Microsystems and Nanotechnology, 1st ed. (Springer-Verlag, 2012).

24. S. D. Senturia, Microsystem Design, 1st ed. (Springer, 2001).

25. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996). [CrossRef]  

26. T. K. Chan, M. Megens, B.-W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-Through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM 2010 Conference (ACM, 2010), 327–338 (2010).
    [Crossref]
  2. N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
    [Crossref]
  3. G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), 447–458 (2013).
    [Crossref]
  4. J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications (Optical Society of America, 2014), paper PM2C.4.
  5. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
    [Crossref]
  6. L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
    [Crossref]
  7. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  8. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  9. K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
    [Crossref] [PubMed]
  10. S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. 4(5), 202–207 (2016).
    [Crossref]
  11. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24(9), 9295–9307 (2016).
    [Crossref] [PubMed]
  12. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).
  13. K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
    [Crossref]
  14. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  15. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
    [Crossref]
  16. C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
    [Crossref]
  17. K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.
  18. T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in OFC/NFOEC Technical Digest (2012), paper OTh3D.1.
  19. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
    [Crossref]
  20. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
    [Crossref]
  21. Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
    [Crossref]
  22. H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
    [Crossref]
  23. Z. Zhou, Z. Wang, and L. Lin, Microsystems and Nanotechnology, 1st ed. (Springer-Verlag, 2012).
  24. S. D. Senturia, Microsystem Design, 1st ed. (Springer, 2001).
  25. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
    [Crossref]
  26. T. K. Chan, M. Megens, B.-W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013).
    [Crossref] [PubMed]

2019 (1)

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

2018 (1)

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (2)

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

2014 (2)

2013 (2)

T. K. Chan, M. Megens, B.-W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013).
[Crossref] [PubMed]

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

2012 (2)

L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[Crossref] [PubMed]

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

1996 (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Akihama, Y.

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

Anthur, A.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Barry, L. P.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Bergman, K.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Bickford, J. R.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Browning, C.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Budd, R.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Chan, T. K.

Chang, S. P.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Chang-Hasnain, C. J.

Chen, J.

Chen, L.

Chen, Y. K.

Chiba, T.

Chu, H.

H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
[Crossref]

Cong, G.

Dupuis, N.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Elwenspoek, M.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Fainman, Y.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Farrington, N.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Ford, J. E.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Forencich, A.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Gazman, A.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Giles, J.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Groeneveld, A. W.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Guo, Z.

Han, S.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

Hane, K.

H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
[Crossref]

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

Hasegawa, H.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Hasegawa, J.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

Henriksson, J.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Hildrum, K.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Horsley, D. A.

Igarashi, Y.

Ikeda, K.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Inoue, T.

Jacobs, J.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Kawashima, H.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Kim, S. H.

Konoike, R.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

Kuchta, D.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Kwon, K.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Lee, B. G.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Legtenberg, R.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Li, D.

Li, X.

Li, Z.

Lu, L.

Luo, J.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Masahara, M.

Matsukawa, T.

Matsuura, H.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Megens, M.

Mori, Y.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Muller, R. S.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Nakamura, S.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Namiki, S.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Ochikubo, L.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Ohno, M.

Papen, G. C.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Pepeljugoski, P.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Porter, G.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Quack, N.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

Rajan, D.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Sato, K.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Schares, L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Schenfeld, E.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Schow, C. L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Selo, P.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Seok, T. J.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Suda, S.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Sun, P. C.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Suzuki, K.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Tadokoro, H.

Tajima, A.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Tanizawa, K.

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Ueda, K.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Vahdat, A.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Vujicic, V.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Wagle, R.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Wang, M.

Wolf, J.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Wu, M. C.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

T. K. Chan, M. Megens, B.-W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013).
[Crossref] [PubMed]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Wyras, J.

Yanagihara, M.

Yanagimachi, S.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Yoo, B.-W.

Yu, K.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

Zhang, X. J.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Zhao, S.

Zhou, L.

Zhu, Z.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

IEEE Photonic. Tech. L. (1)

H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

J. Light. Technol (1)

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

J. Lit. Technol. (3)

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

J. Micromech. Microeng. (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Light Sci. Appl. (1)

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

Opt. Express (5)

Optica (2)

Photon. Res. (1)

Other (10)

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), 447–458 (2013).
[Crossref]

J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications (Optical Society of America, 2014), paper PM2C.4.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-Through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM 2010 Conference (ACM, 2010), 327–338 (2010).
[Crossref]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in OFC/NFOEC Technical Digest (2012), paper OTh3D.1.

Z. Zhou, Z. Wang, and L. Lin, Microsystems and Nanotechnology, 1st ed. (Springer-Verlag, 2012).

S. D. Senturia, Microsystem Design, 1st ed. (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The architecture of multicast silicon photonic switch. Light from the in-port can be divided into multiple ports. (b) The structure of the unit-cell of the switch. The actuator attached to the gap-adjustable directional couplers adjusts the gap to control the amount of light transmitted to the drop-port and the through-port. At large gaps, all input light goes to the through-port (left). By moving the actuator to make the gap smaller, input light is divided between the through-port and the drop-port (middle). By reducing the gap further, one can switch all the light to the drop-port (right).
Fig. 2
Fig. 2 Optical and SEM images of fabricated 4x20 silicon photonic MEMS switch. (a) The optical image of the 4x20 silicon photonic MEMS switch with grating couplers and an actuator test structure. The entire switch is integrated on a 1.2mm x 4.5mm area. (b) Optical image of the unit-cell. There are two pairs of gap-adjustable directional couplers, four folded spring, 44 pairs of comb-fingers, and one waveguide crossing. (c) SEM image of the comb-fingers. The width and the gap of the comb-fingers are 300 and 400 nm, respectively.
Fig. 3
Fig. 3 Optical simulation results of the gap-adjustable directional coupler. (a) Optical field profile of the coupler at 500 nm gap. All light goes to the through-port. (b) Optical field profile of the coupler at 95 nm gap. All light goes to the drop-port. (c) Simulated transmission of the coupler versus the gap spacing. We can control the transmission to through- and drop-ports by changing the gap spacing.
Fig. 4
Fig. 4 Measured optical transfer characteristics of the switch unit-cell. At 9.6 V, optical power transmitted to drop-port is maximum and optical power transmitted to through-port is minimum.
Fig. 5
Fig. 5 Spectral responses of the switch unit-cell. (a) Measured and simulated spectral response of the switch unit-cell for maximum transmission at 1550 nm wavelength. (b) Measured spectral response of the switch unit-cell when the switch is optimized for operation at 1530, 1550, and 1570 nm.
Fig. 6
Fig. 6 Measured temporal response of the switch unit-cell in. (a) Optical response for a single-step bias voltage. Long switching time (36.2 µs) is observed due to ringing. (b) Optical response for a two-step feed-forward bias voltage. Ringing of the optical power is greatly reduced, and the on-time is reduced to 9.8 µs. (c) Optical response for turning-off with a two-step feed-forward voltage similar to (b). The off-time is 4.8 µs.
Fig. 7
Fig. 7 (a) Measured on-chip loss of the 4x20 switch versus the number of unit cells in the light path. Optical loss per cell and switching loss are extracted as 0.087 dB and 1.38 dB, respectively. (b) Measured transmission with various number of cascaded waveguide crossings. Optical loss per waveguide crossing is extracted as 0.021 dB.
Fig. 8
Fig. 8 Experimental demonstrations of multicast operation with the 4x20 switch. The applied voltages to each unit-cell are marked with arrows and unit-cell coordinates. (a) 1-to-2 multicast operation. Optical power from 4th input-port is divided equally between the 19th and 20th drop-ports. (b) 1-to-4 multicast operation. Optical power from 4th input-port is divided equally among the 17th, 18th, 19th, and 20th drop-ports.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k =  1 2 Et w 3 L 3
f =  1 2π k m
F spring  = kx
F comb  = n ε 0 V 2 t g
V =  kgx ε 0 tn

Metrics