Abstract

The two or more degrees of freedoms (DOFs) of photon systems are very useful in hyperparallel photonic quantum computing to accomplish more quantum logic gate operations with less resource, and depress photonic dissipation noise in quantum information processing. We present some flexible and adjustable schemes for hybrid hyper-controlled-not (hyper-CNOT) gates assisted by low-Q cavities, on the two-photon systems in both the spatial-mode and the polarization DOFs. These hybrid spatial-polarization hyper-CNOT gates consume less quantum resource and are more robust against photonic dissipation noise, compared with the integration of two cascaded CNOT gates in one DOF. Besides, simultaneous counter-propagation of two photons economize extremely the operation time in the whole process of our schemes. Moreover, these quantum logic gates are more feasible for fast quantum operations in the weak-coupling region of the low-Q cavities with current experimental technology, which are much different from strong-coupling cases of the high-Q ones.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum information processing (QIP) is powerful with fascinating capability of computing, communication and sensing using quantum mechanical principles [1]. Universal two-qubit operations are the key ingredients in quantum computing. In 1995, Barenco et al. proved that any natural building block for quantum computing can be achieved by combining controlled-NOT (CNOT) gates and single-qubit rotations [2], therefore, precise control operations on well-defined quantum systems become extremely important [3]. Deterministic CNOT gate has been implemented both in theory and in experiment by using various physical systems, such as nuclear magnetic resonance [4,5], quantum dots [6–8], diamond nitrogen-vacancy (NV) centers [9–11], superconducting circuits [12, 13], and atoms [14–17]. In 1998, Cerf et al. presented a CNOT gate with the spatial-mode of the photon as the control qubit and its polarization as the target one [18]. In 2000, Knill et al. put forward a linear optical quantum computing scheme with respect to feedback from photon detectors, which was robust against errors from photon loss and invalid detector [19]. To constitute two-qubit optical gate in a deterministic way, one can resort to Kerr nonlinearities. For instance, Duan and Kimble proposed a scheme for constructing a controlled phase-flip (CPF) gate between an atom trapped in a cavity and a single photon [14]. The strong-coupling interaction between the atom and the cavity can provide the giant Kerr nonlinearity. Quantum logic gates between flying photonic qubits and stationary qubits hold a great promise for quantum communication and computing, especially for quantum repeaters, distributed quantum computing, and blind quantum computing.

In a network of quantum computation [19–21], photons are often regarded as the flying qubits due to flexible manipulation and robustness against the environment noise. Increasing the information-carrying capacity by utilizing multiple degrees of freedoms (DOFs) of a single photon provides us an effective way to improve the realization of the long-distance quantum computing [22–25]. Recently, the concept for hyperparallel photonic quantum computing was proposed with universal quantum operations performed on two or more DOFs of photon systems [26–29]. For example, exploiting the giant optical circular birefringence induced by the double-sided quantum-dot-cavity system, Wang et al. constructed a deterministic hybrid hyper-CNOT gate, in which the spatial-mode and polarization states of a photon acted as the two control qubits, whereas two stationary electron spins in quantum dots confined inside the optical microcavities served as the two target qubits [27]. With hyperparallel photonic quantum gates, hyperentanglement generation [30–32], hyperentanglement purification [33–35], and hyperentanglement concentration [36, 37] can be accomplished in the relatively simple way, which will improve the channel capacity of quantum communication and simplify the process of operation.

Cavity quantum electrodynamics (QED) is a promising physical platform for constructing universal quantum logic gates, which can enhance the interaction between a photon and an atom trapped in a cavity [15–17]. In the past decades, many theoretical and experimental works have been focused on to realize large-scale QIP [14–16,38–47]. Most of them relied on the efficient single-photon input-output process in the high-Q cavity and the strong-coupling interaction between the confined atoms and the high-Q cavity field. However, the high-Q cavity in the strong coupled cases, sensitive to the ratio g/κ between the coupling strength g and cavity decay rate κ, does not facilitate to carry out the input-output process of the photons in experiment. Therefore, it is significant to realize QIP task in the weak-coupling region of the low-Q cavity. In 1995, Turchette et al. completed the measurement of conditional phase shifts for quantum logic in the intermediate atom-cavity coupling regime with the low-Q cavity [48]. In [49], Dayan et al. demonstrated a robust and efficient mechanism for the regulated transport of photons under the same condition [48]. In 2009, An et al. proposed a special scheme with higher fidelity by using low-Q cavities to entangle distant atoms by a single photon, generate entangled photons, and transfer quantum state to a distant qubit [50]. Besides, there are some new progress in fabrication of microcavities [51,52], and control of microcavities [53,54]. Microcavities also play an important role in sensing [55–57].

Motivated by recent works on atom-based quantum logic gates relying on the low-Q cavities, we investigate the possibility to construct hybrid hyper-CNOT gates on the two-photon system in both the polarization and spatial-mode DOFs, resorting to the cavity-assisted interaction, the single-photon input-output process, and the readout on the auxiliary atom as a result of cavity QED. Our proposals have some advantages. Firstly, it is relatively easier to perform quantum logical gates on qubits residing in different DOFs of the same photon, which also reduces the resources consumed based on the hyperparallel feature. Secondly, simultaneous counterpropagation of two photons economize extremely the operation time in the whole process of our schemes. Besides, our gates work in the weak-coupling region of the low-Q cavities, which further lowers the difficulty of the experimental operation. Moreover, the relatively long coherence time allows multi-time operations between the photon and the cavity-atom system. Our calculations show that the average fidelities and efficiencies of our hybrid hyper-CNOT gates are higher with current experimental technology. These features maybe make our proposals have potential applications for high-capacity quantum computation in the future.

2. An atomic-cavity interaction system

Here we consider a system that an atom is trapped in a single-sided optical cavity. The atom is assumed to be a standard three-level ∧-type system as shown in Fig. 1. The degenerate ground states of the atom, i.e., |0〉 and |1〉, are considered to be the qubit states and the excited level |e 〉 to be the ancillary state. The optically allowed transitions |1〉 ↔ |e 〉 (6S1/2, F = 4, m = 4 → 6P3/2, F′ = 5, m′ = 5 of cesium atom) can only be excited by the single left (L) polarized photon under the selection rules, while it decouples the transition |0〉 ↔ |e〉 due to large detuning. The top of the cavity is perfectly reflective and the bottom is partially reflective [50]. Under the Jaynes-Commings model, the Hamiltonian of the whole system composed of a single cavity mode (L-polarized) and an atom can be given by

H=ω02σz+ωcaa+ig(aσ+aσ).
Here a and a are the annihilation and creation operators of the L-polarized cavity mode with the frequency ωc, respectively. σz, σ+, and σ are the inversion, raising, and lowering operators of the atom, respectively. ω0 is the frequency difference between the ground level |1〉 and the excited level |e〉 of the atom. g is the atom-cavity coupling strength, which is affected by the trapping position of the atom. The reflection coefficient of a single-photon pulse with the frequency ωp injected into the optical cavity can be obtained by solving the Heisenberg-Langevin equations of motion for the internal cavity field and the atomic operator in the interaction picture [58]
{da^(t)dt=[iΔωc+κ2]a^(t)gσ^(t)κa^in(t),dσ^(t)dt=[iΔω0+γ2]σ^(t)gσ^z(t)a^(t)+γσz(t)b^in(t),a^out(t)=a^in(t)+κa^(t),
where Δωc = ωcωp and Δω0 = ω0ωp. κ and γ are the cavity damping rate and the atomic decay rate, respectively. âout(t) is the output operator. Here the one-dimensional field operator âin(t) is the cavity input operator which satisfies the commutation relation [a^in(t),a^in(t)=δ(tt). The three-level atom can feel the vacuum input field in(t) with the commutation relation [b^in(t),b^in(t)]=δ(tt).

 figure: Fig. 1

Fig. 1 Schematic setup to implement the interaction between the atom and the single-photon pulse. The top of the low-Q cavity is perfectly reflective and the bottom is partially reflective. CPBSi (i = 1, 2) is a circularly polarizing beam splitter which transmits the photon in the right-circular polarization |R 〉 and reflects the photon in the left-circular polarization |L 〉, respectively. With CPBS1, only the L-polarized component of the single-photon pulse is reflected by the cavity. DL is the time-delay device for making the circularly polarized photon pulses R and L reach the CPBS2 simultaneously. The states |0〉 and |1〉 indicate hyperfine states of the atom in the ground states while |e 〉 is an excited state.

Download Full Size | PPT Slide | PDF

In fact, since the atom stays in the ground state at most time, a weak excitation by the single-photon pulse (keeping 〈σz〉 = −1) throughout our operation, one can get the input-output optical property of the cavity field [50]

r(ωp)=1κ[iΔω0+γ2][iΔω0+γ2][iΔωc+κ2]+g2.
Here r(ωp)aout(t)ain(t) is the reflection coefficient for the atom-cavity system. By taking the coupling strength g = 0, one get the amplitude of the output pulse r0 (ωp) for an uncoupled cavity (or bare cavity) where the atom does not couple to the input filed,
r0(ωp)=1κiΔωc+κ2.
Considering the parameters of the atom-cavity system satisfy the resonant condition ω0 = ωc = ωp, the reflection coefficient can be expressed as
r(ωp)=1+(2g/κγ)21+(2g/κγ)2,r0(ωp)=1.
If the photon feels a coupled cavity (g ≠ 0), it will get a phase e after reflection. Otherwise, if the photon feels a bare cavity, it will obtain a phase shift e0. Moreover, when the limitation of a low cavity satisfies κg2/κγ in the atom-cavity intermediate coupling region, phase shifts ϕ = 0 and ϕ0 = π can be achieved. In detail, when the atom is initially prepared in the state |1〉 with the transition |1〉 ↔ |e〉, the L-polarized photon feels a hot cavity and the corresponding output state of the L-polarized photon can be written as
|L|1r(ωp)|L|1=eiφ|r(ωp)||L|1ω0=ωc=ωpκg2/κγ|L|1.
When the atom is initially prepared in the ground state |0〉, the left-circularly polarized single-photon |L〉 will only sense a bare cavity. As a result, the corresponding output state can be written as
|L|0r0(ωp)|L|0=eiφ0|r0(ωp)||L|0ωc=ωp|L|0.
As for the R-polarized pulse which remains unchanged due to having no access to the atom-cavity system, we suppose that the reflection coefficient equals 1. Therefore, the evolution rule of the photon in the polarized state |L 〉 (or |R 〉) and different atomic states can be summarized as |L 〉|1〉 → |L 〉|1〉, |L 〉|0〉 → −|L 〉|0〉, |R 〉|1〉 → |R 〉|1〉, and |R 〉|0〉 → |R 〉|0〉. Here the conditional phase shift π allows the construction of a universal quantum gate that can be transformed into any two-qubit gate using rotations of the individual qubits, which are implemented with wave plates for the photon and with Raman transitions for the atom.

3. Three types of hybrid hyper-CNOT gates

3.1. Hybrid hyper-CNOT gate I

The principle of our photonic four-qubit hybrid hyper-CNOT gate I is shown in Fig. 2, in which the quantum circuit is constructed with the reflection rule of L-polarized photon interacting with an atom-cavity system. Here Y1 and Y2 represent two types of interactions. Y1 shows the interaction between only the L polarization photon in spatial mode |k1〉 (|k2〉, k = a, b) and the atom trapped in the cavity. For Y2, both the L and R components of the photon interact with the atom trapped in the cavity in sequence, in which before and after the interaction, the R component will be flipped with the polarization bit-flip operation X (σXKP=|LKR|+|RKL|,K=A,B).

Suppose that the auxiliary atom j in the cavity j is initially prepared in the state |φj=12(|0+|1)j (j = 1, 2) and the initial states of the photons A and B are

|ϕA=|ϕAP|ϕAS=(sinα1|R+cosα1|L)A(sinα2|a1+cosα2|a2),|ϕB=|ϕBP|ϕBS=(sinβ1|R+cosβ1|L)B(sinβ2|b1+cosβ2|b2).
The quantum circuit is described in detail as follows. First, the photon A in spatial mode |a1〉 or |a2〉 propagates from left to right (passing through Y1-atom 1, BS1, Y2-atom 2, and BS2 sequentially), while the photon B in spatial mode |b1〉 or |b2〉 propagates from right to left (passing through Y1-atom 2, BS3, Y2-atom 1, and BS4 sequentially). Due to the interaction between Y1-atom 1 and the photon A is the same as the interaction between Y1-atom 2 and the photon B, we use the former as an example to discuss in detail. After the Y1-atom 1 interacts with the photon A, the joint state |φ1 ⊗ |φA of the system composed of the atom 1 and the photon A is evolved into
|Ψ1A=12[|11(sinα1|R+cosα1|L)A+|01(sinα1|Rcosα1|L)A](sinα2|a1+cosα2|a2).
It is obvious that the interaction Y1-atom j (j = 1, 2) with the photon A (B) can be viewed as the polarization-controlled-Z gate (P-CZ gate). After performing the Hadamard operation on the atom 1 applying a π/2-pulse (that is, |112(|1+|0) and |012(|1|0) in the basis {|1〉, |0〉}), and the Hadamard operation on the spatial-mode DOF of the photon A (namely, |a112(|a1+|a2) and |a212(|a1|a2)) using BS1, the state |Ψ〉1A in Eq. (9) becomes
|Ψ1A=(sinα1|RA|11+cosα1|LA|01)[sin(α2+π4)|a1+sin(α2π4)|a2],
where sin(α2+π4)=12(sinα2+cosα2) and sin(α2+π4)=12(sinα2cosα2). Similarly, after the photon B interacts with Y1-atom 2, and immediately the Hadamard operations are performed on the atom 2 and the spatial-mode DOF of the photon B, the complex state |ϕB ⊗ |ϕ2 becomes
|Ψ2B=(sinβ1|RB|12+cosβ1|LB|02)[sin(β2+π4)|b1+sin(β2π4)|b2].

Subsequently, the photon A interacts with the Y2-atom 2, meanwhile the photon B interacts with the Y2-atom 1. The complex state |Ψ′〉1A ⊗ |Ψ′〉2B of the system composed of the two photons (A and B) and two atoms (1 and 2) is evolved into

|Ψ12AB={sinα1|RA|11[sin(β2+π4)|b1+sin(β2π4)|b2]+cosα1|LA|01[sin(β2+π4)|b1sin(β2π4)|b2]}{sinβ1|RB|12[sin(β1+π4)|a1+sin(β1π4)|a2]+cosβ1|LB|02[sin(β1+π4)|a1sin(β1π4)|a2]}.
It is clear that the interaction between Y2-atom 2 and the photon A (Y2-atom 1 and the photon B) can be viewed as the spatial-mode controlled-Z gate (S-CZ gate). Here DL makes the photon A (B) in spatial mode a1 (b1) and a2 (b2) reach the second BS2 (BS4) simultaneously. That is, fiber loops to storage the photon for enough long time needed by the interaction between the single photon and the atom. After performing the Hadamard operations on the atom j in the cavity j(j = 1, 2) and the Hadamard operations on the spatial-mode DOF of the photon A (B) using BS2 (BS4), the state |Ψ〉12AB becomes
|Ψ12AB=12{[sinα1|RA|ϕBS+cosα1|LAσXBS|ϕBS]|11+[sinα1|RA|ϕBScosα1|LAσXBS|ϕBS]|01}{[sinβ1|RB|ϕAS+cosβ1|LBσXAS|ϕAS]|12+[sinβ1|RB|ϕAScosβ1|LBσXAS|ϕAS]|02}.
Here, σXAS=|a1a2|+|a2a1|and σXBS=|b1b2|+|b2b1| represent the spatial-mode bit-flip operations.

 figure: Fig. 2

Fig. 2 Quantum circuit for implementing the hybrid hyper-CNOT gate I assisted by an input-output process of low-Q cavities. Here Y1 and Y2 represent two types of interactions. Y1 shows the interaction between the L-polarized photon in spatial-mode |k1〉 (|k2〉, k = a, b) and the atom trapped in the cavity. For Y2, both the L and R components of the photon interact with the atom of the cavity in sequence, in which before and after the interaction, the R component will be flipped with the polarization bit-flip operation X (σXKP=|LKR|+|RKL|,K=A,B). The 50:50 beam splitters (BSm, m = 1, 2, 3, 4) are used to perform the Hadamard operation on the spatial-mode DOF of the photon A (or B). DL makes the photon A (B) in spatial mode a1 (b1) and a2 (b2) simultaneously reach the second BS2 (BS4). The black (blue) arrows represent propagating directions of the photon A (B), respectively.

Download Full Size | PPT Slide | PDF

Finally, after measuring the auxiliary atoms 1 and 2 under the orthogonal basis {|1〉, |0〉}, if two auxiliary atoms are both in the basis |1〉, the joint system of the two photons A and B collapses into

|Ψ1=[sinα1|RA|ϕBS+cosα1|LAσXBS|ϕBS][sinβ1|RB|ϕAS+cosβ1|LBσXAS|ϕAS].
By performing the polarization phase-flip operation σZKP=|RR||LL|(K=A,B) on the polarization DOF of the photon A (B) when the outcome |0〉 of the auxiliary atom 1 (atom 2), the hybrid hyper-CNOT gate I is completed.

In a word, the quantum circuit shown in Fig. 2 can be used to accomplish the deterministic hybrid hyper-CNOT gate I on the two photons A and B. In detail, the polarization state of the photon A is the control qubit when the spatial-mode state of the photon B is the target qubit, meanwhile, the polarization state of the photon B is the control qubit when the spatial-mode state of the photon A is the target qubit. That is, the polarization states of the photons A and B simultaneously control the spatial-mode states of the photons B and A, respectively.

3.2. Hybrid hyper-CNOT gate II

The quantum circuit of the hybrid hyper-CNOT gate II in Fig. 3(a) is similar to the one of the hybrid hyper-CNOT gate I in Fig. 2 in many ways. In Fig. 3(a), the Hadamard operation is performed on the polarization DOF rather than the spatial-mode DOF of the photons A and B by BS, which is substituted by H, that is, |R12(|R+|L), and |L12(|R|L). Besides, the interaction between Y2-atom 1 (Y2-atom 2) and the photon A (B) and the interaction between Y1-atom 2 (Y1-atom 1) and the photon A (B) occur in turn, which leads to realizing S-CZ gate and the P-CZ gate sequentially.

 figure: Fig. 3

Fig. 3 (a) and (b) represent quantum circuit for implementing hybrid hyper-CNOT gate II and III, respectively. Hn (n = 1, 2, ...) is used to perform a Hadamard operation on the polarization DOF of a photon.

Download Full Size | PPT Slide | PDF

Suppose that the initial states of the photons A and B are shown in Eq. (7). Moreover, |φj is the initial state of the auxiliary atom j in the cavity j (j = 1, 2). In Fig. 3(a), the photon A in two spatial modes |a1〉 and |a2〉 passes through Y2-atom 1, H1, Y1-atom 2, and H2 sequentially, while the photon B in the two spatial modes |b1〉 and |b2〉 passes through Y2-atom 2, H3, Y1-atom 1, and H4 sequentially. After the interaction Yi (i = 1, 2)-atom j (j = 1, 2) with the photon A (B), one can perform the Hadamard operation on the atom j in the cavityj (j = 1, 2) every time. The DL guarantees the photon A (B) in its own two spatial modes |a1〉 (|b1〉) and |a2〉 (|b2〉) to simultaneously reach H2 (H4).

Similar to the hybrid hyper-CNOT gate I, the hybrid hyper-CNOT gate II can be achieved by measuring the states of auxiliary atoms 1 and 2 in the orthogonal basis {|1〉, |0〉} and making some feed-forward operations. In detail, if both the auxiliary atoms 1 and 2 are in the state |0〉, the spatial-mode phase-flip operation σZKS=|k1k1||k2k2|(k=a,b;K=A,B) on the spatial-mode DOF of the photons A and B are performed, respectively. Otherwise, if two auxiliary atoms are both in the basis |1〉, the result of the hybrid hyper-CNOT gate II is obtained as

|ΨII=[sinα2|α1|ϕBP+cosα2|a2σXBP|ϕBP][sinβ2|b1|ϕAP+cosβ2|b2σXAP|ϕAP].
Here, σXKP=|LKR|+|RKL|(K=A,B) represents the polarization bit-flip operation.

In a word, the spatial-mode states of the photons A and B simultaneously control the polarization states of the photons B and A, respectively. It is self-evident that the control qubits swap with the target qubits in both types I and II.

3.3. Hybrid hyper-CNOT gate III and hybrid hyper-CNOTN gate

The hybrid hyper-CNOT gate III in Fig. 3(b) is used to complete the task in which the polarization state and the spatial-mode state of the photon A simultaneously control the spatial-mode state and the polarization state of the photon B, respectively. The initial states of the two photons A and B and two auxiliary atoms j in the cavity j(j = 1, 2) are the same as the one of the hybrid hyper-CNOT gate I and II. In the first step, let the photon A get through Y1-atom 1 and Y2-atom 2 sequentially. After the Y1-atom 1 and Y2-atom 2 interact with the photon A, the atoms 1 and 2 are performed the Hadamard operation. Subsequently, let the photon B get through Y2-atom 2, BS5, H5, Y1-atom 1, Y2, H5, and BS6 sequentially. Then one continues to perform the Hadamard operation on the atoms 1 and 2 again after the interactions Y2-atom 2 and Y1-atom 1 with the photon B. Eventually, one measures the states of auxiliary atoms 1 and 2 in the orthogonal basis {|1〉, |0〉}, and makes the feed-forward operations, similar to the discussion of the hybrid hyper-CNOT gate I and II. If the auxiliary atom 1 (atom 2) is in the state |0〉, the polarization (spatial-mode) phase-flip operation σZAP(σZAS) is performed on the polarization (spatial-mode) DOF of the photon A. Therefore, the hybrid hyper-CNOT gate III is obtained as

|ΨIII=[sinα1|RA|ϕBS+cosα1|LAσXBS|ϕBS][sinα2|a1|ϕBP+cosα2|a2σXBP|ϕBP].

The hybrid hyper-CNOT gate III is different from the hybrid hyper-CNOT gate I and II, because the photons A and B do not simultaneously interact with Y1-atom 1 and Y2-atom 2, which means the photon B goes through the quantum circuit after the photon A interacts with the atom-cavity (1 or 2). Moreover, our hybrid hyper-CNOT gate III can be easily extended to establish the multi-qubit hybrid hyper-CNOTN gate, in which one photon as control qubit and the rest N-photon as target qubits. The stationary-qubit systems [59,60] have been used widely to study the CNOTN gate. We will describe the procedure of the multi-qubit hybrid hyper-CNOTN gate below, which useful to realize quantum algorithms [61], correct errors [62], and prepare the hyperentanglement for N photons [63].

Suppose that the initial states of the control photon A and two auxiliary atoms j in the cavity j (j = 1, 2) remain |φA and |φj(j = 1, 2), respectively, and the N target photons B1, B2, · · · , and BN are in the superposition state of the form |ϕBm=|ϕBmP|ϕBmS(m=1,2), where |ϕBmP=sinθ1m|RBm+cosθ1m|LBm and |ϕBmS=sinθ2m|b1m+cosθ2m|b2m. To implement the hybrid hyper-CNOTN gate, we could use the quantum circuit depicted by Fig. 3(b) by substituting the target photon B in the original hybrid hyper-CNOT gate III with the photon string B1, B2, · · ·, and BN. Besides, the target photon Bm+1 should be input into the cavity in turn after Bm goes away the cavity. Meanwhile, the time delay between each two target photons Bm and Bm+1 could be utilized to discriminate their spatial modes. To be detail, after the control photon A interacts with the Y1-atom 1 and Y2-atom 2 in turn, the atoms 1 and 2 are performed the Hadamard operations. Subsequently, let the first target photon B1 with its spatial modes b11 and b21 get through Y2-atom 2, BS5, H5, Y1-atom 1, Y2, H5, and BS6 sequentially, similar to the target photon B of the hybrid hyper-CNOT gate III. After the photon B1 passes though the setup and propagates into the output modes b11 and b21, let the target photon Bm after the photon Bm−1 be emitted by the cavity with the similar procedure. After all the N target photons pass though the setup, the Hadamard operations on the two atoms 1 and 2 are performed. To decouple the two atoms, the measurements on the atoms are performed. When the outcomes are both the states |0〉, the (N + 1)-photon system is projected into the state |ΨIIIN. Here

|ΨIIIN=[sinα1|RAm=1N|ϕBmS+cosα1|LAm=1NσXBmS|ϕBmS][sinα2|a1m=1N|ϕBmP+cosα2|a2m=1NσXBmP|ϕBmP].
Here σXBmS=|b1mb2m|+|b1mb2m| and σXBmP=|RBmL|+|LBmR| represent the spatial-mode and polarization bit-flip operations on the target photon Bm involved, respectively. That is, the multi-qubit hybrid hyper-CNOTN gates in double DOFs on the N + 1 photons are achievable after successively operating the control photon A and target photon B1, B2, · · · , and BN.

4. Discussion and conclusion

Our hybrid hyper-CNOT gates work in an intermediate coupling region, which is considerably different from the strong coupling cases [14–17]. There are some technical challenges to realize the strong coupling strength in experiment, compared with intermediate coupling strength of the atom-cavity system [48, 49, 64]. Moreover, in order to obtain shorter operation time, it is necessary to achieve the atom-cavity photon scattering with a bad cavity in experiment. In [48], Turchette et al. made a measurement on the conditional phase shifts for quantum logic with the experimental parameters (g, κ, γ)/2π ∼ (20, 75, 2.5) MHz, which satisfy the limitation of a bad cavity κg2/κγ exactly in an intermediate coupling region (g = 0.27κ). In [49], Dayan et al. presented an intermediate atom-cavity coupling in experiment, where a Cs atom is trapped in a microtoroidal resonator. They provided a set of experimental parameters (g, κ, γ)/2π ∼ (70, 165 ± 15, 2.6) MHz with the atom-cavity detuning ω0 = ωc, which still satisfied the requirements of a bad cavity. The Q value in [49] is more than 104 in the low-Q cavity limit, which is also very suitable to our protocol requiring the Q value of larger than 102. Besides, it should be noted that that although the Q can be low, a high Q/V is usually required in cavity QED systems, in which V is the mode volume. In [64], Tiecke et al. experimentally demonstrated a quantum optical switch, in which a single atom switched the phase of a photon and a single photon modified the atom’s phase, by coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity attached to an optical fibre taper. The atom is trapped about 200 nm from the surface in an optical lattice formed by the interference of an optical tweezer and its reflection from the side of the cavity. The atom utilizing a short (3 ns) pulse of light was excited in the optical trap and resonant with the |5S1/2, F = 2〉 → |5P2/3, F′ = 3〉 transition (near 780 nm) accompanied by the experimental parameters (2g, κ, γ)/2π ∼ (1.096 ± 0.03, 25, 0.006) GHz under the limitation of a low cavity.

When the photon interacts with the atom-cavity system, the incident photon may be inevitably lost. Therefore, it becomes particularly important to consider the efficiencies of the hybrid hyper-CNOT gates, η = ηoutput/ηinput, which is defined as the yield of the incident photon, that is, the ratio that takes into account these gates’ output photon number ηoutput and input photon number ηinput. Besides, all the discussions for the constructions of the hybrid hyper-CNOT gates are in the ideal case r (ωp) ∼ 1 and r0(ωp) = −1. The imperfection in phase and amplitude of the reflection photons reduces the performance of our gates, so it is necessary to consider the feasibilities of our gates, which can be evaluated by the fidelity defined as the overlap of the output states of the system in the ideal case |ψideal〉 and the real case |ψreal〉, F = |〈ψideal|ψreal〉|2. Taking the hybrid hyper-CNOT gate I as an example, where |ψideal〉 can be described by in Eq. (14), and the corresponding output state |ψreal〉 can be obtain by substituting the real optical transition rules |L〉|1〉 → r (ωp) |L 〉|1〉, and |L 〉|0〉 → r0(ωp)|L〉|0〉 for the ideal case |ψideal〉 during the evolution of the whole system. Here,

FC1=ij{1,2}|k=14(ξ2k1sinβj+ξ2kcosβj)λkζk|2k=14|ξ2k1sinβj+ξ2kcosβj)λk|2k=14|ζk|2,ηC1=ij{1,2}k=14|ξ2k1sinβj+ξ2kcosβj)λk|2256,
where ξ1 = ξ4 = 2+2r, ξ2 = ξ3 = 2−2r, ξ5=ξ8=2r+2rr0+r2r02, ξ6=ξ7=2r2rr0r2+r02, λ1 = λ2 = sin αi, λ3 = λ4 = cos αi, ζ1 = sin βj sin αi, ζ2 = cos βj sin αi, ζ3 = cos βj cos αi, and ζ4 = sin βj cos αi (ij ∈ {1, 2}). In order to make our discussion more practical and general, we use the average efficiency defined as η¯C1=1(2π)402πdα102πdβ102πdα202πdβ2ηC1 and the average fidelity defined as F¯C1=1(2π)402πdα102πdβ102πdα202πdβ2FC1 to characterize the performance of our hybrid hyper-CNOT gate I. The fidelities FC2 (FC3) of the hybrid hyper-CNOT gates II (III) is similar to the one FC1 of the hybrid hyper-CNOT gate I, and can be obtained by transforming the positions of α1, α2, β1, and β2 in Eq. (18), so they possess the same average fidelity. Therefore, we adopt the average fidelity C1 to display the feature of three kinds of hybrid hyper-CNOT gates. So does the following discussion of the average efficiency of the hybrid hyper-CNOT gates. Obviously, the average fidelity and efficiency of our hybrid hyper-CNOT gates are assisted by the nonlinear interaction between the photon and the auxiliary atom in the cavity shown in Figs. 4(a) and 4(b), respectively. Based on the experimental parameters mentioned in [48], the average fidelity and efficiency of our hybrid hyper-CNOT gate are C1 = 0.9943, and η̄C1 = 0.9061, respectively. The average fidelity and efficiency of our hybrid hyper-CNOT gate are improved to C1 = 0.9989 and η̄C1 = 0.9478 under the condition [49], respectively. The average fidelity and efficiency of our hybrid hyper-CNOT gate become C1 = 0.9999 and η̄C1 = 0.9898 in the case of [64], respectively. The results above show that the average fidelities and efficiencies of our hybrid hyper-CNOT gates can acquire higher values with low-Q cavities.

 figure: Fig. 4

Fig. 4 (a) The average fidelity C1 and (b) the average efficiency η̄C1 of the hybrid hyper-CNOT gate I vs the ratio of g/κγ with ω0 = ωc = ωp, respectively.

Download Full Size | PPT Slide | PDF

The mechanism of our hybrid hyper-CNOT gates are in principle determinated in experiment if the unavoidable effects of photon loss, non-ideal single-photon sources, imperfect linear-optical elements (BSs and CPBSs), and invalid dark detectors atomic detections are not taken into account. These imperfections reduce the efficiencies and fidelities of our schemes. An ideal single-photon source should be work efficiently, controlled, exactly, but no single-photon sources can meet these requirements with the current technology. However, these technical imperfections will be improved with the further development of linear optical elements.

In this paper, the hybrid hyper-CNOT gate I (II) shows that the polarization (spatial-mode) states of the photons A and B simultaneously control the spatial-mode (polarization) states of the photons B and A, respectively. It is self-evident that the control qubits of the hybrid hyper-CNOT gate I are changed into the target qubits of the hybrid hyper-CNOT gate II and vice versa. Two photons A and B simultaneously interact with atom-cavity system in the opposite direction, which means shorter operation time required in the whole process of our schemes. Moreover, the hybrid hyper-CNOT gate III shows that the polarization state and the spatial-mode state of the photon A simultaneously control the spatial-mode state and the polarization state of the photon B, respectively. Meanwhile, it could be directly generalized into the multi-qubit hyper-CNOTN gate, which is of great importance when performing the hyperentanglement preparation and redundant hyperencoding procedure [65,66], and could find its potential application in the memory-less quantum communication [67, 68] in the hyper-parallel quantum network. In addition, our multi-qubit hybrid hyper-CNOTN gate needs only two auxiliary atoms, which makes our scheme easier, compared with the multi-qubit gate constituted with two-qubit gates and single-qubit gates [2]. These hybrid hyper-CNOT gates can be used to set up some interesting devices for high-capacity direct transmission of the information from one quantum communication node to another with a polynomial gain for the efficiency of distributed QIP. Compared with other protocols with input-output process [14–17], this protocol does not need the confined atom strong coupled to a high-Q cavity, and extends the earlier protocols with single-photon to continuous variable regime, which could greatly relax the experimental requirement. Therefore, these hybrid spatial-polarization hyper-CNOT gates are more robust against photonic dissipation noise.

In conclusion, we have constructed three types of flexible hybrid hyper-CNOT gates assisted by low-Q cavities and investigated the possibility of parallel quantum computation without utilizing extra spatial modes or polarization modes. The hybrid spatial-polarization hyper-CNOT gates consume less quantum resource and are more robust against photonic dissipation noise, compared with the integration of two cascaded CNOT gates in one DOF. In contrast to the hybrid hyper-CNOT gate on the one photon and the stationary electron spins in quantum dots [27], our hybrid hyper-CNOT gates are ultimately realized on the two photon systems, and the atoms of the low-Q cavities are only the auxiliary resource. Besides, the operation time of our hybrid hyper-CNOT gates are economized extremely in the whole process of our schemes due to simultaneous counter-propagation of two photons, which are much different from previous hyper-CNOT gate [26]. Moreover, these gates are performed with cavity-assisted photon scattering in the intermediate coupling region, possessing relatively long coherence time, which are much different from strong-coupling cases of the high-Q ones. Therefore, it is more feasible to realize not only fast quantum operations, but also multi-time operations between the photon and the cavity-atom system. In addition, our calculations show that the average fidelities and efficiencies of our gates are high with current experimental technology.

Funding

National Natural Science Foundation of China under Grant (11747024, 51635011, 61571406, 61704158); in part by the Shanxi “1331 Project ” Key Subjects Construction.

References

1. M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” (2002).

2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995). [CrossRef]   [PubMed]  

3. Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and cnot gate constructions of general n-qubit controlled gates,” Int. J. Quantum Inf. 6, 447–462 (2008). [CrossRef]  

4. G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013). [CrossRef]   [PubMed]  

5. T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018). [CrossRef]  

6. X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]   [PubMed]  

7. C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]   [PubMed]  

8. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013). [CrossRef]  

9. C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013). [CrossRef]   [PubMed]  

10. H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013). [CrossRef]  

11. T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014). [CrossRef]  

12. T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003). [CrossRef]   [PubMed]  

13. J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012). [CrossRef]   [PubMed]  

14. L. M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]   [PubMed]  

15. L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010). [CrossRef]   [PubMed]  

16. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014). [CrossRef]   [PubMed]  

17. B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016). [CrossRef]   [PubMed]  

18. N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477 (1998). [CrossRef]  

19. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature 409, 46 (2001). [CrossRef]   [PubMed]  

20. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003). [CrossRef]  

21. Y. B. Sheng and L. Zhou, “Blind quantum computation with a noise channel,” Phys. Rev. A 98, 052343 (2018). [CrossRef]  

22. E. T. Campbell, “Enhanced fault-tolerant quantum computing in d-level systems,” Phys. Rev. Lett. 113, 230501 (2014). [CrossRef]   [PubMed]  

23. D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003). [CrossRef]  

24. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]  

25. Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017). [CrossRef]  

26. B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014). [CrossRef]  

27. T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014). [CrossRef]  

28. T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016). [CrossRef]  

29. G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018). [CrossRef]   [PubMed]  

30. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012). [CrossRef]  

31. G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016). [CrossRef]   [PubMed]  

32. G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, “Complete analysis of hyperentangled bell states assisted with auxiliary hyperentanglement,” Opt. Express 27, 8994–9003 (2019). [CrossRef]   [PubMed]  

33. B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014). [CrossRef]  

34. F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,” Annals Phys. 375, 105–118 (2016). [CrossRef]  

35. G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018). [CrossRef]  

36. B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013). [CrossRef]  

37. X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015). [CrossRef]  

38. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001). [CrossRef]  

39. J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006). [CrossRef]   [PubMed]  

40. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007). [CrossRef]  

41. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007). [CrossRef]   [PubMed]  

42. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007). [CrossRef]   [PubMed]  

43. R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010). [CrossRef]   [PubMed]  

44. N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015). [CrossRef]   [PubMed]  

45. X. F. Zhou, Y. S. Zhang, and G. C. Guo, “Nonlocal gate of quantum network via cavity quantum electrodynamics,” Phys. Rev. A 71, 064302 (2005). [CrossRef]  

46. L. M. Duan, B. Wang, and H. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005). [CrossRef]  

47. X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006). [CrossRef]  

48. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995). [CrossRef]   [PubMed]  

49. B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef]   [PubMed]  

50. J. H. An, M. Feng, and C. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]  

51. M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019). [CrossRef]  

52. X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41, 3603–3606 (2016). [CrossRef]   [PubMed]  

53. M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, and G. L. Long, “Characterization of microresonator-geometry-deformation for cavity optomechanics,” Opt. Express 27, 63–73 (2019). [CrossRef]   [PubMed]  

54. X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018). [CrossRef]  

55. T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018). [CrossRef]  

56. D. E. Liu, “Sensing kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling,” Quantum Eng. 1, e10 (2019). [CrossRef]  

57. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017). [CrossRef]   [PubMed]  

58. M. O. Scully and M. S. Zubairy, “Quantum optics,” (1999).

59. G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009). [CrossRef]  

60. H. F. Wang, A. D. Zhu, and S. Zhang, “One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities,” Opt. Lett. 39, 1489–1492 (2014). [CrossRef]   [PubMed]  

61. T. Beth and M. Rötteler, “Quantum algorithms: applicable algebra and quantum physics,” in Quantum information, (Springer, 2001), pp. 96–150. [CrossRef]  

62. T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014). [CrossRef]  

63. M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001). [CrossRef]  

64. T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014). [CrossRef]   [PubMed]  

65. L. Zhou and Y. B. Sheng, “Complete logic bell-state analysis assisted with photonic faraday rotation,” Phys. Rev. A 92, 042314 (2015). [CrossRef]  

66. Y. B. Sheng and L. Zhou, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017). [CrossRef]  

67. W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012). [CrossRef]  

68. S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” (2002).
  2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
    [Crossref] [PubMed]
  3. Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and cnot gate constructions of general n-qubit controlled gates,” Int. J. Quantum Inf. 6, 447–462 (2008).
    [Crossref]
  4. G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
    [Crossref] [PubMed]
  5. T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018).
    [Crossref]
  6. X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [Crossref] [PubMed]
  7. C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [Crossref] [PubMed]
  8. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
    [Crossref]
  9. C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
    [Crossref] [PubMed]
  10. H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
    [Crossref]
  11. T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
    [Crossref]
  12. T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
    [Crossref] [PubMed]
  13. J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
    [Crossref] [PubMed]
  14. L. M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [Crossref] [PubMed]
  15. L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [Crossref] [PubMed]
  16. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014).
    [Crossref] [PubMed]
  17. B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016).
    [Crossref] [PubMed]
  18. N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477 (1998).
    [Crossref]
  19. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature 409, 46 (2001).
    [Crossref] [PubMed]
  20. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
    [Crossref]
  21. Y. B. Sheng and L. Zhou, “Blind quantum computation with a noise channel,” Phys. Rev. A 98, 052343 (2018).
    [Crossref]
  22. E. T. Campbell, “Enhanced fault-tolerant quantum computing in d-level systems,” Phys. Rev. Lett. 113, 230501 (2014).
    [Crossref] [PubMed]
  23. D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003).
    [Crossref]
  24. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
    [Crossref]
  25. Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
    [Crossref]
  26. B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
    [Crossref]
  27. T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
    [Crossref]
  28. T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
    [Crossref]
  29. G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
    [Crossref] [PubMed]
  30. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
    [Crossref]
  31. G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
    [Crossref] [PubMed]
  32. G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, “Complete analysis of hyperentangled bell states assisted with auxiliary hyperentanglement,” Opt. Express 27, 8994–9003 (2019).
    [Crossref] [PubMed]
  33. B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
    [Crossref]
  34. F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,” Annals Phys. 375, 105–118 (2016).
    [Crossref]
  35. G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018).
    [Crossref]
  36. B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
    [Crossref]
  37. X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
    [Crossref]
  38. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001).
    [Crossref]
  39. J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
    [Crossref] [PubMed]
  40. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
    [Crossref]
  41. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
    [Crossref] [PubMed]
  42. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
    [Crossref] [PubMed]
  43. R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
    [Crossref] [PubMed]
  44. N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
    [Crossref] [PubMed]
  45. X. F. Zhou, Y. S. Zhang, and G. C. Guo, “Nonlocal gate of quantum network via cavity quantum electrodynamics,” Phys. Rev. A 71, 064302 (2005).
    [Crossref]
  46. L. M. Duan, B. Wang, and H. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
    [Crossref]
  47. X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
    [Crossref]
  48. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
    [Crossref] [PubMed]
  49. B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
    [Crossref] [PubMed]
  50. J. H. An, M. Feng, and C. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-q cavities,” Phys. Rev. A 79, 032303 (2009).
    [Crossref]
  51. M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
    [Crossref]
  52. X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41, 3603–3606 (2016).
    [Crossref] [PubMed]
  53. M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, and G. L. Long, “Characterization of microresonator-geometry-deformation for cavity optomechanics,” Opt. Express 27, 63–73 (2019).
    [Crossref] [PubMed]
  54. X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
    [Crossref]
  55. T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
    [Crossref]
  56. D. E. Liu, “Sensing kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling,” Quantum Eng. 1, e10 (2019).
    [Crossref]
  57. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
    [Crossref] [PubMed]
  58. M. O. Scully and M. S. Zubairy, “Quantum optics,” (1999).
  59. G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009).
    [Crossref]
  60. H. F. Wang, A. D. Zhu, and S. Zhang, “One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities,” Opt. Lett. 39, 1489–1492 (2014).
    [Crossref] [PubMed]
  61. T. Beth and M. Rötteler, “Quantum algorithms: applicable algebra and quantum physics,” in Quantum information, (Springer, 2001), pp. 96–150.
    [Crossref]
  62. T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
    [Crossref]
  63. M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
    [Crossref]
  64. T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
    [Crossref] [PubMed]
  65. L. Zhou and Y. B. Sheng, “Complete logic bell-state analysis assisted with photonic faraday rotation,” Phys. Rev. A 92, 042314 (2015).
    [Crossref]
  66. Y. B. Sheng and L. Zhou, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
    [Crossref]
  67. W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
    [Crossref]
  68. S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
    [Crossref] [PubMed]

2019 (4)

G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, “Complete analysis of hyperentangled bell states assisted with auxiliary hyperentanglement,” Opt. Express 27, 8994–9003 (2019).
[Crossref] [PubMed]

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, and G. L. Long, “Characterization of microresonator-geometry-deformation for cavity optomechanics,” Opt. Express 27, 63–73 (2019).
[Crossref] [PubMed]

D. E. Liu, “Sensing kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling,” Quantum Eng. 1, e10 (2019).
[Crossref]

2018 (6)

X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
[Crossref]

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018).
[Crossref]

Y. B. Sheng and L. Zhou, “Blind quantum computation with a noise channel,” Phys. Rev. A 98, 052343 (2018).
[Crossref]

T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018).
[Crossref]

2017 (3)

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
[Crossref] [PubMed]

Y. B. Sheng and L. Zhou, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

2016 (5)

X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41, 3603–3606 (2016).
[Crossref] [PubMed]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,” Annals Phys. 375, 105–118 (2016).
[Crossref]

B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016).
[Crossref] [PubMed]

2015 (3)

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref] [PubMed]

L. Zhou and Y. B. Sheng, “Complete logic bell-state analysis assisted with photonic faraday rotation,” Phys. Rev. A 92, 042314 (2015).
[Crossref]

2014 (10)

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

H. F. Wang, A. D. Zhu, and S. Zhang, “One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities,” Opt. Lett. 39, 1489–1492 (2014).
[Crossref] [PubMed]

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
[Crossref]

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref] [PubMed]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014).
[Crossref] [PubMed]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

E. T. Campbell, “Enhanced fault-tolerant quantum computing in d-level systems,” Phys. Rev. Lett. 113, 230501 (2014).
[Crossref] [PubMed]

2013 (5)

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

2012 (3)

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
[Crossref]

2010 (3)

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

2009 (2)

J. H. An, M. Feng, and C. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

2008 (2)

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and cnot gate constructions of general n-qubit controlled gates,” Int. J. Quantum Inf. 6, 447–462 (2008).
[Crossref]

2007 (3)

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[Crossref] [PubMed]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

2006 (2)

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[Crossref]

2005 (3)

X. F. Zhou, Y. S. Zhang, and G. C. Guo, “Nonlocal gate of quantum network via cavity quantum electrodynamics,” Phys. Rev. A 71, 064302 (2005).
[Crossref]

L. M. Duan, B. Wang, and H. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

2004 (1)

L. M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

2003 (4)

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
[Crossref] [PubMed]

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
[Crossref]

2001 (3)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature 409, 46 (2001).
[Crossref] [PubMed]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001).
[Crossref]

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

1998 (1)

N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477 (1998).
[Crossref]

1995 (2)

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Adami, C.

N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477 (1998).
[Crossref]

Ahmadi, P.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[Crossref] [PubMed]

Ai, Q.

Alsaedi, A.

G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018).
[Crossref]

An, J. H.

J. H. An, M. Feng, and C. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Aoki, T.

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Astafiev, O.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
[Crossref] [PubMed]

Barenco, A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Bennett, C. H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Beth, T.

T. Beth and M. Rötteler, “Quantum algorithms: applicable algebra and quantum physics,” in Quantum information, (Springer, 2001), pp. 96–150.
[Crossref]

Beugnon, J.

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

Boca, A.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Bonato, C.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Boozer, A. D.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Bouwmeester, D.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Boyd, R. W.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
[Crossref]

Browaeys, A.

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001).
[Crossref]

Bužek, V.

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

Campbell, E. T.

E. T. Campbell, “Enhanced fault-tolerant quantum computing in d-level systems,” Phys. Rev. Lett. 113, 230501 (2014).
[Crossref] [PubMed]

Cerf, N. J.

N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477 (1998).
[Crossref]

Chai, Z. F.

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

Chapman, M. S.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[Crossref] [PubMed]

Chen, M. Y.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[Crossref]

Chen, W.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
[Crossref] [PubMed]

Chen, Z. H.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[Crossref]

Cheng, Y.

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

Chow, J. M.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Chuang, I.

M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” (2002).

Cleve, R.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Colombe, Y.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Córcoles, A.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Cramer, J.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
[Crossref]

Darquié, B.

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

Dayan, B.

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

de Leon, N. P.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

Deng, F. G.

G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, “Complete analysis of hyperentangled bell states assisted with auxiliary hyperentanglement,” Opt. Express 27, 8994–9003 (2019).
[Crossref] [PubMed]

G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018).
[Crossref]

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Devitt, S.

W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
[Crossref]

Ding, D.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Dingjan, J.

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

DiVincenzo, D. P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Dobrovitski, V. V.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
[Crossref]

Du, F. F.

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,” Annals Phys. 375, 105–118 (2016).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

Duan, L. M.

L. M. Duan, B. Wang, and H. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

L. M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Dubois, G.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Esteve, J.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Fang, Z. W.

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

Feng, G. R.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Feng, M.

J. H. An, M. Feng, and C. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Fortier, K. M.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[Crossref] [PubMed]

Gambetta, J. M.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Gammon, D.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Gao, B.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Gao, L.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Gao, M.

Gehr, R.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Ghose, S.

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

Gibbons, M. J.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[Crossref] [PubMed]

Gill, A.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Grangier, P.

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

Gudat, J.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Guo, G. C.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

X. F. Zhou, Y. S. Zhang, and G. C. Guo, “Nonlocal gate of quantum network via cavity quantum electrodynamics,” Phys. Rev. A 71, 064302 (2005).
[Crossref]

Hacker, B.

B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016).
[Crossref] [PubMed]

Hanson, R.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
[Crossref]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001).
[Crossref]

Harrison, K.

W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
[Crossref]

Haupt, F.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Hayat, T.

G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018).
[Crossref]

Henage, T.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Hijlkema, M.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

Hood, C. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Hu, Y. Q.

M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, and G. L. Long, “Characterization of microresonator-geometry-deformation for cavity optomechanics,” Opt. Express 27, 63–73 (2019).
[Crossref] [PubMed]

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

Isenhower, L.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jiang, L.

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref] [PubMed]

Jiao, R. Z.

Jin, G. S.

Johnson, T. A.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jones, M. P.

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

Kalb, N.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref] [PubMed]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014).
[Crossref] [PubMed]

Katzer, D.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Keefe, G. A.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Kim, J.

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref] [PubMed]

Kim, S. Y.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[Crossref] [PubMed]

Kimble, H.

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

L. M. Duan, B. Wang, and H. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

L. M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Kimble, H. J.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature 409, 46 (2001).
[Crossref] [PubMed]

Kuhn, A.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

Kwiat, P. G.

N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477 (1998).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature 409, 46 (2001).
[Crossref] [PubMed]

Lange, W.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Lei, F.

Lei, F. C.

X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
[Crossref]

Lev, B. L.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Li, T.

G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018).
[Crossref]

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “Self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,” Annals Phys. 375, 105–118 (2016).
[Crossref]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

Li, X. H.

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[Crossref]

Li, X. Q.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Lin, G. W.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

Lin, J. T.

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

Lin, X. M.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[Crossref]

Liu, D. E.

D. E. Liu, “Sensing kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling,” Quantum Eng. 1, e10 (2019).
[Crossref]

Liu, L.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

Liu, X. F.

X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
[Crossref]

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41, 3603–3606 (2016).
[Crossref] [PubMed]

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Liu, Y.

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and cnot gate constructions of general n-qubit controlled gates,” Int. J. Quantum Inf. 6, 447–462 (2008).
[Crossref]

Long, G. L.

G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, “Complete analysis of hyperentangled bell states assisted with auxiliary hyperentanglement,” Opt. Express 27, 8994–9003 (2019).
[Crossref] [PubMed]

M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, and G. L. Long, “Characterization of microresonator-geometry-deformation for cavity optomechanics,” Opt. Express 27, 63–73 (2019).
[Crossref] [PubMed]

X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
[Crossref]

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018).
[Crossref]

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,” Annals Phys. 375, 105–118 (2016).
[Crossref]

X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41, 3603–3606 (2016).
[Crossref] [PubMed]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and cnot gate constructions of general n-qubit controlled gates,” Int. J. Quantum Inf. 6, 447–462 (2008).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Long, R.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Lu, Y.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Lukin, M. D.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref] [PubMed]

Lütkenhaus, N.

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref] [PubMed]

Mabuchi, H.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Magaña Loaiza, O. S.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Margolus, N.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Merkel, S. T.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Messin, G.

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature 409, 46 (2001).
[Crossref] [PubMed]

Miller, R.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

Mirhosseini, M.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Munro, W.

W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
[Crossref]

Muralidharan, S.

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref] [PubMed]

Nakamura, Y.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
[Crossref] [PubMed]

Nemoto, K.

W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” (2002).

Northup, T. E.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

O’Brien, J. L.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
[Crossref]

Oemrawsingh, S. S.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Oh, C.

J. H. An, M. Feng, and C. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Ostby, E.

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Özdemir, S. K.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
[Crossref] [PubMed]

Park, D.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Parkins, A.

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Pashkin, Y. A.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
[Crossref] [PubMed]

Pedernales, J. S.

T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018).
[Crossref]

Piermarocchi, C.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Poletto, S.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Pryde, G. J.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
[Crossref]

Qin, G. Q.

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41, 3603–3606 (2016).
[Crossref] [PubMed]

Rafsanjani, S. M. H.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001).
[Crossref]

Ralph, T. C.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
[Crossref]

Reichel, J.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Reiserer, A.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref] [PubMed]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014).
[Crossref] [PubMed]

Rempe, G.

B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016).
[Crossref] [PubMed]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref] [PubMed]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014).
[Crossref] [PubMed]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

Ren, B. C.

G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, “Complete analysis of hyperentangled bell states assisted with auxiliary hyperentanglement,” Opt. Express 27, 8994–9003 (2019).
[Crossref] [PubMed]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

Rigetti, C.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Ritter, S.

B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016).
[Crossref] [PubMed]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref] [PubMed]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014).
[Crossref] [PubMed]

Rothwell, M. B.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Rötteler, M.

T. Beth and M. Rötteler, “Quantum algorithms: applicable algebra and quantum physics,” in Quantum information, (Springer, 2001), pp. 96–150.
[Crossref]

Rozen, J.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

Ruan, D.

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

Saffman, M.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Šašura, M.

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

Scully, M. O.

M. O. Scully and M. S. Zubairy, “Quantum optics,” (1999).

Sham, L.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Sheng, Y. B.

Y. B. Sheng and L. Zhou, “Blind quantum computation with a noise channel,” Phys. Rev. A 98, 052343 (2018).
[Crossref]

Y. B. Sheng and L. Zhou, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Complete logic bell-state analysis assisted with photonic faraday rotation,” Phys. Rev. A 92, 042314 (2015).
[Crossref]

Shor, P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Sleator, T.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Smolin, J. A.

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Solano, E.

T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018).
[Crossref]

Specht, H. P.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

Steel, D. C.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Steinmetz, T.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Stephens, A.

W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
[Crossref]

Stievater, T.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Sun, C.

D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003).
[Crossref]

Sun, Y.

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and cnot gate constructions of general n-qubit controlled gates,” Int. J. Quantum Inf. 6, 447–462 (2008).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
[Crossref]

Thompson, J. D.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

Tiecke, T.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

Tsai, J. S.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
[Crossref] [PubMed]

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Urban, E.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Vahala, K.

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

van der Sar, T.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
[Crossref]

van Exter, M. P.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Volz, J.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Vuletic, V.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

Walker, T.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Wang, B.

L. M. Duan, B. Wang, and H. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

Wang, C.

X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
[Crossref]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
[Crossref]

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Wang, G. Y.

Wang, H. F.

Wang, M.

M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, and G. L. Long, “Characterization of microresonator-geometry-deformation for cavity optomechanics,” Opt. Express 27, 63–73 (2019).
[Crossref] [PubMed]

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

Wang, T.

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

Wang, T. J.

X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
[Crossref]

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Wang, Y. Z.

Weber, B.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

Webster, S. C.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

Wei, H. R.

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

Weinfurter, H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Welte, S.

B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016).
[Crossref] [PubMed]

White, A. G.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
[Crossref]

Wiersig, J.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
[Crossref] [PubMed]

Wu, R. B.

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

Wu, Y. W.

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

Xin, T.

T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018).
[Crossref]

Xu, G. F.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Xu, X. S.

Xu, Z.

D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003).
[Crossref]

Xue, P.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[Crossref]

Yamamoto, T.

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
[Crossref] [PubMed]

Yang, L.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
[Crossref] [PubMed]

Yang, X.

Yang, Z.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Zeng, B.

D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003).
[Crossref]

Zhang, J. H.

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

Zhang, S.

Zhang, X.

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Zhang, Y.

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

Zhang, Y. S.

X. F. Zhou, Y. S. Zhang, and G. C. Guo, “Nonlocal gate of quantum network via cavity quantum electrodynamics,” Phys. Rev. A 71, 064302 (2005).
[Crossref]

Zhao, G.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
[Crossref] [PubMed]

Zhou, D.

D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003).
[Crossref]

Zhou, L.

Y. B. Sheng and L. Zhou, “Blind quantum computation with a noise channel,” Phys. Rev. A 98, 052343 (2018).
[Crossref]

Y. B. Sheng and L. Zhou, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Complete logic bell-state analysis assisted with photonic faraday rotation,” Phys. Rev. A 92, 042314 (2015).
[Crossref]

Zhou, X. F.

X. F. Zhou, Y. S. Zhang, and G. C. Guo, “Nonlocal gate of quantum network via cavity quantum electrodynamics,” Phys. Rev. A 71, 064302 (2005).
[Crossref]

Zhou, Y.

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Zhu, A. D.

Zou, X. B.

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, “Quantum optics,” (1999).

Annals Phys. (1)

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,” Annals Phys. 375, 105–118 (2016).
[Crossref]

Int. J. Quantum Inf. (1)

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and cnot gate constructions of general n-qubit controlled gates,” Int. J. Quantum Inf. 6, 447–462 (2008).
[Crossref]

Laser Phys. Lett. (1)

T. J. Wang, Y. Zhang, and C. Wang, “Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities,” Laser Phys. Lett. 11, 025203 (2014).
[Crossref]

Light. Sci. & Appl. (1)

Z. Yang, O. S. Magaña Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light. Sci. & Appl. 6, e17013 (2017).
[Crossref]

Nanophotonics (1)

X. F. Liu, F. C. Lei, T. J. Wang, G. L. Long, and C. Wang, “Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator,” Nanophotonics 8, 127–134 (2018).
[Crossref]

Nat. nanotechnology (1)

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nat. nanotechnology 9, 171 (2014).
[Crossref]

Nat. Photonics (1)

W. Munro, A. Stephens, S. Devitt, K. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777 (2012).
[Crossref]

Nat. Phys. (1)

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253 (2007).
[Crossref]

Nature (8)

J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779 (2006).
[Crossref] [PubMed]

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241 (2014).
[Crossref] [PubMed]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192 (2017).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature 409, 46 (2001).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature 426, 264 (2003).
[Crossref]

T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941 (2003).
[Crossref] [PubMed]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508, 237 (2014).
[Crossref] [PubMed]

B. Hacker, S. Welte, G. Rempe, and S. Ritter, “A photon-photon quantum gate based on a single atom in an optical resonator,” Nature 536, 193 (2016).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (21)

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

J. H. An, M. Feng, and C. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

X. F. Zhou, Y. S. Zhang, and G. C. Guo, “Nonlocal gate of quantum network via cavity quantum electrodynamics,” Phys. Rev. A 71, 064302 (2005).
[Crossref]

L. M. Duan, B. Wang, and H. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[Crossref]

M. Šašura and V. Bužek, “Multiparticle entanglement with quantum logic networks: Application to cold trapped ions,” Phys. Rev. A 64, 012305 (2001).
[Crossref]

L. Zhou and Y. B. Sheng, “Complete logic bell-state analysis assisted with photonic faraday rotation,” Phys. Rev. A 92, 042314 (2015).
[Crossref]

G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity qed,” Phys. Rev. A 79, 064303 (2009).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

Y. B. Sheng and L. Zhou, “Blind quantum computation with a noise channel,” Phys. Rev. A 98, 052343 (2018).
[Crossref]

D. Zhou, B. Zeng, Z. Xu, and C. Sun, “Quantum computation based on d-level cluster state,” Phys. Rev. A 68, 062303 (2003).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
[Crossref]

N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477 (1998).
[Crossref]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

T. Xin, J. S. Pedernales, E. Solano, and G. L. Long, “Entanglement measures in embedding quantum simulators with nuclear spins,” Phys. Rev. A 97, 022322 (2018).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

Phys. Rev. Appl. (1)

G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, “Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems,” Phys. Rev. Appl. 10, 054058 (2018).
[Crossref]

Phys. Rev. Lett. (12)

E. T. Campbell, “Enhanced fault-tolerant quantum computing in d-level systems,” Phys. Rev. Lett. 113, 230501 (2014).
[Crossref] [PubMed]

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Cnot and bell-state analysis in the weak-coupling cavity qed regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

J. M. Chow, J. M. Gambetta, A. Córcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, and J. Rozen, “Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits,” Phys. Rev. Lett. 109, 060501 (2012).
[Crossref] [PubMed]

L. M. Duan and H. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. Zhang, A. Gill, T. Henage, T. A. Johnson, T. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007).
[Crossref] [PubMed]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[Crossref] [PubMed]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Esteve, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref] [PubMed]

Quantum Eng. (2)

M. Wang, R. B. Wu, J. T. Lin, J. H. Zhang, Z. W. Fang, Z. F. Chai, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Eng. 1, e9 (2019).
[Crossref]

D. E. Liu, “Sensing kondo correlations in a suspended carbon nanotube mechanical resonator with spin-orbit coupling,” Quantum Eng. 1, e10 (2019).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001).
[Crossref]

Sci. Bull. (2)

T. Wang, X. F. Liu, Y. Q. Hu, G. Q. Qin, D. Ruan, and G. L. Long, “Rapid and high precision measurement of opto-thermal relaxation with pump-probe method,” Sci. Bull. 63, 287–292 (2018).
[Crossref]

Y. B. Sheng and L. Zhou, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

Sci. Reports (1)

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Reports 4, 4623 (2014).
[Crossref]

Science (2)

X. Q. Li, Y. W. Wu, D. C. Steel, D. Gammon, T. Stievater, D. Katzer, D. Park, C. Piermarocchi, and L. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[Crossref] [PubMed]

B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Other (3)

M. O. Scully and M. S. Zubairy, “Quantum optics,” (1999).

T. Beth and M. Rötteler, “Quantum algorithms: applicable algebra and quantum physics,” in Quantum information, (Springer, 2001), pp. 96–150.
[Crossref]

M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic setup to implement the interaction between the atom and the single-photon pulse. The top of the low-Q cavity is perfectly reflective and the bottom is partially reflective. CPBSi (i = 1, 2) is a circularly polarizing beam splitter which transmits the photon in the right-circular polarization |R 〉 and reflects the photon in the left-circular polarization |L 〉, respectively. With CPBS1, only the L-polarized component of the single-photon pulse is reflected by the cavity. DL is the time-delay device for making the circularly polarized photon pulses R and L reach the CPBS2 simultaneously. The states |0〉 and |1〉 indicate hyperfine states of the atom in the ground states while |e 〉 is an excited state.
Fig. 2
Fig. 2 Quantum circuit for implementing the hybrid hyper-CNOT gate I assisted by an input-output process of low-Q cavities. Here Y1 and Y2 represent two types of interactions. Y1 shows the interaction between the L-polarized photon in spatial-mode |k1〉 (|k2〉, k = a, b) and the atom trapped in the cavity. For Y2, both the L and R components of the photon interact with the atom of the cavity in sequence, in which before and after the interaction, the R component will be flipped with the polarization bit-flip operation X ( σ X K P = | L K R | + | R K L | , K = A , B ). The 50:50 beam splitters (BSm, m = 1, 2, 3, 4) are used to perform the Hadamard operation on the spatial-mode DOF of the photon A (or B). DL makes the photon A (B) in spatial mode a1 (b1) and a2 (b2) simultaneously reach the second BS2 (BS4). The black (blue) arrows represent propagating directions of the photon A (B), respectively.
Fig. 3
Fig. 3 (a) and (b) represent quantum circuit for implementing hybrid hyper-CNOT gate II and III, respectively. Hn (n = 1, 2, ...) is used to perform a Hadamard operation on the polarization DOF of a photon.
Fig. 4
Fig. 4 (a) The average fidelity C1 and (b) the average efficiency η̄C1 of the hybrid hyper-CNOT gate I vs the ratio of g / κ γ with ω0 = ωc = ωp, respectively.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

H = ω 0 2 σ z + ω c a a + i g ( a σ + a σ ) .
{ d a ^ ( t ) d t = [ i Δ ω c + κ 2 ] a ^ ( t ) g σ ^ ( t ) κ a ^ in ( t ) , d σ ^ ( t ) d t = [ i Δ ω 0 + γ 2 ] σ ^ ( t ) g σ ^ z ( t ) a ^ ( t ) + γ σ z ( t ) b ^ in ( t ) , a ^ o u t ( t ) = a ^ in ( t ) + κ a ^ ( t ) ,
r ( ω p ) = 1 κ [ i Δ ω 0 + γ 2 ] [ i Δ ω 0 + γ 2 ] [ i Δ ω c + κ 2 ] + g 2 .
r 0 ( ω p ) = 1 κ i Δ ω c + κ 2 .
r ( ω p ) = 1 + ( 2 g / κ γ ) 2 1 + ( 2 g / κ γ ) 2 , r 0 ( ω p ) = 1 .
| L | 1 r ( ω p ) | L | 1 = e i φ | r ( ω p ) | | L | 1 ω 0 = ω c = ω p κ g 2 / κ γ | L | 1 .
| L | 0 r 0 ( ω p ) | L | 0 = e i φ 0 | r 0 ( ω p ) | | L | 0 ω c = ω p | L | 0 .
| ϕ A = | ϕ A P | ϕ A S = ( sin α 1 | R + cos α 1 | L ) A ( sin α 2 | a 1 + cos α 2 | a 2 ) , | ϕ B = | ϕ B P | ϕ B S = ( sin β 1 | R + cos β 1 | L ) B ( sin β 2 | b 1 + cos β 2 | b 2 ) .
| Ψ 1 A = 1 2 [ | 1 1 ( sin α 1 | R + cos α 1 | L ) A + | 0 1 ( sin α 1 | R cos α 1 | L ) A ] ( sin α 2 | a 1 + cos α 2 | a 2 ) .
| Ψ 1 A = ( sin α 1 | R A | 1 1 + cos α 1 | L A | 0 1 ) [ sin ( α 2 + π 4 ) | a 1 + sin ( α 2 π 4 ) | a 2 ] ,
| Ψ 2 B = ( sin β 1 | R B | 1 2 + cos β 1 | L B | 0 2 ) [ sin ( β 2 + π 4 ) | b 1 + sin ( β 2 π 4 ) | b 2 ] .
| Ψ 12 A B = { sin α 1 | R A | 1 1 [ sin ( β 2 + π 4 ) | b 1 + sin ( β 2 π 4 ) | b 2 ] + cos α 1 | L A | 0 1 [ sin ( β 2 + π 4 ) | b 1 sin ( β 2 π 4 ) | b 2 ] } { sin β 1 | R B | 1 2 [ sin ( β 1 + π 4 ) | a 1 + sin ( β 1 π 4 ) | a 2 ] + cos β 1 | L B | 0 2 [ sin ( β 1 + π 4 ) | a 1 sin ( β 1 π 4 ) | a 2 ] } .
| Ψ 12 A B = 1 2 { [ sin α 1 | R A | ϕ B S + cos α 1 | L A σ X B S | ϕ B S ] | 1 1 + [ sin α 1 | R A | ϕ B S cos α 1 | L A σ X B S | ϕ B S ] | 0 1 } { [ sin β 1 | R B | ϕ A S + cos β 1 | L B σ X A S | ϕ A S ] | 1 2 + [ sin β 1 | R B | ϕ A S cos β 1 | L B σ X A S | ϕ A S ] | 0 2 } .
| Ψ 1 = [ sin α 1 | R A | ϕ B S + cos α 1 | L A σ X B S | ϕ B S ] [ sin β 1 | R B | ϕ A S + cos β 1 | L B σ X A S | ϕ A S ] .
| Ψ II = [ sin α 2 | α 1 | ϕ B P + cos α 2 | a 2 σ X B P | ϕ B P ] [ sin β 2 | b 1 | ϕ A P + cos β 2 | b 2 σ X A P | ϕ A P ] .
| Ψ III = [ sin α 1 | R A | ϕ B S + cos α 1 | L A σ X B S | ϕ B S ] [ sin α 2 | a 1 | ϕ B P + cos α 2 | a 2 σ X B P | ϕ B P ] .
| Ψ III N = [ sin α 1 | R A m = 1 N | ϕ B m S + cos α 1 | L A m = 1 N σ X B m S | ϕ B m S ] [ sin α 2 | a 1 m = 1 N | ϕ B m P + cos α 2 | a 2 m = 1 N σ X B m P | ϕ B m P ] .
F C 1 = i j { 1 , 2 } | k = 1 4 ( ξ 2 k 1 sin β j + ξ 2 k cos β j ) λ k ζ k | 2 k = 1 4 | ξ 2 k 1 sin β j + ξ 2 k cos β j ) λ k | 2 k = 1 4 | ζ k | 2 , η C 1 = i j { 1 , 2 } k = 1 4 | ξ 2 k 1 sin β j + ξ 2 k cos β j ) λ k | 2 256 ,

Metrics