Abstract

We propose new ways to produce strong terahertz (THz) magneto-optical phenomena from monolayer graphene based on bound states in the continuum (BICs) and Fano resonances. The BICs and Fano resonances of radiation modes in the monolayer graphene are realized by designing the photonic crystal slab-graphene-slab structure. Based on them, the magnetic circular dichroism near 100% has been achieved. Importantly, such magneto-optical phenomena can be modulated in intensity and frequency using only electrostatic doping at a fixed magnetic field. Comparing two ways to produce magneto-optical phenomena, it is found that the way based on BICs exhibits some advantages such as good electrical tenability due to narrower resonance width, higher conversion efficiency and more stability with the change of incident angle. These phenomena can appear in a broad THz range by designing the nanostructures, which are very beneficial to polarization conversion and optoelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, there has been a great deal of interest in studying the terahertz (THz) devices because THz technology is of great importance in information technology, medicine and nondestructive evaluation [1,2]. However, such devices have always been scarce because of the lack of materials and technology allowing the fabrication of them. Recent investigations have shown that graphene possess remarkable properties of THz response. In the graphene, the doped charge carriers interact strongly with the terahertz radiation [3–10] and the doping is electrostatically tunable [11]. Based on the graphene, some of THz devices such as modulators, detectors and magnetic response devices, have been demonstrated [12–15]. In these devices, the strength of interaction between graphene and electromagnetic (EM) waves plays a central role. In general, such an interaction is very weak due to the single atom thickness of graphene. The weak interactions block the efficiency of THz devices. For example, the conversion efficiency of magneto-optical (MO) phenomena is less than 50% in the previous investigations [15].

In general, the MO effects are caused by the interaction of light with magnetized materials or nonmagnetic media in the presence of the external magnetic field [16,17]. However, it is difficult to obtain at high frequencies because the magnetic susceptibility of all natural materials tails off at microwave frequencies [18]. In recent years, it has been found that the magnetic response at terahertz frequency can be achieved by designing metamaterials and photonic crystals [19–25]. If strong MO phenomena can be obtained by graphene, it undoubtedly opens up a new way to produce magnetic response. However, the weak interaction between graphene and EM waves has to be overcome.

Fortunately, the weak interaction can be enhanced by designing nanostructures. Some methods to improve the interaction between the graphene and EM waves have been proposed [26–38]. For example, bound states in the continuum (BICs) have been used to improve this interaction [39–57]. The BICs are known as embedded trapped modes, which correspond to discrete eigenvalues coexisting with extended modes of a continuous spectrum [58]. Originally, this concept appeared in quantum mechanics [58], but later it was extended to wave systems [41–59]. A true BIC is a mathematical object with an infinite value of the Q factor and vanishing resonance width, and it can exist only in ideal lossless structures [44–46,53]. In practice, BIC can be realized as a quasi-BIC, when both the Q factor and resonance width become finite [54–57]. Recent investigations have shown that high-Q quasi-BICs can be realized in some optical nanostructures [54–57]. It has also been demonstrated that nonlinear effects can be improved greatly using these quasi-BICs [55]. The question is whether the strong terahertz magneto-optical phenomena in the graphene can be realized using the quasi-BICs?

Motivated by the above problem, in this work we provide comparative studies to improve the MO phenomena based on quasi-BICs and Fano-resonances. We first design the photonic crystal slab-graphene-slab structures to realize the quasi-BICs and Fano-resonances of radiation modes in the monolayer graphene. Based on them, we study the improved magneto-optical phenomena in these structures.

2. BICs (quasi-BICs) and Fano resonances in photonic crystal-graphene-dielectric slab

We firstly consider a double layer structure consisting of a Si3N4 photonic crystal slab and a SiO2 dielectric slab, as shown in Fig. 1(a). The photonic crystal slab consists of a square lattice of air holes with the lattice constant denoting by a. The thickness, relative permittivity and relative permeability of the photonic crystal (dielectric) slab are denoted by d1=0.3*a (d2=0.3*a),εh=4.0804 (εd=12.96) and μh=1(μd=1), respectively. Due to the fact that our system processes C4v symmetry, both one- and two-dimensional irreducible representations exist. Based on the symmetry arguments, only doubly-degenerate modes (they are called Fano resonances) can couple with free-space modes, while the non-degenerate modes are dark modes (they are called symmetry-protected BICs). By choosing appropriate parameters, BICs and Fano resonances can be observed at a certain wavelength range in our system.

 

Fig. 1 (a) Diagram of the photonic crystal-slab structure and coordinate. Magnetic field is along Z-axis,B=7T.The photonic crystal is arranged in a square lattice with the lattice constant a=9.5194μm.The radii of air cylinders in photonic crystal are r=0.3*a.The photonic crystal thickness is d1=0.3*a.The slab is placed next to the photonic crystal and the thickness is d2=0.3*a. (b) Cross sections of the reflection coefficient at 0o and 2o incidence angles show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonance. Blue and red arrows point to the BICs and quasi-BICs. All the incident light in the above figure is linearly polarized light, and the polarization direction of the electric field along the X axis. (c) Eigenfrequency analysis withθ for BICs and Fano resonances. Blue and red lines overlap at λ=11.25μm. (d) The quality factor changes with θ, and it can be found that the Q factor decreases rapidly along the direction of Γ point. The frequencies used are consistent with those in Fig. 1(c). (e) The electric field intensity at the λ=12.95μm corresponds to the electric field distribution under quasi-BICs. (f) The electric field intensity at λ=11.25μm corresponds to the electric field distribution under Fano resonances.

Download Full Size | PPT Slide | PDF

The blue and red lines in Fig. 1(b) show the calculated reflectivities as a function of the wavelength with the incident angle being θ=0° and 2°, respectively. It is clearly shown that sharp resonant features indicated the existence of Bloch modes in the structure. These sharp resonances, which can be analyzed more clearly from the eigenmode analysis shown in Fig. 1(c), needed to be divided into two types: Fano-like and quasi-BIC-like modes.

Figure 1(c) displays the real part of the eigenvalue in the two-layer system as functions of incident angle θ. The black and red lines correspond to the quasi-BIC-like and Fano-like cases. Their corresponding Q factors are depicted in Fig. 1(d). It is seen clearly that the eigenmode at θ=0 and λ=12.95μm possesses infinite Q factor. This corresponds to the symmetry-protected BIC at the Γ point. In such a case, the reflection spectra with the normal incident light exhibit resonance vanishing behavior marked by small circle in Fig. 1(b). With the increasing of θ, the BIC with infinite Q factor transforms into high-Q quasi-BIC and the resonance peaks appear. In contrast, the eigenmode at θ=0° and λ=11.25μm is the Fano-like mode. The Q factors of these resonance peaks are always finite. Moreover, it splits into two parts without the protection of C4v symmetry that can be proved clearly from the reflection (see red lines in Fig. 1(b)).

In order to further reveal the characteristics of these modes, in Fig. 1(e) and 1(f), we plot the distribution of the electric field intensities along the z-axis with the wavelength of the x-polarized wave being λ=12.95μm(quasi-BIC) and λ=11.25μm(Fano resonance), respectively. It is shown clearly that the EM fields are both mainly localized at the interface between the two-layer system. However, a number of different behaviors also appears. We find that significant tails of near-field extends to the bottom of the structure for the Fano resonance (Fig. 1(f)) and negligible near-field extension for the quasi-BIC case (Fig. 1(e)). This means that the EM field is more localized at the interface for the quasi-BIC case.

Now we put the monolayer graphene at the interface between the photonic crystal slab and the dielectric slab, as shown in Fig. 2(a). The optical conductivity of the monolayer graphene under magnetic field can be described as a semiclassical Drude model:

σ±(ω)=Dπiωωc+iτ
where D is the Drude weight, ωcis the cyclotron frequency (positive/negative for n-/p-type doping),τis the scattering time, and +/− refer to right-handed/left-handed (RH/LH) circular polarizations. According to the Dirac-fermion theory (in the semiclassical limit), the Drude weight and the cyclotron frequency can be expressed as [59,60,61]
D(n)=e2vfπ|n|
and
ωc(n,B)=eBvfsign(n)π|n|
with
τ=evfμπ|n|,
Ef=vfπ|n|,
wherevfis the Fermi velocity, which is taken as106m/sin the following calculations [3]. The Efis the Fermi level,the reduced Planck’s constant andethe (positive) elementary charge, B magnetic field and n doping concentration. Theμis the carrier mobility, which is taken as3500cm2V1s1in the following calculations [62]. Based on the finite element method, we calculate reflectivity, transmissivity and absorption for the EM wave transmitting through the above photonic crystal slab-graphene-slab structure. The calculated results are given in Figs. 2(b), 2(c) and 2(d). Comparing the reflection spectra for the photonic crystal slab-graphene-slab structure in Fig. 2(b) with those for the double layer structure without graphene (shown in Fig. 1(b)), we find that the characteristics of resonance peaks basically remain unchanged, but the values of peaks become smaller due to the absorption. This means that the introduction of graphene at the interface between the photonic crystal slab and the dielectric slab do not change the feature of Fano resonances and quasi-BICs.

 

Fig. 2 (a) Lateral view after graphene was introduced. The red line is where the graphene put. The doping level of graphene is n=7.9*1012cm2. (b) The reflection coefficient at incidence angles of 0o and 2o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonances. (c) The transmission coefficient at incidence angles of 0o and 2o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonances. (d) The absorption coefficient at incidence angles of 0o and 2o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonance. All the incident light in the above figure is linearly polarized light, and the polarization direction of the electric field along X axis. Blue and red arrows point to the BICs and quasi-BICs. The other parameters are identical with those in Fig. 1.

Download Full Size | PPT Slide | PDF

In the following, we discuss the effect of magnetic field on the phenomena. When the magnetic field is introduced, the cyclotron frequencyωcchanges linearly with B as described by Eq. (3). This can lead to different optical response of the monolayer graphene with the illumination of RH/LH circular polarization lights. The origin of magneto-optical phenomena from the graphene-slab structure has been analyzed in detail in Ref [15]. In Fig. 3(a) and 3(b), we plot the calculated results for transmissions of left-handed (T) and right-handed (T+) circularly polarized lights as a function of the wavelength for the case of quasi-BICs at θ=2°. The corresponding results for the case of Fano resonances (θ=0°) are given in Fig. 3(d) and 3(e). The solid, dashed and dotted lines correspond to the cases with B=0T,3.5T and 7T, respectively. It is seen clearly that the absorption peaks shift slightly with increasing of the magnetic field. It is interesting that the absorption peaks move toward to opposite directions for the T and T+, respectively. That is, the magnetic field causes the blue shift of the absorption peak for T and the red shift of the absorption peak for T+. This can result in strong magneto-optical phenomena, which is discussed in the next section.

 

Fig. 3 (a) and (b) show the transmissivity with LH/RH circular polarizations incident on the photonic crystal-graphene-slab structure in different magnetic field intensity, respectively, at quasi-BICs. (c) The MCD in different magnetic field intensity at quasi-BICs. (d) and (e) show the corresponding transmissivity with LH/RH circular polarizations incident on the structure at Fano resonances. (f) The MCD in different magnetic field intensity at Fano resonances. θ=2° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1.

Download Full Size | PPT Slide | PDF

3. Tunable terahertz magneto-optical phenomena based on quasi-BICs and Fano features

In order to analyze the magneto-optical phenomena, we calculate the magnetic circular dichroism (MCD), which is defined as the difference between the extinction coefficients for the RH and LH circular polarizations [16]:

MCD=(T-T+)/(T+T+)
where T and T+ represent the transmittances of left-handed and right-handed circularly polarized lights, respectively. Figure 3(c) and 3(f) shows the calculated results of MCD for the cases of quasi-BICs and Fano resonances, respectively. The solid, dashed and dotted lines correspond to the cases with B=0T,3.5T and 7T,respectively. With the increasing of the applied magnetic field, the strong MCD appears. At B=7T, the maximum of MCD is near −1 at the wavelength 12.91μm for the case of quasi-BICs and 11.27μm for the case of Fano resonances. The difference is that the width of resonance peak for the quasi-BICs is several times narrower than that for the Fano resonances. Here the p-type (hole-type) graphene has been taken, which has higher response for the LH circular polarizations (MCD<0). In fact, if the n-type graphene is taken, similar phenomena appear, and the maximum of MCD becomes positive.

An important characteristic of graphene is that the conductance can be modified by doping. The doping concentration of graphene can be changed by the external electric field. The relation between the doping concentration of graphene and the applied voltage can be expressed as

n=α(VgVCNP)
where α is the graphene gate capacitance, which is taken as 7.2*1010cm2V1 in the following calculation [16]. The VCNP represents the voltage at 0 carrier concentration (47V), Vg is the applied external voltage. Thus, we can change the conductance of graphene by tuning the external voltage, and then make the structure show different light response for T and T+, which leads to the appearance of large MCD. The calculated results for MCD of quasi-BIC and Fano-resonance are shown in Fig. 4(a) and 4(b), respectively. The solid and dashed lines correspond to the case of n=-7.9*1012cm2 and n=7.9*1012cm2, respectively. It is clearly shown that different doping or external voltage causes different resonant MCD. This means that we can tune the MCD by changing the external voltage for both quasi-BICs and Fano resonances. At the same time, the magneto optical conversion effect from positive to negative can also be realized by changing the external voltage. The narrower MCD resonances for the case of quasi-BICs are observed again. This means that magneto-optical modulation phenomenon based on quasi-BICs is more sensitive to the external voltage than that using Fano resonances.

 

Fig. 4 (a) The MCD on the photonic crystal-graphene-slab structure in different carrier doping level at quasi-BICs. (b) The corresponding results of MCD at Fano resonances. θ=2° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.

Download Full Size | PPT Slide | PDF

Next, we discuss the effect of incident angle on the magneto-optical phenomena for the cases of quasi-BICs and Fano resonances, respectively. In Fig. 5(a) and 5(b), we plot MCD as a function of the wavelength with various incident angles for two cases. The solid, dashed and dotted lines correspond to the cases withθ=0,2,4. Comparing the two cases, we find that they show different characteristics. When θ=0, MCD is zero in Fig. 5(a) due to perfect BIC. In contrast, it exhibits maximum resonance in Fig. 5(b) for the case of Fano resonances. With the increasing of the incident angle, the extended resonant peak shifts for the case of quasi-BICs, and the resonant peak appears a clear separation for the case of Fano resonances. In the case of Fano resonances, the resonant magneto-optical effect diminishes gradually with the increase of the incident angle.

 

Fig. 5 (a) The MCD on the photonic crystal-graphene-slab structure in different incident angle at quasi-BICs. (b) The corresponding results of MCD at Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.

Download Full Size | PPT Slide | PDF

The above results only focus on the certain structure parameters. At end, we discuss the effect of structure parameters on the phenomena. Figure 6(a), 6(b) and 6(c) display MCD of quasi-BICs as a function of the wavelength for various radius (r) of air hole, thickness (d1) of the photonic crystal slab and thickness (d2) of the dielectric slab, respectively. The corresponding results for the cases of Fano resonances are given in Fig. 6(d), 6(e) and 6(f). We find that the phenomena are very sensitive to the structure parameters for both cases of quasi-BICs and Fano resonances. When the structure parameters change, strong resonant magneto-optical phenomena can always be observed at various wavelengths. This means that we can obtain strong magneto-optical effects at different wavelengths through taking various structure parameters.

 

Fig. 6 The MCD with Different structure parameters. (a), (b) and (c) shows the MCD on the photonic crystal-graphene-slab structure with different radii of air cylinder, photonic crystal thickness, thickness of slab, respectively, at quasi-BICs. (d), (e) and (f) shows the corresponding results of MCD at Fano resonances. θ=2° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we have designed the photonic crystal slab-graphene-slab structures to realize quasi-BICs and Fano resonances of radiation modes. Based on them, we have studied the enhanced THz magneto-optical phenomena from the monolayer graphene and found that the magnetic circular dichroism can be near 100% under some structure parameters. Comparing two ways to produce magneto-optical phenomena, it is found that the way based on BICs exhibits some advantages such as good electrical tunability due to narrower resonance width, higher conversion efficiency and more stability with the change of incident angle. Furthermore, we have demonstrated that such magneto-optical phenomena can be modulated in intensity and frequency using only electrostatic doping at a fixed magnetic field and can appear in a broad THz range by designing the nanostructures. These are very beneficial to polarization conversion and optoelectronic devices.

Funding

National Natural Science Foundation of China (91850205 and11574031).

References

1. K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

2. W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013). [CrossRef]  

3. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]   [PubMed]  

4. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012). [CrossRef]   [PubMed]  

5. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012). [CrossRef]   [PubMed]  

6. A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010). [CrossRef]  

7. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011). [CrossRef]  

8. K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016). [CrossRef]  

9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef]   [PubMed]  

10. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007). [CrossRef]  

11. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012). [CrossRef]   [PubMed]  

12. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef]   [PubMed]  

13. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012). [CrossRef]   [PubMed]  

14. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012). [CrossRef]   [PubMed]  

15. J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017). [CrossRef]   [PubMed]  

16. M. Mansuripur, “The Physical Principles of Magneto-optical Recording.” Cambridge University Press, (1995).

17. H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996). [CrossRef]  

18. T. Wang and X. Zhang, “Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays,” Opt. Express 23(24), 30667–30680 (2015). [CrossRef]   [PubMed]  

19. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004). [CrossRef]   [PubMed]  

20. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef]   [PubMed]  

21. D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Belotelov, “Transverse magnetic field impact on waveguide modes of photonic crystals,” Opt. Lett. 41(16), 3813–3816 (2016). [CrossRef]   [PubMed]  

22. X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018). [CrossRef]  

23. Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017). [CrossRef]  

24. I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018). [CrossRef]  

25. M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

26. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012). [CrossRef]   [PubMed]  

27. M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013). [CrossRef]  

28. W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013). [CrossRef]   [PubMed]  

29. X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013). [CrossRef]   [PubMed]  

30. S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013). [CrossRef]   [PubMed]  

31. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013). [CrossRef]   [PubMed]  

32. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014). [CrossRef]   [PubMed]  

33. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef]   [PubMed]  

34. A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012). [CrossRef]  

35. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012). [CrossRef]   [PubMed]  

36. T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014). [CrossRef]   [PubMed]  

37. W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015). [CrossRef]   [PubMed]  

38. W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017). [CrossRef]   [PubMed]  

39. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008). [CrossRef]   [PubMed]  

40. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008). [CrossRef]  

41. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011). [CrossRef]   [PubMed]  

42. M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012). [CrossRef]   [PubMed]  

43. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012). [CrossRef]   [PubMed]  

44. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013). [CrossRef]   [PubMed]  

45. C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013). [CrossRef]  

46. F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014). [CrossRef]  

47. Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014). [CrossRef]   [PubMed]  

48. M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015). [CrossRef]   [PubMed]  

49. J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015). [CrossRef]   [PubMed]  

50. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016). [CrossRef]  

51. E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35(10), 2443–2452 (2018). [CrossRef]  

52. M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017). [CrossRef]   [PubMed]  

53. J. H. Li, J. Ren, and X. D. Zhang, “Three-dimensional vector wave bound states in a continuum,” J. Opt. Soc. Am. B 34(3), 559 (2017). [CrossRef]  

54. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017). [CrossRef]   [PubMed]  

55. T. C. Wang and X. D. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629–639 (2017). [CrossRef]  

56. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018). [CrossRef]   [PubMed]  

57. S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018). [CrossRef]   [PubMed]  

58. J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

59. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009). [CrossRef]  

60. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008). [CrossRef]  

61. Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

62. M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).
  2. W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
    [Crossref]
  3. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  4. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
    [Crossref] [PubMed]
  5. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
    [Crossref] [PubMed]
  6. A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
    [Crossref]
  7. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
    [Crossref]
  8. K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
    [Crossref]
  9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  10. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
    [Crossref]
  11. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
    [Crossref] [PubMed]
  12. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  13. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
    [Crossref] [PubMed]
  14. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  15. J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
    [Crossref] [PubMed]
  16. M. Mansuripur, “The Physical Principles of Magneto-optical Recording.” Cambridge University Press, (1995).
  17. H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
    [Crossref]
  18. T. Wang and X. Zhang, “Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays,” Opt. Express 23(24), 30667–30680 (2015).
    [Crossref] [PubMed]
  19. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref] [PubMed]
  20. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  21. D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Belotelov, “Transverse magnetic field impact on waveguide modes of photonic crystals,” Opt. Lett. 41(16), 3813–3816 (2016).
    [Crossref] [PubMed]
  22. X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
    [Crossref]
  23. Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
    [Crossref]
  24. I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
    [Crossref]
  25. M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).
  26. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
    [Crossref] [PubMed]
  27. M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
    [Crossref]
  28. W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013).
    [Crossref] [PubMed]
  29. X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
    [Crossref] [PubMed]
  30. S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
    [Crossref] [PubMed]
  31. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref] [PubMed]
  32. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  33. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  34. A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
    [Crossref]
  35. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
    [Crossref] [PubMed]
  36. T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
    [Crossref] [PubMed]
  37. W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
    [Crossref] [PubMed]
  38. W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
    [Crossref] [PubMed]
  39. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
    [Crossref] [PubMed]
  40. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
    [Crossref]
  41. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
    [Crossref] [PubMed]
  42. M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
    [Crossref] [PubMed]
  43. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
    [Crossref] [PubMed]
  44. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref] [PubMed]
  45. C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
    [Crossref]
  46. F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
    [Crossref]
  47. Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
    [Crossref] [PubMed]
  48. M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
    [Crossref] [PubMed]
  49. J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
    [Crossref] [PubMed]
  50. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
    [Crossref]
  51. E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35(10), 2443–2452 (2018).
    [Crossref]
  52. M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
    [Crossref] [PubMed]
  53. J. H. Li, J. Ren, and X. D. Zhang, “Three-dimensional vector wave bound states in a continuum,” J. Opt. Soc. Am. B 34(3), 559 (2017).
    [Crossref]
  54. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
    [Crossref] [PubMed]
  55. T. C. Wang and X. D. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629–639 (2017).
    [Crossref]
  56. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
    [Crossref] [PubMed]
  57. S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
    [Crossref] [PubMed]
  58. J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).
  59. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
    [Crossref]
  60. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  61. Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).
  62. M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
    [Crossref]

2018 (6)

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35(10), 2443–2452 (2018).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

2017 (7)

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

J. H. Li, J. Ren, and X. D. Zhang, “Three-dimensional vector wave bound states in a continuum,” J. Opt. Soc. Am. B 34(3), 559 (2017).
[Crossref]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

T. C. Wang and X. D. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629–639 (2017).
[Crossref]

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

2016 (5)

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Belotelov, “Transverse magnetic field impact on waveguide modes of photonic crystals,” Opt. Lett. 41(16), 3813–3816 (2016).
[Crossref] [PubMed]

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

2015 (4)

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
[Crossref] [PubMed]

T. Wang and X. Zhang, “Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays,” Opt. Express 23(24), 30667–30680 (2015).
[Crossref] [PubMed]

2014 (4)

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

2013 (9)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013).
[Crossref] [PubMed]

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

2012 (11)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

2010 (1)

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

2009 (1)

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

2008 (3)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

2007 (1)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

2004 (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

1996 (1)

H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
[Crossref]

1929 (1)

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Alameh, K.

Alu’, A.

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Azzam, S. I.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Banerjee, S.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Baranowski, J. M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Belotelov, V.

Belotelov, V. I.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Bergman, D. J.

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

Berzhansky, V.

Berzhansky, V. N.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Bianco, G. V.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Blank, V.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Bogdanov, A.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Bogdanov, A. A.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Boisen, A.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Boltasseva, A.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Bruno, G.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Bulgakov, E. N.

E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35(10), 2443–2452 (2018).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

Chattopadhyay, U.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Chernov, A. I.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, E. J.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Chong, Y. D.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Colombo, L.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Coquillat, D.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

D’Orazio, A.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Dagesyan, S.

de Abajo, F. J. G.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

de Ceglia, D.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

De Vittorio, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ebert, H.

H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Faist, J.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Faugeras, C.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Fedyanin, A. A.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Ferrari, A. C.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Ferreira, A.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

García-Vidal, F. J.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Geng, L.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Gómez-Santos, G.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Grande, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Hahn, R.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Hansen, O.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

Hwang, E. H.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Hwang, J. Y.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Jo, I.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Johnson, S. G.

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kalish, A.

Kaneko, R.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Kawayama, I.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Khanikaev, A. B.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Khokhlov, N.

Kildishev, A. V.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Kim, J.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Kim, J. Y.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Kim, S.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Kim, T.-T.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kivshar, Y.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Kivshar, Y. S.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Knap, W.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Kono, J.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Koshelev, K.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Koshelev, K. L.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Kozhaev, M. A.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Kuwata-Gonokami, M.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

Kuzmenko, A. B.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Lee, S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, W.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Lepeshov, S.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Leykam, D.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Li, J. H.

Li, Z.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liang, Y.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Limonov, M. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Liu, M.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, P. Q.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Liu, Z. K.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Lombardo, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Lu, Z.

Lyubin, E. V.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Magnusson, R.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

Maksimov, D. N.

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Martinez, G.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Martin-Moreno, L.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Merano, M.

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Miroshnichenko, A. E.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

Molina, M. I.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

Monticone, F.

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mortensen, N. A.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Mueller, T.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Nah, J.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Nanot, S.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Nikitin, A. Y.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Noda, S.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Nolte, S.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nur-E-Alam, M.

Orlita, M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Pan, D. K.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Peiponen, K.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Pellegrini, V.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Peng, C.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Peres, N. M. R.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

Petruzzelli, V.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Polini, M.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Pospischil, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Potemski, M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Poumirol, J.-M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Prokopov, A.

Prokopov, A. R.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Qiu, W.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Rabia, K.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Ren, J.

Ren, L.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Ribeiro, R. M.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Romodina, M. N.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Roskos, H. G.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Rybin, M. V.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Sadreev, A. F.

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

Sadrieva, Z. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Samusev, K. B.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Scalora, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Schmidt, M. S.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Shahrjerdi, D.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Shalaev, V. M.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Shapira, O.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Shaposhnikov, A.

Shaposhnikov, A. N.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, K.

Shi, L.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Slipchenko, T. M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Soboleva, I. V.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Song, P.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Song, S. H.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Stauber, T.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Stepniewski, R.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Stomeo, T.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Strelniker, Y. M.

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

Strupi’nski, W.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Sun, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Sylgacheva, D.

Sylgacheva, D. A.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Szameit, A.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Teng, J.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Thomson, M. D.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tonouchi, M.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Tour, J. M.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Tredicucci, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Tutuc, E.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

van der Marel, D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Vasiliev, M.

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Vincenti, M. A.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Vitiello, M. S.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

von Neumann, J.

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Wang, B.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, T.

Wang, T. C.

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Wigner, E.

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Witowski, A. M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Wu, T.

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

Wysmolek, A.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Xiao, S.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Xie, Y. N.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Yan, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Yao, J.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Yao, Z.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Yin, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoon, J. W.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

Yu, K.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Yuan, X.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Zeitler, A.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, M.

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

Zhang, Q.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
[Crossref] [PubMed]

Zhang, X.

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
[Crossref] [PubMed]

T. Wang and X. Zhang, “Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays,” Opt. Express 23(24), 30667–30680 (2015).
[Crossref] [PubMed]

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Zhang, X. D.

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, W.

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Zi, J.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Zouaghi, W.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Zvezdin, A. K.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

ACS Nano (1)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Appl. Sci. (1)

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Chin. Phys. Lett. (1)

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Eur. J. Phys. (1)

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Hongwai Yu Jiguang Gongcheng (1)

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (1)

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

Nano Lett. (5)

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Nat. Rev. Mater. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Nature (3)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. A (Coll. Park) (1)

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
[Crossref]

Phys. Rev. B (3)

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (4)

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

Phys. Rev. Lett. (13)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Phys. Z. (1)

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Rep. Prog. Phys. (1)

H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
[Crossref]

Sci. Rep. (3)

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

Science (3)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Scientific Reports (1)

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Other (1)

M. Mansuripur, “The Physical Principles of Magneto-optical Recording.” Cambridge University Press, (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Diagram of the photonic crystal-slab structure and coordinate. Magnetic field is along Z-axis, B=7T.The photonic crystal is arranged in a square lattice with the lattice constant a=9.5194μm.The radii of air cylinders in photonic crystal are r=0.3*a.The photonic crystal thickness is d 1 =0.3*a.The slab is placed next to the photonic crystal and the thickness is d 2 =0.3*a. (b) Cross sections of the reflection coefficient at 0 o and 2 o incidence angles show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonance. Blue and red arrows point to the BICs and quasi-BICs. All the incident light in the above figure is linearly polarized light, and the polarization direction of the electric field along the X axis. (c) Eigenfrequency analysis withθ for BICs and Fano resonances. Blue and red lines overlap at λ=11.25μm. (d) The quality factor changes with θ, and it can be found that the Q factor decreases rapidly along the direction of Γ point. The frequencies used are consistent with those in Fig. 1(c). (e) The electric field intensity at the λ=12.95μm corresponds to the electric field distribution under quasi-BICs. (f) The electric field intensity at λ=11.25μm corresponds to the electric field distribution under Fano resonances.
Fig. 2
Fig. 2 (a) Lateral view after graphene was introduced. The red line is where the graphene put. The doping level of graphene is n=7.9* 10 12 c m 2 . (b) The reflection coefficient at incidence angles of 0 o and 2 o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonances. (c) The transmission coefficient at incidence angles of 0 o and 2 o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonances. (d) The absorption coefficient at incidence angles of 0 o and 2 o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonance. All the incident light in the above figure is linearly polarized light, and the polarization direction of the electric field along X axis. Blue and red arrows point to the BICs and quasi-BICs. The other parameters are identical with those in Fig. 1.
Fig. 3
Fig. 3 (a) and (b) show the transmissivity with LH/RH circular polarizations incident on the photonic crystal-graphene-slab structure in different magnetic field intensity, respectively, at quasi-BICs. (c) The MCD in different magnetic field intensity at quasi-BICs. (d) and (e) show the corresponding transmissivity with LH/RH circular polarizations incident on the structure at Fano resonances. (f) The MCD in different magnetic field intensity at Fano resonances. θ= 2 ° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1.
Fig. 4
Fig. 4 (a) The MCD on the photonic crystal-graphene-slab structure in different carrier doping level at quasi-BICs. (b) The corresponding results of MCD at Fano resonances. θ= 2 ° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.
Fig. 5
Fig. 5 (a) The MCD on the photonic crystal-graphene-slab structure in different incident angle at quasi-BICs. (b) The corresponding results of MCD at Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.
Fig. 6
Fig. 6 The MCD with Different structure parameters. (a), (b) and (c) shows the MCD on the photonic crystal-graphene-slab structure with different radii of air cylinder, photonic crystal thickness, thickness of slab, respectively, at quasi-BICs. (d), (e) and (f) shows the corresponding results of MCD at Fano resonances. θ= 2 ° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ ±( ω ) = D π i ω ω c + i τ
D( n )= e 2 v f π| n |
ω c ( n,B )= eB v f sign( n ) π| n |
τ= e v f μ π| n | ,
E f = v f π| n | ,
MCD=( T - T + )/( T + T + )
n=α( V g V CNP )

Metrics