Abstract

In this study, we design a T-shaped quantum router that comprises two-level systems (TLSs), an infinite coupled resonator waveguide (CRW), and a semi-infinite CRW. The loss (absorption) and gain (amplification) of the energy levels of the TLSs can be considered as energy exchange between the system and its environment. Considering loss in the ground state and gain in the excited state of the TLSs and loss of cavities, the system is non-energy-conserving and non-Hermitian. Loss in the system consists of loss of cavities and TLSs. The total transmission probabilities (TPs) of photons in the system are equal to 1 or lower when the system has loss only. Loss causes a bounce-back phenomenon in the TPs. The TPs have a divergent point when the TLSs have gain, and we obtain this divergent condition. The reflection probability has a minimal point only when photons are incident from the semi-infinite CRW and the system has loss. The TPs of the non-Hermitian router are increased by gain, decreased by loss, and conserved under certain conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum routers are crucial elements of quantum networks [1–16]. The photons in quantum routers carry quantum information along quantum channels and transfer the information from one channel to others, distributing it in the network [1]. Quantum channels are required to transport photons, which act as flying q ubits. A quantum network comprises quantum routers, channels, and nodes. Researchers have recently made theoretical and experimental progress in the development of quantum routers. Theoretically, single-photon routers can be designed using nanomechanical systems [2] and employ a quantum state turnplate [4]; chiral photon-atom interactions [5] are applied in the microwave regime [6], and there are multiple output ports [7]. The entanglement routers in a wireless quantum network can be designed on the basis of arbitrary two-qubit systems [8]. Experimentally, scholars have achieved quantum routing of single-photon pulses in a Mach-Zehnder interferometer [9]. And a Hermitian quantum router comprising cavities or circuits can be extended to become a non-Hermitian quantum router.

Closed systems are commonly solved, but there is growing experimental demand for the solution of open systems. The interactions between the system and its environment can be described using non-Hermitian terms [17–29]. In non-Hermitian open systems, interesting phenomena have been discovered such as non-Hermitian Bloch oscillations [37, 38], unidirectional reflectionlessness [40–44], coherent perfect absorbers [47–49], optical solitons [39, 45, 46], non-Hermitian topological insulators [53, 54], phonon lasers [50–52], and “exceptional ring” effects [55, 58]. Unidirectional absorption, lasing, and wave propagation are proposed [56, 57]. The non-Hermitian interactions can be realized in optomechanical systems [30–34]. The scattering properties of PT-symmetric andanti-PT symmetric structures are discussed [35, 36]. Experimentally, phase transition leads to a loss of induced optical transparency in coupled waveguides [60]. Atoms can control the transport processes of photons. Adding atoms to a non-Hermitian system and determining the subsequent gain and loss in the atoms’ energy levels are worthy of investigation. In a system of N-type four-level atomic ensembles, the effects of energy levels on the phase of photons and transport properties have been carefully studied [68–70], and photonic diodes and transistors may be formed with atoms which are trapped in a one-dimensional optical lattice. In three-level systems, the probe-field refractive index [64] can have a non-Hermitian profile [71], create coherent perfect absorbers and lasers [63], and discuss non-adiabatic and adiabatic transitions at the level crossing [67].

A single-photon router can be formed from two coupled resonator waveguides (CRWs) coupled with a two-or three-level atom located at the intersection cavities of the two CRWs [10–14]. Accordingly, infinite and semi-infinite CRWs can have a T-shaped structure. When two-level systems (TLSs) are embedded at the intersection of two CRWs, the TLSs in the ground state can absorb photons and enter the excited state through resonance absorption. The TLSs in the excited state can then emit photons through spontaneous radiation and consequently return to the ground state because the TLSs are coupled with different cavities of the two CRWs. Photons incident from one CRW may transfer to the other CRW through absorption and emission processes. Finally, the T-shaped quantum router is formed [10]. Loss in the ground state and gain in the excited state of TLSs and loss of cavities can be considered energy exchange between the system and environment. Total transmission probabilities (TPs) are equal to 1 or less when the system has loss only and are conserved when the pump frequency of the TLSs and frequency of the photons are nearly resonant. The existence of loss can cause the TPs to bounce back. When the excited state has gain only, the total TPs can be equal to 1, be larger than 1, or be divergent. When the system has both loss and gain, the TPs are divergent for photons that are incident from both CRWs but minimal when photons are incident from the semi-infinite CRW. The divergent condition of the TPs can be determined by the gain, and the minimal condition can be discovered by the loss. The TPs of the non-Hermitian router are increased (decreased) for a specific gain (loss) and incident photon energy.

This paper is organized as follows. In the second part, we construct the T-shaped non-Hermitian quantum router. In the third and fourth parts, the transport properties of photons incident from semi-infinite and infinite CRWs, respectively, are analyzed. In the final part, we discuss the effect of loss and gain on the non-Hermitian router.

2. Model setup

The model in this study comprises an infinite CRW-a and a semi-infinite CRW-b coupled with the TLSs to form a T-shaped non-Hermitian quantum router, as illustrated in Fig. 1(a). The CRWs consist of a chain of Fabry-Pérot cavities. The cavities are made of two mirrors. The two mirrors are not perfect reflectors. The photons in neighboring cavities thus interact. Photons of only a few frequencies can be supported because the system has only a few cavities. When the system has numerous cavities, photons of a range of frequencies can move within the CRW, resulting in a photonic energy band. The TLSs in our system are not natural atoms but artificial atoms. The physical implementation of the TLSs can be coupled with superconducting transmission line resonators with one resonator coupled to a charge qubit based on a direct current superconducting quantum interference device [14]. Considering the interactions between the adjacent cavities of two CRWs, the propagation processes of photons are described by the tight-bonding model. The two CRWs intersect at one cavity of the CRW-a and the end cavity of the CRW-b, where the TLSs are located. The non-Hermitian action is implemented by considering the gain in the excited state and loss in the ground state of the TLSs and the loss of cavities.

 figure: Fig. 1

Fig. 1 The T-shaped single-photon router is (a), being constituted by TLSs, an infinite CRW, and a semi-infinite CRW. The solid (dashed) arrows represent that photons are incident from the CRW-b (-a). The brown (cyan) color indicates that photons are in the CRW-b (-a). The TLSs locate at the intersection of two CRWs. The wavy lines in the blue square frame show the gain in the excited state and the loss in the ground state. (b) is the schematic of a three-level atom which can be equivalent to a TLS.

Download Full Size | PPT Slide | PDF

The system comprises two CRWs (H^C[a],H^C[b]), TLSs (H^T), and the interactions between the two cavities at the intersection of two CRWs and TLSs (H^TC, which are written under the rotating wave approximation). The total energy of the system is H^=H^C[a]+H^C[b]+H^T+H^TC(=1).

H^C[a]=ja=+[(ωaiδja0γa)ajaajaξa(aja+1aja+h.c.)],
H^C[b]=jb=+[(ωbiδjb1γb)bjbajbξb(ajb+1ajb+h.c.)],
H^T=(ωe+iγe)|ee|+(ωgiγg)|gg|,
H^TC=ga|eg|a0+gb|eg|b1+h.c..

We use the CRW-d (d = a, b), referring to the CRW-a and CRW-b. The eigen-frequency of the cavity in the CRW-d is ωd. The hopping energies between the adjacent cavities of the CRW-d are ξd. djd is the creation operator of photons in the CRW-d. The subscript jd is the jdth cavity of the CRW-d. ja (jb) changes from the negative infinity to the positive infinity (from one to the positive infinity). The crosspoint is at the 0th cavity of the CRW-a (ja = 0) and the first cavity of the CRW-b (jb = 1). The coupling strength between TLSs and the 0th cavity of the CRW-a (the first cavity of the CRW-b) is ga (gb). The frequency of the excited state |e〉 of TLSs is ωe, whereas the ground state |g〉 is ωg. Because we are mainly concerned with the energy differences, ωg is assumed to be zero.

The gain in the excited state (the loss in the ground state) of TLSs is γe(γg). Both γe and γg are higher than or equal to zero, the positive (negative) sign before γe (γg) indicating the gain (loss). The TLSs do not exist naturally. The ground state of the TLSs may be not the natural ground state, and exists loss unavoidably. Interactions between the system and the environment lead to energy dissipation, causing randomization of the phase and decay. The Lindblad equation can be employed to describe the evolution of open quantum systems [59]. Cavities’ loss should be accounted for, and this type of loss affects the performance of the system. Loss of cavities other than the two cavities at the crosspoint can decrease the overall TPs. This can be considered a classical effect and this is trivial. We are mainly interested in the transfer property of photons. We assume that the two cavities’ loss at the crosspoint are larger than all other cavities. The loss of cavities at the crosspoint of the CRW-a and -b are referred to by γa and γb. To induce gain in the excited state, we use the method introduced in [63–65], in which two quantum pump lights are input at the intersection of the two CRWs to form an auxiliary system. The TLS can be an abstraction of the three-level atoms, as shown in Fig. 1(b). We additionally select a unique metastable state |s〉 (the frequency ωs). The transitions between the |s〉 and the excited state |e〉 do not couple with the two cavities. The transitions between the |s〉 and the ground state |g〉 are forbidden. Two quantum pump lights couple to the transitions |e〉↔|a〉 and |e〉↔|g〉, with Rabi frequency Ω1 and Ω2. The one-photon detuning Δ = ωeωa − Ω1 is much larger than the two-photon detuning δ = Ω2 − Ω1 −(ωaωg). We inject atoms in the |a〉 state to ensure that the atoms in the cavity remain in the state |a〉. The atoms can then release signal light of frequency ωeg = ωeωg from state |a〉 to state |e〉 and then to state |g〉, exhibiting two-photon gain. Three level atoms can be regarded as TLSs under some conditions [66]. We treat this type of the atom as an effective TLS in the system. Theoretically and principally, the gain in the excited state can be obtained through the |s〉 and pump lights. The gain of other type of the three-level atom [67] and the four level N-type atomic system [68–71] are also discussed.

Single photons can be present in the any cavity of two CRWs or activate TLSs from the ground state to the excited state. Photons may be located at the crosspoint but do not activate TLSs. Thus, the eigenstate in the single-excitation subspace has the form below,

|E=ja=+Ujaaaja|g,0+jb=1+Ujbbbjb|g,0+Ue|e,0,
where Ujaa(Ujbb) is the probability amplitude that photons are in the jath (jbth) cavity of the CRW-a (CRW-b). Ue is the probability amplitude that photons activate the TLSs from the ground state to the excited state. |g, 0〉 (|e, 0〉) indicates that TLSs are in the ground (excited) state when no photons are present in the system.

Using the Schrödinger equation H^|E=E|E, we obtain the scattering equation,

(Eωaωg)Ujaa=ξa(Uja1a+Uja+1a)+δja,0[Va(E)U0a+G(E)U1b],
(Eωbωg)Ujbb=ξb(Ujb1b+Ujb+1b),(jb>1),
(Eωbωg)U1b=ξbU2b+Vb(E)U1b+G(E)U0a,(jb=1),
Ue=gaU0[a]+gbU1[b]Eωeiγe.

The local deltalike energy-dependent potential is Vd(E)=gd2/(Eωeiγe)i(γd+γg), d = a, b, relating to ga or gb only. The effective dispersive coupling potential is Gd (E) = gagb/(Eωee)− i(γd + γg), dependent on both ga and gb. The loss of the system and gain of TLSs are placed into the potential and do not appear in the scattering equation explicitly. Because the loss of two cavities at the intersection are almost the same, we assume γa = γbγab. The loss of the system is γsγab + γg. Because a0a0a0|g0 and |gg|a0|g0 have the same result. Then the loss of two cavities and the ground state of TLSs are then partially undistinguishable. If we change γab and γg simultaneously while keeping γs unchanged, TPs are unchanged. When TLSs have neither gain nor loss, the complex delta-like potentials become actual delta potentials [10].

2.1. Photons are incident from the semi-infinite CRW-b

When photons are incident from the CRW-b, they are reflected but not transmitted in the CRW-b because of the hard boundary. Photons propagate across the TLSs, being absorbed and emitted by them. They may transfer into the CRW-a, propagating leftward and rightward. The wave functions are

Ujaa={tlaeikaja,ja<0traeikaja,ja0,
Ujbb={eikbjb+rbeikbjb,jb>1Asin(kb),jb=1.

We obtain tla=tratba by using the continuous condition of the wave function of the CRW-a. The dispersion relation of two CRWs is E = ωd + ωg − 2ξd cos(kd), d = a, b [10–12]. The group velocity is vgd = 2ξd sin(kd), and kd ranges from 0 to π. Hereafter, we assume that the energy bands of two CRWs overlap (ωa = ωbω and ξa = ξbξ). Because only in this case can the maximum transfer probability be obtained [10–12]. Applying the dispersion relation, we obtain ka = kbk and vga = vgbvg.

Solving wave functions and scattering functions, the amplitudes of transfer and reflection probabilities are as follows,

tba=igagbeikvg(ξeikiγs)[(ivgiγs)(Eωeiγe)ga2]gb2(ivgiγs),
rb={(ξeikiγs)[(ivgiγs)(Eωeiγe)ga2]gb2(ivgiγs)}e2ik(ξeikiγs)[(ivgiγs)(Eωeiγe)ga2]gb2(ivgiγs).

The transfer and reflection probabilities are Tba=2|tba|2 and Rb = |rb|2.

When the denominator of the TPs is zero and the numerator is nonzero, the TPs are divergent: 1) γe=γ1igb2/(ξeikiγg)+ga2/(vgγg), and 2) the incident energy of photons resonates with the pump energy of TLSs (E = ωe). The TPs have a divergent point whenever TLSs have gain. When TLSs have gain only, condition 1) changes into γ1=2gb2sin(k)2/vg+ga2/vgigb2sin(2k)/vg. From the [10], we know that the decay rate of the CRW-b (CRW-a) is expressed as 2gb2sin2(k)/vg(ga2/vg) [72]. The real part of divergent condition 1) without loss and the decay rate of the [10] are the same. This may indicate that transport probabilities of photons are increased when the gain equals to the decay rate.

As the two couple strengthes between the TLSs and two cavities are almost the same, we assume ga = gbg. When the system has neither loss nor gain, the total TPs are always conserved [10–12]. All photons are transferred into the CRW-a and not reflected in the CRW-b when E=ωeωegb2cos(k)/ξ. In this case, photons are fully absorbed and emitted by TLSs, and all are transferred into the CRW-a (half leftward and half rightward). When the system has loss only, total TPs(Rb+Tba) are equal to 1 or lower. When E=ωeωegb2ξcos(k)/[ξ2+γg22ξγgsin(k)], that the energy of photons and the frequency of TLSs are nearly equal, the TPs are conserved. ωe is reduced to ωe when γg equals to zero. Rb increases and Tba decreases (photons reflect more and transfer less) as the extent of loss increases. The incident photons are absorbed by the TLSs, pumping the TLSs from the ground state to the excited state. This process is enhanced when E=ωe, and the number of the TLSs in the ground state decreases. The effects of loss in the ground state on the TPs are then negligible. All photons are reflected when the group velocity of photons becomes zero (the incident energy reach the boundaries of the energy band). Because the photons are motionless. Except for the near-resonate condition and the case that happens when the incident energy reaches the boundary of the energy band, the TPs are conserved. In the other cases, the TPs are not conserved, and few photons are transferred to CRW-a although the TLSs couple to two CRWs, as illustrated in Fig. 2(a). Rb first decreases and then increases, exhibiting a bounce back phenomenon. During the bounce-back process, energy first transfers from the system to the environment, and then from the environment to the system. Rb is minimal under the conditions that 1) the loss nearly equals to the coupling strength between the neighboring cavities (γsξb) and 2) the frequencies of the photons and cavities are nearly resonant (Eω), as displayed in Fig. 2(b). Except for the near-resonate condition and the case that happens when the incident energy reaches the boundary of the energy band, photons are incident on the hard boundary and may escape to the environment through the cavities. When the system has the gain only, all photons are reflected except for those at the divergent point. The TLSs decay from the excited state to the ground state when E = ωe and the system has gain, and numerous photons are radiated. Then the TPs are divergent with the condition γe = γ1. In this process, the energy transfers from the environment to the system. When the system has gain and loss, we consider the simple case that the gain and loss are equal, assuming γe = γsγ. Tba is zero except for the divergent point [Fig. 3(a)]. Rb has a divergent and a minimal point, determined by ωe and ω respectively, as shown in Fig. 3(b). When the gain satisfies the divergent condition 1), nearly all photons are reflected, and total TPs are equal to 1 or lower except for the divergent point, as illustrated in Fig. 3(c). In Fig. 3(d) when E = ωe, the reflected probability bounces back after the divergent point when loss is high. This bounce-back phenomenon in the TPs is typically present in lossy non-Hermitian systems [60–62].

 figure: Fig. 2

Fig. 2 (a) and (b) are Tba and Rb as functions of the loss γs and the incident energy E when the ground state possesses loss only, ranging from 0 to 1. The color from blue to red represents the value from 0 to 1. The parameters are: ωa = ωb = 9, ωe = 10, ga = ga = 0.3, ξa = ξb = ξ (the unit is ξ). All the parameters fetch these values if not mentioned.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 When TLSs have loss and gain, (a) and (b) are Tba and Rb as functions of system’s loss and gain γ and the incident energy E, ranging from 0 to 1.5. TPs are cut to 1.5 hereafter if they are larger than 1.5. (c) is Tba and Rb changing with k in condition that γ = γ1. (d) is Tba and Rb changing with γ when E = ωe. The red dashed and blue solid lines are Tba and Rb, respectively.

Download Full Size | PPT Slide | PDF

2.2. Photons are incident from the infinite CRW-a

When photons are incident from the CRW-a, they are reflected and transmitted, different from the CRW-b case. Photons can be absorbed and emitted by the TLSs when they pass through the intersection cavities. Photons may only move upwards into the CRW-b.

The wave functions are

Ujaa={eikaja+raeikaja,ja0taeikaja,ja0,
Ujbb={tabeikbjb,jb>1Asin(kb),jb=1.

Using the continuous condition of wave functions of the CRW-a at ja = 0, we obtain 1 + ra = ta. The amplitudes of transfer, reflection, and transmit probabilities can be determined as

tab=igagbeikvg(ξeikiγs)[(ivgiγs)(Eωeiγe)ga2]gb2(ivgiγs),
ra=(ξeik+iγs)[iγs(Eωeiγe)+ga2]+iγsgb2(ξeikiγs)[(ivgiγs)(Eωeiγe)ga2]gb2(ivgiγs),
ta=ra+1.

The transfer, reflection, and transmit probabilities are Tab=|tab|2, Ra = |ra|2 and Ta = |ta|2. The probability that photons are in the CRW-a is PaTa + Ra. We can see that tab equals tba. This is because the T-shaped system can be considered as three semi-infinite CRWs. The probability that photons are transferred into one semi-infinite chain of the CRW is the same. Photons incident from the CRW-b are transferred leftward and rightward, while only upward from the CRW-a case. Then the transfer probability that photons are incident from the CRW-b is thus twice for the CRW-a case.

We consider the situation in which TLSs couple to two CRWs. When the system has neither loss nor gain, total TPs are equal to 1. In case of E=ωe, half of the photons are reflected, and half of them are transferred, but none are transmitted. When the system has loss only, total TPs are equal to 1 or lower. When E=ωe, photons are almost all reflected [Fig. 4(b)], with the remaining photons transferring into the CRW-b, and none are transmitted [Fig. 4(a)], maintaining reserved. In the near-resonant case, the TLSs in the ground state absorb photons and jump to the excited state because of their interactions with the CRW-b, after which they return to the ground state because of their couplings with the CRW-a. This physical process is efficient when there is no loss but may not occur if the TLSs have loss. The number of transferred photons drops to zero as the degree of loss increases. For photons of different incident energies, except that the incident energy equals to the pump frequency nearly and the boundary of the energy band, Ta decreases and Ra increases as the extent of loss increases. However, Pa first decreases and then increases. This bounce-back phenomenon is demonstrated by Pa but concealed in Ta or Ra. All photons are reflected as they reach the boundary of the energy band. When photons are incident from the CRW-a, they may be transmitted and reflected in the CRW-a. Therefore Ta and Ra have no obvious minimal point. When the system has gain only, all photons are transmitted except for the divergent point. This is different compared with when photons are incident from the CRW-b, because photons meet the hard boundary and cannot be transmitted but only reflected. When the incident energy of photons reaches the boundary of the energy band, all photons are transmit, which is different from the loss-only case. Because in loss-only case, the TLSs may lose efficacy and photons pass straight through TLSs. When the system has loss and gain, the TPs can be divergent under certain conditions but have no obvious minimal point. However, the TPs can have minimal point if photons are incident from the CRW-b. This is because that Ta decreases and Ra increases as the extent of the loss and gain increases except at the divergent point. When photons are incident from the CRW-b, in which there is a hard boundary, Rb amounts to Pa, indicating the probability that photons are present in each CRW. Then Rb has a minimal point, but Ta and Ra do not. When the loss and gain satisfy γe = γ1, almost all photons are transmitted except for the divergent point and the boundary case, and the total TPs are below 1 with the effect of loss, as illustrated in Fig. 5(c). ωp is the frequency of the photons. When E = ωe, Ra experience a bounce back. That Ta decreases before reaching the divergent point is a unique feature (discussed later), as shown in Fig. 5(d).

 figure: Fig. 4

Fig. 4 When the ground state exists loss only, (a) is Ta and (b) is Ra, ranging from 0 to 1. The x axis is γg, and y axis is E.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 When TLSs have loss and gain, (a) and (b) are Ta and Ra, cut to 1.5. (c) is Ta, Ra and Tba as a function of k when γ = γ1. (d) is Ta, Ra and Tba as a function of γ when E = ωe. The blue solid, red dashed, and green dot-dash lines are transmit probability Ta, reflection probability Ra, and transfer probability Tba, respectively. ωp is the frequency of the photons.

Download Full Size | PPT Slide | PDF

The loss of two cavities at the intersection affects the transport properties of the non-Hermitian router. Because the loss of the system consists of loss of the cavities and TLSs, we consider the case in which the loss of the system is larger than its gain. Because γg = γab = γe is included in the case γs = 2γe, we consider the case that γs = 2γe. When E = ωe, the TPs have a divergent point when the system has gain, and the increasing loss has little effect on the TPs. However, when E = ω, the increasing loss does affect the TPs. As illustrated in Fig. 6(a), when E = ω, Tba, Ta and Ra decrease, whereas Rb increase, because γe increases and we maintain γs = γe. As the loss of system increases, keeping γs = 2γe, the minimal point of Rb is left-shifted, as displayed in Fig. 6(b). The total TPs first decrease and then increase, showing a bounce-back phenomenon.

 figure: Fig. 6

Fig. 6 When E = ω, (a) and (b) are γs = γe and γs = 2γe. Blue (red) color is that photons are incident from the CRW-b (-a). Blue solid line is Tba. Blue dotted line is Rb. Red solid line is Ta. Red dotted line is Ra.

Download Full Size | PPT Slide | PDF

We illustrate the effects of solely loss and gain and also their combination and how the non-Hermitian quantum router works. When the system has loss, the TPs are conserved and exhibit a bounce-back phenomenon and Rb has a minimal point. The main contribution of gain is to increase the TPs under the divergent condition, and to cover the probabilitiy conservation case if the system has loss. The combination of loss and gain causes shifts of the divergent and minimal points. The TLSs mediate between the loss and gain and the transport properties of photons. Next, we explain how the non-Hermitian router works. The router switches on when TLSs couple with the two CRWs and E=ωe. We increase the transfer probability of the router by adjusting the incident energy and the extent of gain to match the divergent condition. To decrease the TPs of the router, we make the parameters match those in the minimal condition when photons are incident from the CRW-b, and identify an area in which Ta + Ra is relatively small for the CRW-a case. The router switches off providing the TLSs decouple with one of the two CRWs. The on-off switching of the router is thus controlled by the coupling strength between the TLSs and the two CRWs and is modified by the loss of cavities and the ground state of TLSs and gain in the excited state of TLSs.

3. Conclusion

In this paper, we analyze transport properties of a T-shaped non-Hermitian quantum router comprising an infinite CRW-a, a semi-infinite CRW-b, and TLSs. Photons are conserved and totally reflected when E=ωe and the system has loss only. Rb and Pa exhibit a bounce-back phenomenon. Rb is at a minimum when Eω and γsξb . The TPs are divergent when E = ωe and γe = γ1. The main contributions of gain are to increase the TPs under the divergent condition and to cover the probability conservation case if the TLSs have loss. The combination of loss and gain results in a shift of the divergent and minimal points. The on-off switching of the router is controlled by the coupling strength between the TLSs and two CRWs and is modified by loss and gain. The TPs of the router is increased (decreased) for proper values of the incident energy of photons and the gain (loss).

Funding

Nankai University Baiqing Plan Foundation.

References

1. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008). [CrossRef]  

2. G. S. Agarwal and S. Huang, “Optomechanical Systems as Single Photon Routers,” Phys. Rev. A 85, 021801 (2012). [CrossRef]  

3. K. Lemr and K. Bartkiewicz, A. Černoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87, 062333 (2013). [CrossRef]  

4. Y. Liu and D. L. Zhou, “Quantum state transfer along a ring with time-reversal asymmetry,” Phys. Rev. A 91, 052318 (2015). [CrossRef]  

5. C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018). [CrossRef]  

6. I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011). [CrossRef]   [PubMed]  

7. W. B. Yan and H. Fan, “Single-photon quantum router with multiple output ports,” Sci. Rep. 4, 4820 (2014). [CrossRef]   [PubMed]  

8. N. Metwally, “Entanglement routers via a wireless quantum network based on arbitrary two qubit systems,” Phys. Scr. 89, 125103 (2014). [CrossRef]  

9. X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015). [CrossRef]   [PubMed]  

10. J. Lu, Z. H. Wang, and L. Zhou, “T-shaped single-photon router,” Opt. Exp. 23, 22955–22962 (2015). [CrossRef]  

11. J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014). [CrossRef]  

12. L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013). [CrossRef]  

13. L. Liu and J. Lu, “T-bulge-shaped quantum router,” Quantum Inf. Process 16, 29 (2017). [CrossRef]  

14. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008). [CrossRef]   [PubMed]  

15. S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014). [CrossRef]   [PubMed]  

16. D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014). [CrossRef]  

17. F. Quijandría and U. Naether, S.K. Özdemir, F. Nori, and D. Zueco, “PT-symmetric circuit QED,” Phys. Rev. A 97, 053846 (2018). [CrossRef]  

18. J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015). [CrossRef]  

19. B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014). [CrossRef]  

20. R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017). [CrossRef]  

21. V. Achilleos, Y. Aurégan, and V. Pagneux, “Scattering by Finite Periodic PT -Symmetric Structures,” Phys. Rev. Lett. 119, 243904 (2017). [CrossRef]  

22. K. Kawabata, Y. Ashida, and M. Ueda, “Information Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017). [CrossRef]   [PubMed]  

23. W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017). [CrossRef]  

24. T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018). [CrossRef]   [PubMed]  

25. H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012). [CrossRef]   [PubMed]  

26. R. Fleury, D. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015). [CrossRef]   [PubMed]  

27. A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011). [CrossRef]  

28. R. Fleury, D. L. Sounas, and A. Alu, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113, 023903 (2014). [CrossRef]   [PubMed]  

29. A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012). [CrossRef]  

30. Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016). [CrossRef]   [PubMed]  

31. B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014). [CrossRef]   [PubMed]  

32. Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017). [CrossRef]  

33. H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017). [CrossRef]   [PubMed]  

34. L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014). [CrossRef]  

35. L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016). [CrossRef]   [PubMed]  

36. L. Jin, “Scattering properties of a parity-time-antisymmetric non-Hermitian system,” Phys. Rev. A 98, 022117 (2018). [CrossRef]  

37. S. Longhi, “Bloch Oscillations in Complex Crystals with PT Symmetry,” Phys. Rev. Lett. 103, 123601 (2009). [CrossRef]   [PubMed]  

38. M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015). [CrossRef]   [PubMed]  

39. Z. H. Musslimani, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]   [PubMed]  

40. L. L. Sánchez-Soto and J. J. Monzon, “Invisibility and PT Symmetry: A Simple Geometrical Viewpoint,” Symmetry 6, 396–408 (2014). [CrossRef]  

41. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011). [CrossRef]   [PubMed]  

42. X. B. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013). [CrossRef]   [PubMed]  

43. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013). [CrossRef]  

44. J. H. Wu, M. Artoni, and G. C. La Rocca, “Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices,” Phys. Rev. Lett. 113, 123004 (2014). [CrossRef]   [PubMed]  

45. M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015). [CrossRef]   [PubMed]  

46. Y. V. Kartashov, C. Hang, G. X. Huang, and L. Torner, “Three-dimensional topological solitons in PT-symmetric optical lattices,” Optica 3 (10), 1048–1055 (2016). [CrossRef]  

47. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010). [CrossRef]   [PubMed]  

48. K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019). [CrossRef]   [PubMed]  

49. S. Longhi and L. Feng, “PT-symmetric microring laser-absorber,” Opt. Lett. 39, 5026–5029 (2014). [CrossRef]   [PubMed]  

50. J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018). [CrossRef]  

51. H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014). [CrossRef]   [PubMed]  

52. H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017). [CrossRef]  

53. G. Q. Liang and Y. D. Chong, “Optical Resonator Analog of a Two-Dimensional Topological Insulator,” Phys. Rev. Lett. 110, 203904 (2013). [CrossRef]   [PubMed]  

54. K. Takata and M. Notomi, “Photonic Topological Insulating Phase Induced Solely by Gain and Loss,” Phys. Rev. Lett. 121, 213902 (2018). [CrossRef]   [PubMed]  

55. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015). [CrossRef]  

56. L. Jin, P. Wang, and Z. Song, “Unidirectional perfect absorber,” Sci. Rep. 6, 32919 (2016). [CrossRef]   [PubMed]  

57. L. Jin and Z. Song, “Incident Direction Independent Wave Propagation and Unidirectional Lasing,” Phys. Rev. Lett. 121, 073901 (2018). [CrossRef]   [PubMed]  

58. T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019). [CrossRef]  

59. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976). [CrossRef]  

60. A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009). [CrossRef]  

61. B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014). [CrossRef]   [PubMed]  

62. H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015). [CrossRef]   [PubMed]  

63. C. Hang, G. X. Huang, and V. V. Konotop, “Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium,” New J. Phys. 18, 085003 (2016). [CrossRef]  

64. C. Hang, G. X. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013). [CrossRef]   [PubMed]  

65. C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011). [CrossRef]  

66. D. D. Yavuz, “Refractive Index Enhancement in a Far-Off Resonant Atomic System,” Phys. Rev. Lett. 95, 223601 (2005). [CrossRef]   [PubMed]  

67. M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015). [CrossRef]  

68. Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016). [CrossRef]   [PubMed]  

69. M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010). [CrossRef]  

70. A. A. Sukhorukov, S. V. Dmitriev, S. V. Suchkov, and Y. S. Kivshar, “Nonlocality in PT-symmetric waveguide arrays with gain and loss,” Opt. Lett. 37, 2148–2150 (2012). [CrossRef]   [PubMed]  

71. X. Wang and J. H. Wu, “Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices,” Opt. Exp. 24, 4289–4298 (2016). [CrossRef]  

72. The coupling strength between TLSs and the CRW-b gb is modified as gb sin(k) by the Fourier transformation. For the endpoint of the CRW-b can act as a perfect mirror, the atomic energy loss can be doubled, from Opt. Exp.23, 22955–22962 (2015).

References

  • View by:

  1. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
    [Crossref]
  2. G. S. Agarwal and S. Huang, “Optomechanical Systems as Single Photon Routers,” Phys. Rev. A 85, 021801 (2012).
    [Crossref]
  3. K. Lemr and K. Bartkiewicz, A. Černoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87, 062333 (2013).
    [Crossref]
  4. Y. Liu and D. L. Zhou, “Quantum state transfer along a ring with time-reversal asymmetry,” Phys. Rev. A 91, 052318 (2015).
    [Crossref]
  5. C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018).
    [Crossref]
  6. I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
    [Crossref] [PubMed]
  7. W. B. Yan and H. Fan, “Single-photon quantum router with multiple output ports,” Sci. Rep. 4, 4820 (2014).
    [Crossref] [PubMed]
  8. N. Metwally, “Entanglement routers via a wireless quantum network based on arbitrary two qubit systems,” Phys. Scr. 89, 125103 (2014).
    [Crossref]
  9. X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
    [Crossref] [PubMed]
  10. J. Lu, Z. H. Wang, and L. Zhou, “T-shaped single-photon router,” Opt. Exp. 23, 22955–22962 (2015).
    [Crossref]
  11. J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
    [Crossref]
  12. L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
    [Crossref]
  13. L. Liu and J. Lu, “T-bulge-shaped quantum router,” Quantum Inf. Process 16, 29 (2017).
    [Crossref]
  14. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
    [Crossref] [PubMed]
  15. S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014).
    [Crossref] [PubMed]
  16. D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
    [Crossref]
  17. F. Quijandría and U. Naether, S.K. Özdemir, F. Nori, and D. Zueco, “PT-symmetric circuit QED,” Phys. Rev. A 97, 053846 (2018).
    [Crossref]
  18. J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
    [Crossref]
  19. B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
    [Crossref]
  20. R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
    [Crossref]
  21. V. Achilleos, Y. Aurégan, and V. Pagneux, “Scattering by Finite Periodic PT -Symmetric Structures,” Phys. Rev. Lett. 119, 243904 (2017).
    [Crossref]
  22. K. Kawabata, Y. Ashida, and M. Ueda, “Information Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017).
    [Crossref] [PubMed]
  23. W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
    [Crossref]
  24. T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
    [Crossref] [PubMed]
  25. H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
    [Crossref] [PubMed]
  26. R. Fleury, D. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015).
    [Crossref] [PubMed]
  27. A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011).
    [Crossref]
  28. R. Fleury, D. L. Sounas, and A. Alu, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113, 023903 (2014).
    [Crossref] [PubMed]
  29. A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
    [Crossref]
  30. Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
    [Crossref] [PubMed]
  31. B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref] [PubMed]
  32. Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
    [Crossref]
  33. H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017).
    [Crossref] [PubMed]
  34. L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
    [Crossref]
  35. L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016).
    [Crossref] [PubMed]
  36. L. Jin, “Scattering properties of a parity-time-antisymmetric non-Hermitian system,” Phys. Rev. A 98, 022117 (2018).
    [Crossref]
  37. S. Longhi, “Bloch Oscillations in Complex Crystals with PT Symmetry,” Phys. Rev. Lett. 103, 123601 (2009).
    [Crossref] [PubMed]
  38. M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015).
    [Crossref] [PubMed]
  39. Z. H. Musslimani, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
    [Crossref] [PubMed]
  40. L. L. Sánchez-Soto and J. J. Monzon, “Invisibility and PT Symmetry: A Simple Geometrical Viewpoint,” Symmetry 6, 396–408 (2014).
    [Crossref]
  41. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
    [Crossref] [PubMed]
  42. X. B. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
    [Crossref] [PubMed]
  43. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
    [Crossref]
  44. J. H. Wu, M. Artoni, and G. C. La Rocca, “Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices,” Phys. Rev. Lett. 113, 123004 (2014).
    [Crossref] [PubMed]
  45. M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
    [Crossref] [PubMed]
  46. Y. V. Kartashov, C. Hang, G. X. Huang, and L. Torner, “Three-dimensional topological solitons in PT-symmetric optical lattices,” Optica 3 (10), 1048–1055 (2016).
    [Crossref]
  47. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  48. K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
    [Crossref] [PubMed]
  49. S. Longhi and L. Feng, “PT-symmetric microring laser-absorber,” Opt. Lett. 39, 5026–5029 (2014).
    [Crossref] [PubMed]
  50. J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
    [Crossref]
  51. H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
    [Crossref] [PubMed]
  52. H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
    [Crossref]
  53. G. Q. Liang and Y. D. Chong, “Optical Resonator Analog of a Two-Dimensional Topological Insulator,” Phys. Rev. Lett. 110, 203904 (2013).
    [Crossref] [PubMed]
  54. K. Takata and M. Notomi, “Photonic Topological Insulating Phase Induced Solely by Gain and Loss,” Phys. Rev. Lett. 121, 213902 (2018).
    [Crossref] [PubMed]
  55. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
    [Crossref]
  56. L. Jin, P. Wang, and Z. Song, “Unidirectional perfect absorber,” Sci. Rep. 6, 32919 (2016).
    [Crossref] [PubMed]
  57. L. Jin and Z. Song, “Incident Direction Independent Wave Propagation and Unidirectional Lasing,” Phys. Rev. Lett. 121, 073901 (2018).
    [Crossref] [PubMed]
  58. T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019).
    [Crossref]
  59. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
    [Crossref]
  60. A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
    [Crossref]
  61. B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
    [Crossref] [PubMed]
  62. H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
    [Crossref] [PubMed]
  63. C. Hang, G. X. Huang, and V. V. Konotop, “Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium,” New J. Phys. 18, 085003 (2016).
    [Crossref]
  64. C. Hang, G. X. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
    [Crossref] [PubMed]
  65. C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011).
    [Crossref]
  66. D. D. Yavuz, “Refractive Index Enhancement in a Far-Off Resonant Atomic System,” Phys. Rev. Lett. 95, 223601 (2005).
    [Crossref] [PubMed]
  67. M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
    [Crossref]
  68. Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
    [Crossref] [PubMed]
  69. M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010).
    [Crossref]
  70. A. A. Sukhorukov, S. V. Dmitriev, S. V. Suchkov, and Y. S. Kivshar, “Nonlocality in PT-symmetric waveguide arrays with gain and loss,” Opt. Lett. 37, 2148–2150 (2012).
    [Crossref] [PubMed]
  71. X. Wang and J. H. Wu, “Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices,” Opt. Exp. 24, 4289–4298 (2016).
    [Crossref]
  72. The coupling strength between TLSs and the CRW-b gb is modified as gb sin(k) by the Fourier transformation. For the endpoint of the CRW-b can act as a perfect mirror, the atomic energy loss can be doubled, from Opt. Exp.23, 22955–22962 (2015).

2019 (2)

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019).
[Crossref]

2018 (7)

K. Takata and M. Notomi, “Photonic Topological Insulating Phase Induced Solely by Gain and Loss,” Phys. Rev. Lett. 121, 213902 (2018).
[Crossref] [PubMed]

L. Jin and Z. Song, “Incident Direction Independent Wave Propagation and Unidirectional Lasing,” Phys. Rev. Lett. 121, 073901 (2018).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

L. Jin, “Scattering properties of a parity-time-antisymmetric non-Hermitian system,” Phys. Rev. A 98, 022117 (2018).
[Crossref]

C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018).
[Crossref]

F. Quijandría and U. Naether, S.K. Özdemir, F. Nori, and D. Zueco, “PT-symmetric circuit QED,” Phys. Rev. A 97, 053846 (2018).
[Crossref]

T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
[Crossref] [PubMed]

2017 (8)

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

V. Achilleos, Y. Aurégan, and V. Pagneux, “Scattering by Finite Periodic PT -Symmetric Structures,” Phys. Rev. Lett. 119, 243904 (2017).
[Crossref]

K. Kawabata, Y. Ashida, and M. Ueda, “Information Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017).
[Crossref] [PubMed]

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017).
[Crossref] [PubMed]

L. Liu and J. Lu, “T-bulge-shaped quantum router,” Quantum Inf. Process 16, 29 (2017).
[Crossref]

H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
[Crossref]

2016 (7)

L. Jin, P. Wang, and Z. Song, “Unidirectional perfect absorber,” Sci. Rep. 6, 32919 (2016).
[Crossref] [PubMed]

C. Hang, G. X. Huang, and V. V. Konotop, “Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium,” New J. Phys. 18, 085003 (2016).
[Crossref]

L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016).
[Crossref] [PubMed]

Y. V. Kartashov, C. Hang, G. X. Huang, and L. Torner, “Three-dimensional topological solitons in PT-symmetric optical lattices,” Optica 3 (10), 1048–1055 (2016).
[Crossref]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

X. Wang and J. H. Wu, “Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices,” Opt. Exp. 24, 4289–4298 (2016).
[Crossref]

2015 (10)

M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
[Crossref]

R. Fleury, D. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

J. Lu, Z. H. Wang, and L. Zhou, “T-shaped single-photon router,” Opt. Exp. 23, 22955–22962 (2015).
[Crossref]

Y. Liu and D. L. Zhou, “Quantum state transfer along a ring with time-reversal asymmetry,” Phys. Rev. A 91, 052318 (2015).
[Crossref]

M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015).
[Crossref] [PubMed]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

2014 (14)

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

L. L. Sánchez-Soto and J. J. Monzon, “Invisibility and PT Symmetry: A Simple Geometrical Viewpoint,” Symmetry 6, 396–408 (2014).
[Crossref]

J. H. Wu, M. Artoni, and G. C. La Rocca, “Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices,” Phys. Rev. Lett. 113, 123004 (2014).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

S. Longhi and L. Feng, “PT-symmetric microring laser-absorber,” Opt. Lett. 39, 5026–5029 (2014).
[Crossref] [PubMed]

W. B. Yan and H. Fan, “Single-photon quantum router with multiple output ports,” Sci. Rep. 4, 4820 (2014).
[Crossref] [PubMed]

N. Metwally, “Entanglement routers via a wireless quantum network based on arbitrary two qubit systems,” Phys. Scr. 89, 125103 (2014).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014).
[Crossref] [PubMed]

D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
[Crossref]

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

R. Fleury, D. L. Sounas, and A. Alu, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113, 023903 (2014).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

2013 (6)

L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

K. Lemr and K. Bartkiewicz, A. Černoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87, 062333 (2013).
[Crossref]

X. B. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
[Crossref] [PubMed]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

C. Hang, G. X. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

G. Q. Liang and Y. D. Chong, “Optical Resonator Analog of a Two-Dimensional Topological Insulator,” Phys. Rev. Lett. 110, 203904 (2013).
[Crossref] [PubMed]

2012 (4)

G. S. Agarwal and S. Huang, “Optomechanical Systems as Single Photon Routers,” Phys. Rev. A 85, 021801 (2012).
[Crossref]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

A. A. Sukhorukov, S. V. Dmitriev, S. V. Suchkov, and Y. S. Kivshar, “Nonlocality in PT-symmetric waveguide arrays with gain and loss,” Opt. Lett. 37, 2148–2150 (2012).
[Crossref] [PubMed]

2011 (4)

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011).
[Crossref]

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

2010 (2)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010).
[Crossref]

2009 (2)

S. Longhi, “Bloch Oscillations in Complex Crystals with PT Symmetry,” Phys. Rev. Lett. 103, 123601 (2009).
[Crossref] [PubMed]

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

2008 (3)

Z. H. Musslimani, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[Crossref]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

2005 (1)

D. D. Yavuz, “Refractive Index Enhancement in a Far-Off Resonant Atomic System,” Phys. Rev. Lett. 95, 223601 (2005).
[Crossref] [PubMed]

1976 (1)

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[Crossref]

Achilleos, V.

V. Achilleos, Y. Aurégan, and V. Pagneux, “Scattering by Finite Periodic PT -Symmetric Structures,” Phys. Rev. Lett. 119, 243904 (2017).
[Crossref]

Agarwal, G. S.

G. S. Agarwal and S. Huang, “Optomechanical Systems as Single Photon Routers,” Phys. Rev. A 85, 021801 (2012).
[Crossref]

Aimez, V.

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Almeida, V. R.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Alu, A.

R. Fleury, D. L. Sounas, and A. Alu, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113, 023903 (2014).
[Crossref] [PubMed]

Alù, A.

R. Fleury, D. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015).
[Crossref] [PubMed]

Ambichl, P.

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

Anisimov, P. M.

C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011).
[Crossref]

Artoni, M.

J. H. Wu, M. Artoni, and G. C. La Rocca, “Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices,” Phys. Rev. Lett. 113, 123004 (2014).
[Crossref] [PubMed]

Ashida, Y.

K. Kawabata, Y. Ashida, and M. Ueda, “Information Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017).
[Crossref] [PubMed]

Aurégan, Y.

V. Achilleos, Y. Aurégan, and V. Pagneux, “Scattering by Finite Periodic PT -Symmetric Structures,” Phys. Rev. Lett. 119, 243904 (2017).
[Crossref]

Bahat-Treidel, O.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011).
[Crossref]

Bartkiewicz, K.

K. Lemr and K. Bartkiewicz, A. Černoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87, 062333 (2013).
[Crossref]

Baur, S.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014).
[Crossref] [PubMed]

D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
[Crossref]

Bender, C. M.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Bersch, C.

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Böhm, J.

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

Brandstötter, A.

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

Cao, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Chang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Chang, X. Y.

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

Chen, F.

T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
[Crossref] [PubMed]

Chen, H. L.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Chen, J.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Chen, W. J.

B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Chen, Y. F.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Chong, Y. D.

G. Q. Liang and Y. D. Chong, “Optical Resonator Analog of a Two-Dimensional Topological Insulator,” Phys. Rev. Lett. 110, 203904 (2013).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Christodoulides, D. N.

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015).
[Crossref] [PubMed]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010).
[Crossref]

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Chua, S. L.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Delsing, P.

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

Dmitriev, S. V.

Duan, L. M.

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

Duchesne, D.

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Dürr, S.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014).
[Crossref] [PubMed]

D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
[Crossref]

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Fai, L. C.

M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
[Crossref]

Fan, H.

W. B. Yan and H. Fan, “Single-photon quantum router with multiple output ports,” Sci. Rep. 4, 4820 (2014).
[Crossref] [PubMed]

Fan, S.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Fegadolli, W. S.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Feng, L.

S. Longhi and L. Feng, “PT-symmetric microring laser-absorber,” Opt. Lett. 39, 5026–5029 (2014).
[Crossref] [PubMed]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Fleischmann, R.

M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010).
[Crossref]

Fleury, R.

R. Fleury, D. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015).
[Crossref] [PubMed]

R. Fleury, D. L. Sounas, and A. Alu, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113, 023903 (2014).
[Crossref] [PubMed]

-Ganainy, R. E.

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

Ge, L.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Geng, Z.

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Gianfreda, M.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

GMakris, K.

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

Gong, Z. R.

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Guo, A.

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Guo, R. P.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Hang, C.

C. Hang, G. X. Huang, and V. V. Konotop, “Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium,” New J. Phys. 18, 085003 (2016).
[Crossref]

Y. V. Kartashov, C. Hang, G. X. Huang, and L. Torner, “Three-dimensional topological solitons in PT-symmetric optical lattices,” Optica 3 (10), 1048–1055 (2016).
[Crossref]

C. Hang, G. X. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

Hatsugai, Y.

T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019).
[Crossref]

He, B.

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Hoi, I. C.

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

Hou, P. Y.

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

Hsu, C. W.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Hua, S.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Huang, G. X.

Y. V. Kartashov, C. Hang, G. X. Huang, and L. Torner, “Three-dimensional topological solitons in PT-symmetric optical lattices,” Optica 3 (10), 1048–1055 (2016).
[Crossref]

C. Hang, G. X. Huang, and V. V. Konotop, “Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium,” New J. Phys. 18, 085003 (2016).
[Crossref]

C. Hang, G. X. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

Huang, S.

G. S. Agarwal and S. Huang, “Optomechanical Systems as Single Photon Routers,” Phys. Rev. A 85, 021801 (2012).
[Crossref]

Igarashi, Y.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Jiang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Jiang, X.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Jin, L.

L. Jin, “Scattering properties of a parity-time-antisymmetric non-Hermitian system,” Phys. Rev. A 98, 022117 (2018).
[Crossref]

L. Jin and Z. Song, “Incident Direction Independent Wave Propagation and Unidirectional Lasing,” Phys. Rev. Lett. 121, 073901 (2018).
[Crossref] [PubMed]

L. Jin, P. Wang, and Z. Song, “Unidirectional perfect absorber,” Sci. Rep. 6, 32919 (2016).
[Crossref] [PubMed]

L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016).
[Crossref] [PubMed]

Jing, H.

H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
[Crossref]

H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017).
[Crossref] [PubMed]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Johansson, G.

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

Kaminer, I.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Kartashov, Y. V.

Kawabata, K.

K. Kawabata, Y. Ashida, and M. Ueda, “Information Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017).
[Crossref] [PubMed]

Kawakami, N.

T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019).
[Crossref]

Kenfack Sadem, C.

M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
[Crossref]

Kenmoe, M. B.

M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
[Crossref]

Khajavikhan, M.

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[Crossref]

Kivshar, Y. S.

Kocharovskaya, O.

C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011).
[Crossref]

Konotop, V. V.

C. Hang, G. X. Huang, and V. V. Konotop, “Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium,” New J. Phys. 18, 085003 (2016).
[Crossref]

C. Hang, G. X. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

Kottos, T.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010).
[Crossref]

Kovanis, V.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Krimer, D. O.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

Kuang, L. M.

H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
[Crossref]

Kuang, L.M.

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

Kuhl, U.

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

Kühmayer, M.

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

Lei, F.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Lemr, K.

K. Lemr and K. Bartkiewicz, A. Černoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87, 062333 (2013).
[Crossref]

Li, C. W.

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

Li, G. Y.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Li, Y.

C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018).
[Crossref]

L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

Liang, G. Q.

G. Q. Liang and Y. D. Chong, “Optical Resonator Analog of a Two-Dimensional Topological Insulator,” Phys. Rev. Lett. 110, 203904 (2013).
[Crossref] [PubMed]

Liang, S. J.

T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
[Crossref] [PubMed]

Liertzer, M.

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Lindblad, G.

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[Crossref]

Liu, L.

L. Liu and J. Lu, “T-bulge-shaped quantum router,” Quantum Inf. Process 16, 29 (2017).
[Crossref]

Liu, T.

T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and D. L. Zhou, “Quantum state transfer along a ring with time-reversal asymmetry,” Phys. Rev. A 91, 052318 (2015).
[Crossref]

Liu, Y. L.

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

Liu, Y. M.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Liu, Y. X.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Liu, Z. P.

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

Long, G. L.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Longhi, S.

S. Longhi and L. Feng, “PT-symmetric microring laser-absorber,” Opt. Lett. 39, 5026–5029 (2014).
[Crossref] [PubMed]

S. Longhi, “Bloch Oscillations in Complex Crystals with PT Symmetry,” Phys. Rev. Lett. 103, 123601 (2009).
[Crossref] [PubMed]

Lu, J.

L. Liu and J. Lu, “T-bulge-shaped quantum router,” Quantum Inf. Process 16, 29 (2017).
[Crossref]

J. Lu, Z. H. Wang, and L. Zhou, “T-shaped single-photon router,” Opt. Exp. 23, 22955–22962 (2015).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

Lu, L.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Lu, M. H.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Lü, H.

H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
[Crossref]

H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017).
[Crossref] [PubMed]

Lü, X. Y

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Lü, X. Y.

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Lü, X.Y.

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

Ma, J. J.

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

Metwally, N.

N. Metwally, “Entanglement routers via a wireless quantum network based on arbitrary two qubit systems,” Phys. Scr. 89, 125103 (2014).
[Crossref]

Miri, M. A.

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Miri, M.-A.

M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015).
[Crossref] [PubMed]

Mkam Tchouobiap, S. E.

M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
[Crossref]

Monifi, F.

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Monzon, J. J.

L. L. Sánchez-Soto and J. J. Monzon, “Invisibility and PT Symmetry: A Simple Geometrical Viewpoint,” Symmetry 6, 396–408 (2014).
[Crossref]

Musslimani, Z. H.

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

Z. H. Musslimani, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

Naether, U.

F. Quijandría and U. Naether, S.K. Özdemir, F. Nori, and D. Zueco, “PT-symmetric circuit QED,” Phys. Rev. A 97, 053846 (2018).
[Crossref]

Nori, F.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
[Crossref]

H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017).
[Crossref] [PubMed]

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Notomi, M.

K. Takata and M. Notomi, “Photonic Topological Insulating Phase Induced Solely by Gain and Loss,” Phys. Rev. Lett. 121, 213902 (2018).
[Crossref] [PubMed]

O’Brien, C.

C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011).
[Crossref]

Oliveira, J. E. B.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Onishchukov, G.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Özdemir, S. K.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
[Crossref]

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Özdemir, S.K.

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Pagneux, V.

V. Achilleos, Y. Aurégan, and V. Pagneux, “Scattering by Finite Periodic PT -Symmetric Structures,” Phys. Rev. Lett. 119, 243904 (2017).
[Crossref]

Palomaki, T.

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

Peng, B.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Peropadre, B.

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

Peschel, U.

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Peters, R.

T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019).
[Crossref]

Pichler, K.

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

Pick, A.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Quijandría, F.

F. Quijandría and U. Naether, S.K. Özdemir, F. Nori, and D. Zueco, “PT-symmetric circuit QED,” Phys. Rev. A 97, 053846 (2018).
[Crossref]

Ramezani, H.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Ravat, M. V.

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Rechtsman, M. C.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011).
[Crossref]

Regensburger, A.

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Rempe, G.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014).
[Crossref] [PubMed]

D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
[Crossref]

Rocca, G. C. La

J. H. Wu, M. Artoni, and G. C. La Rocca, “Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices,” Phys. Rev. Lett. 113, 123004 (2014).
[Crossref] [PubMed]

Rostovtsev, Y.

C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011).
[Crossref]

Rotter, S.

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Salamo, G. J.

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Sánchez-Soto, L. L.

L. L. Sánchez-Soto and J. J. Monzon, “Invisibility and PT Symmetry: A Simple Geometrical Viewpoint,” Symmetry 6, 396–408 (2014).
[Crossref]

Scherer, A.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Schneider, K.

D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
[Crossref]

Segev, M.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011).
[Crossref]

Sheng, J. T.

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Siviloglou, G. A.

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Soljacic, M.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Song, Z.

L. Jin and Z. Song, “Incident Direction Independent Wave Propagation and Unidirectional Lasing,” Phys. Rev. Lett. 121, 073901 (2018).
[Crossref] [PubMed]

L. Jin, P. Wang, and Z. Song, “Unidirectional perfect absorber,” Sci. Rep. 6, 32919 (2016).
[Crossref] [PubMed]

L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016).
[Crossref] [PubMed]

Sounas, D.

R. Fleury, D. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015).
[Crossref] [PubMed]

Sounas, D. L.

R. Fleury, D. L. Sounas, and A. Alu, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113, 023903 (2014).
[Crossref] [PubMed]

Stone, A. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Suchkov, S. V.

Sukhorukov, A. A.

Sun, C. P.

L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Szameit, A.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011).
[Crossref]

Takata, K.

K. Takata and M. Notomi, “Photonic Topological Insulating Phase Induced Solely by Gain and Loss,” Phys. Rev. Lett. 121, 213902 (2018).
[Crossref] [PubMed]

Tchapda, A. B.

M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
[Crossref]

Tiarks, D.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014).
[Crossref] [PubMed]

D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
[Crossref]

Torner, L.

Ueda, M.

K. Kawabata, Y. Ashida, and M. Ueda, “Information Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017).
[Crossref] [PubMed]

Vitebskiy, I.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Wang, G. Z.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Wang, L. Q.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Wang, P.

L. Jin, P. Wang, and Z. Song, “Unidirectional perfect absorber,” Sci. Rep. 6, 32919 (2016).
[Crossref] [PubMed]

Wang, W.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Wang, X.

X. Wang and J. H. Wu, “Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices,” Opt. Exp. 24, 4289–4298 (2016).
[Crossref]

Wang, Z. H.

J. Lu, Z. H. Wang, and L. Zhou, “T-shaped single-photon router,” Opt. Exp. 23, 22955–22962 (2015).
[Crossref]

Wei, L. F.

C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018).
[Crossref]

Wen, J. M.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Wilson, C. M.

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

Wimmer, M.

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

Wimmer, M. M.

M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015).
[Crossref] [PubMed]

Wu, J. H.

X. Wang and J. H. Wu, “Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices,” Opt. Exp. 24, 4289–4298 (2016).
[Crossref]

J. H. Wu, M. Artoni, and G. C. La Rocca, “Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices,” Phys. Rev. Lett. 113, 123004 (2014).
[Crossref] [PubMed]

Wu, R.

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

Xiao, M.

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Xu, Y. L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Xue, R. D.

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

Yan, C. H.

C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018).
[Crossref]

Yan, W. B.

W. B. Yan and H. Fan, “Single-photon quantum router with multiple output ports,” Sci. Rep. 4, 4820 (2014).
[Crossref] [PubMed]

Yang, C.

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Yang, L.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Yang, L. P.

L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

Yavuz, D. D.

D. D. Yavuz, “Refractive Index Enhancement in a Far-Off Resonant Atomic System,” Phys. Rev. Lett. 95, 223601 (2005).
[Crossref] [PubMed]

Yilmaz, H.

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Yin, X. B.

X. B. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
[Crossref] [PubMed]

Yoshida, T.

T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019).
[Crossref]

Yuan, H.

C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018).
[Crossref]

Yuan, X. X.

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

Zhang, G.

L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Zhang, X.

X. B. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
[Crossref] [PubMed]

Zhang, X. Z.

L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016).
[Crossref] [PubMed]

Zhang, Y. P.

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Zhang, Y. Q.

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Zhang, Z. Z.

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Zhao, G. M.

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

Zhen, B.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

Zheng, M. C.

M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010).
[Crossref]

Zhou, D. L.

Y. Liu and D. L. Zhou, “Quantum state transfer along a ring with time-reversal asymmetry,” Phys. Rev. A 91, 052318 (2015).
[Crossref]

Zhou, L.

J. Lu, Z. H. Wang, and L. Zhou, “T-shaped single-photon router,” Opt. Exp. 23, 22955–22962 (2015).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Zhu, J.

T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
[Crossref] [PubMed]

Zhu, X. F.

T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
[Crossref] [PubMed]

Zu, C.

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

Commun. Math. Phys. (1)

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[Crossref]

J. Phys. A: Math. Theor. (1)

M. B. Kenmoe, S. E. Mkam Tchouobiap, C. Kenfack Sadem, A. B. Tchapda, and L. C. Fai, “Non-adiabatic and adiabatic transitions at level crossing with decay: two-and threelevel systems,” J. Phys. A: Math. Theor. 48, 095303 (2015).
[Crossref]

Nat. Commun. (3)

M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, and U. Peschel, “Observation of optical solitons in PT-symmetric lattices,” Nat. Commun. 6, 7782 (2015).
[Crossref] [PubMed]

R. Fleury, D. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. J. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

X. B. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
[Crossref] [PubMed]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Nat. Photonics (1)

L. Chang, X. Jiang, S. Hua, C. Yang, J. M. Wen, L. Jiang, G. Y. Li, G. Z. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Nat. Phys. (2)

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

R. E. -Ganainy, K. GMakris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2017).
[Crossref]

Nature (1)

K. Pichler, M. Kühmayer, J. Böhm, A. Brandstötter, P. Ambichl, U. Kuhl, and S. Rotter, “Random anti-lasing through coherent perfect absorption in a disordered medium,” Nature 567, 351–355 (2019).
[Crossref] [PubMed]

Nature (London) (3)

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature (London) 525, 354–358 (2015).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[Crossref]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Nature Photonics (1)

J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
[Crossref]

New J. Phys. (1)

C. Hang, G. X. Huang, and V. V. Konotop, “Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium,” New J. Phys. 18, 085003 (2016).
[Crossref]

Opt. Exp. (2)

X. Wang and J. H. Wu, “Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices,” Opt. Exp. 24, 4289–4298 (2016).
[Crossref]

J. Lu, Z. H. Wang, and L. Zhou, “T-shaped single-photon router,” Opt. Exp. 23, 22955–22962 (2015).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (11)

M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, “PT optical lattices and universality in beam dynamics,” Phys. Rev. A 82, 010103 (2010).
[Crossref]

C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A 84, 063835 (2011).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

G. S. Agarwal and S. Huang, “Optomechanical Systems as Single Photon Routers,” Phys. Rev. A 85, 021801 (2012).
[Crossref]

K. Lemr and K. Bartkiewicz, A. Černoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87, 062333 (2013).
[Crossref]

Y. Liu and D. L. Zhou, “Quantum state transfer along a ring with time-reversal asymmetry,” Phys. Rev. A 91, 052318 (2015).
[Crossref]

C. H. Yan, Y. Li, H. Yuan, and L. F. Wei, “Targeted photonic routers with chiral photon-atom interactions,” Phys. Rev. A 97, 023821 (2018).
[Crossref]

Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, “Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system,” Phys. Rev. A 95, 013843 (2017).
[Crossref]

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT-symmetry in honeycomb photonic lattices,” Phys. Rev. A 84, 021806 (2011).
[Crossref]

F. Quijandría and U. Naether, S.K. Özdemir, F. Nori, and D. Zueco, “PT-symmetric circuit QED,” Phys. Rev. A 97, 053846 (2018).
[Crossref]

L. Jin, “Scattering properties of a parity-time-antisymmetric non-Hermitian system,” Phys. Rev. A 98, 022117 (2018).
[Crossref]

Phys. Rev. Applied (1)

H. Lü, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, “Exceptional Points in Random-Defect Phonon Lasers,” Phys. Rev. Applied 8, 044020 (2017).
[Crossref]

Phys. Rev. B (2)

T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry,” Phys. Rev. B 99, 121101 (2019).
[Crossref]

J. Zhang, B. Peng, S. K. Özdemir, Y. X. Liu, H. Jing, X.Y. Lü, Y. L. Liu, L. Yang, and F. Nori, “Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes,” Phys. Rev. B 92, 115407 (2015).
[Crossref]

Phys. Rev. Lett. (25)

R. Fleury, D. L. Sounas, and A. Alu, “Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces,” Phys. Rev. Lett. 113, 023903 (2014).
[Crossref] [PubMed]

Z. P. Liu, J. Zhang, S.K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, “Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition,” Phys. Rev. Lett. 117, 110802 (2016).
[Crossref] [PubMed]

S. Longhi, “Bloch Oscillations in Complex Crystals with PT Symmetry,” Phys. Rev. Lett. 103, 123601 (2009).
[Crossref] [PubMed]

J. H. Wu, M. Artoni, and G. C. La Rocca, “Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices,” Phys. Rev. Lett. 113, 123004 (2014).
[Crossref] [PubMed]

Z. H. Musslimani, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a Single-Photon Router in the Microwave Regime,” Phys. Rev. Lett. 107, 073601 (2011).
[Crossref] [PubMed]

L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

V. Achilleos, Y. Aurégan, and V. Pagneux, “Scattering by Finite Periodic PT -Symmetric Structures,” Phys. Rev. Lett. 119, 243904 (2017).
[Crossref]

K. Kawabata, Y. Ashida, and M. Ueda, “Information Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017).
[Crossref] [PubMed]

W. Wang, L. Q. Wang, R. D. Xue, H. L. Chen, R. P. Guo, Y. M. Liu, and J. Chen, “Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT -Symmetric Systems,” Phys. Rev. Lett. 119, 077401 (2017).
[Crossref]

T. Liu, X. F. Zhu, F. Chen, S. J. Liang, and J. Zhu, “Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal,” Phys. Rev. Lett. 120, 124502 (2018).
[Crossref] [PubMed]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-Symmetric Talbot Effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-Photon Switch Based on Rydberg Blockade,” Phys. Rev. Lett. 112, 073901 (2014).
[Crossref] [PubMed]

D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, “Single-Photon Transistor Using a Früster Resonance,” Phys. Rev. Lett. 113, 053602 (2014).
[Crossref]

A. Guo, G. J. Salamo, D. Duchesne, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

L. Jin and Z. Song, “Incident Direction Independent Wave Propagation and Unidirectional Lasing,” Phys. Rev. Lett. 121, 073901 (2018).
[Crossref] [PubMed]

G. Q. Liang and Y. D. Chong, “Optical Resonator Analog of a Two-Dimensional Topological Insulator,” Phys. Rev. Lett. 110, 203904 (2013).
[Crossref] [PubMed]

K. Takata and M. Notomi, “Photonic Topological Insulating Phase Induced Solely by Gain and Loss,” Phys. Rev. Lett. 121, 213902 (2018).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, “PT-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

D. D. Yavuz, “Refractive Index Enhancement in a Far-Off Resonant Atomic System,” Phys. Rev. Lett. 95, 223601 (2005).
[Crossref] [PubMed]

C. Hang, G. X. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

Z. Z. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, “Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Phys. Scr. (1)

N. Metwally, “Entanglement routers via a wireless quantum network based on arbitrary two qubit systems,” Phys. Scr. 89, 125103 (2014).
[Crossref]

Quantum Inf. Process (1)

L. Liu and J. Lu, “T-bulge-shaped quantum router,” Quantum Inf. Process 16, 29 (2017).
[Crossref]

Sci. Rep. (7)

W. B. Yan and H. Fan, “Single-photon quantum router with multiple output ports,” Sci. Rep. 4, 4820 (2014).
[Crossref] [PubMed]

X. X. Yuan, J. J. Ma, P. Y. Hou, X. Y. Chang, C. Zu, and L. M. Duan, “Experimental demonstration of a quantum router,” Sci. Rep. 5, 12452 (2015).
[Crossref] [PubMed]

M. M. Wimmer, M.-A. Miri, D. N. Christodoulides, and U. Peschel, “Observation of Bloch oscillations in complex PT-symmetric photonic lattices,” Sci. Rep. 5, 17760 (2015).
[Crossref] [PubMed]

L. Jin, X. Z. Zhang, G. Zhang, and Z. Song, “Reciprocal and unidirectional scattering of parity-time symmetric structures,” Sci. Rep. 6, 20976 (2016).
[Crossref] [PubMed]

H. Jing, S. K. Özdemir, H. Lü, and F. Nori, “High-order exceptional points in optomechanics,” Sci. Rep. 7, 3386 (2017).
[Crossref] [PubMed]

L. Jin, P. Wang, and Z. Song, “Unidirectional perfect absorber,” Sci. Rep. 6, 32919 (2016).
[Crossref] [PubMed]

H. Jing, S.K. Özdemir, Z. Geng, J. Zhang, X. Y Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Science (1)

B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref] [PubMed]

Symmetry (1)

L. L. Sánchez-Soto and J. J. Monzon, “Invisibility and PT Symmetry: A Simple Geometrical Viewpoint,” Symmetry 6, 396–408 (2014).
[Crossref]

Other (1)

The coupling strength between TLSs and the CRW-b gb is modified as gb sin(k) by the Fourier transformation. For the endpoint of the CRW-b can act as a perfect mirror, the atomic energy loss can be doubled, from Opt. Exp.23, 22955–22962 (2015).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The T-shaped single-photon router is (a), being constituted by TLSs, an infinite CRW, and a semi-infinite CRW. The solid (dashed) arrows represent that photons are incident from the CRW-b (-a). The brown (cyan) color indicates that photons are in the CRW-b (-a). The TLSs locate at the intersection of two CRWs. The wavy lines in the blue square frame show the gain in the excited state and the loss in the ground state. (b) is the schematic of a three-level atom which can be equivalent to a TLS.
Fig. 2
Fig. 2 (a) and (b) are T b a and Rb as functions of the loss γs and the incident energy E when the ground state possesses loss only, ranging from 0 to 1. The color from blue to red represents the value from 0 to 1. The parameters are: ωa = ωb = 9, ωe = 10, ga = ga = 0.3, ξa = ξb = ξ (the unit is ξ). All the parameters fetch these values if not mentioned.
Fig. 3
Fig. 3 When TLSs have loss and gain, (a) and (b) are T b a and Rb as functions of system’s loss and gain γ and the incident energy E, ranging from 0 to 1.5. TPs are cut to 1.5 hereafter if they are larger than 1.5. (c) is T b a and Rb changing with k in condition that γ = γ1. (d) is T b a and Rb changing with γ when E = ωe. The red dashed and blue solid lines are T b a and Rb, respectively.
Fig. 4
Fig. 4 When the ground state exists loss only, (a) is Ta and (b) is Ra, ranging from 0 to 1. The x axis is γg, and y axis is E.
Fig. 5
Fig. 5 When TLSs have loss and gain, (a) and (b) are Ta and Ra, cut to 1.5. (c) is Ta, Ra and T b a as a function of k when γ = γ1. (d) is Ta, Ra and T b a as a function of γ when E = ωe. The blue solid, red dashed, and green dot-dash lines are transmit probability Ta, reflection probability Ra, and transfer probability T b a, respectively. ωp is the frequency of the photons.
Fig. 6
Fig. 6 When E = ω, (a) and (b) are γs = γe and γs = 2γe. Blue (red) color is that photons are incident from the CRW-b (-a). Blue solid line is T b a. Blue dotted line is Rb. Red solid line is Ta. Red dotted line is Ra.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

H ^ C [ a ] = j a = + [ ( ω a i δ j a 0 γ a ) a j a a j a ξ a ( a j a + 1 a j a + h . c . ) ] ,
H ^ C [ b ] = j b = + [ ( ω b i δ j b 1 γ b ) b j b a j b ξ b ( a j b + 1 a j b + h . c . ) ] ,
H ^ T = ( ω e + i γ e ) | e e | + ( ω g i γ g ) | g g | ,
H ^ T C = g a | e g | a 0 + g b | e g | b 1 + h . c . .
| E = j a = + U j a a a j a | g , 0 + j b = 1 + U j b b b j b | g , 0 + U e | e , 0 ,
( E ω a ω g ) U j a a = ξ a ( U j a 1 a + U j a + 1 a ) + δ j a , 0 [ V a ( E ) U 0 a + G ( E ) U 1 b ] ,
( E ω b ω g ) U j b b = ξ b ( U j b 1 b + U j b + 1 b ) , ( j b > 1 ) ,
( E ω b ω g ) U 1 b = ξ b U 2 b + V b ( E ) U 1 b + G ( E ) U 0 a , ( j b = 1 ) ,
U e = g a U 0 [ a ] + g b U 1 [ b ] E ω e i γ e .
U j a a = { t l a e i k a j a , j a < 0 t r a e i k a j a , j a 0 ,
U j b b = { e i k b j b + r b e i k b j b , j b > 1 A sin ( k b ) , j b = 1 .
t b a = i g a g b e i k v g ( ξ e i k i γ s ) [ ( i v g i γ s ) ( E ω e i γ e ) g a 2 ] g b 2 ( i v g i γ s ) ,
r b = { ( ξ e i k i γ s ) [ ( i v g i γ s ) ( E ω e i γ e ) g a 2 ] g b 2 ( i v g i γ s ) } e 2 i k ( ξ e i k i γ s ) [ ( i v g i γ s ) ( E ω e i γ e ) g a 2 ] g b 2 ( i v g i γ s ) .
U j a a = { e i k a j a + r a e i k a j a , j a 0 t a e i k a j a , j a 0 ,
U j b b = { t a b e i k b j b , j b > 1 A sin ( k b ) , j b = 1 .
t a b = i g a g b e i k v g ( ξ e i k i γ s ) [ ( i v g i γ s ) ( E ω e i γ e ) g a 2 ] g b 2 ( i v g i γ s ) ,
r a = ( ξ e i k + i γ s ) [ i γ s ( E ω e i γ e ) + g a 2 ] + i γ s g b 2 ( ξ e i k i γ s ) [ ( i v g i γ s ) ( E ω e i γ e ) g a 2 ] g b 2 ( i v g i γ s ) ,
t a = r a + 1 .

Metrics