Abstract

The reflection of a TM-polarized light beam from a Kretschmann configuration with a saturable gain medium is investigated theoretically. Here, the dielectric constant of the gain medium is described by a classical Lorentzian oscillator model. When surface plasmon polaritons are effectively excited in this structure, it is demonstrated that the curves of enhanced total reflection (ETR) show different shaped hysteresis loops associated with optical bistability owing to gain saturation effect. The effects of the angle of incidence, the thickness of metal film, and the value of small-signal gain on bistable ETR are discussed in detail in a homogeneously broadened (HB) gain medium at line center. Analogous results can also be obtained in an inhomogeneously broadened (inHB) gain medium, while the two switch thresholds and the width of optical bistability hysteresis in an inHB gain medium are significantly different from those in a HB gain medium.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Surface plasmon polaritons (SPPs) are localized electromagnetic waves, which propagate along the interface between a metal and a dielectric and are evanescent in the direction perpendicular to the interface [1–5]. Optical excitation of SPPs exists in various configurations, such as attenuated total reflection (ATR) excitation in the Kretschmann geometry [1], ATR excitation in the Otto geometry, diffraction excitation on a grating, diffraction excitation on a rough surface, and excitation with a scanning near-field optical microscopy probe [6]. SPPs have gained much attention in recent years due to their unique electromagnetic properties. Typically, the features that strong enhancement and spatial confinement of the electromagnetic field of SPPs have been exploited in various fields, including plasmonics [7–9], nonlinear plasmoncis [10], nano-optics [3,6], and nano-photonics [8,11,12]. In fact, many applications of SPPs are limited by absorption loss associated with the imaginary part of the dielectric constant in metal. Therefore, many attempts have been made to promote the performance of optical SPP-based systems by reducing the loss of SPPs [13]. Among them, the adjacent dielectric with optical gain has been proposed as a possible solution to this problem [4,14–22].

The Kretschmann geometry containing a gain medium is considered as a good candidate to explore the new features and the potential applications of SPPs. For example, this structure has been widely employed to study the strong coupling between SPPs and gain media [4,5,23–25], amplified spontaneous emission of SPPs [19,26], and stimulated emission of SPPs [15,27]. Based on this structure, an all-optical spatial light modulator has been successfully demonstrated [28], and an optical differentiator and integrator has been proposed [29]. In addition, enhanced total reflection (ETR) with the simultaneous excitation of SPPs in this structure has been theoretically predicted by G. A. Plotz et al. [30]. And similar results have been further illustrated by M. A. Noginov et al. [17]. However, gain saturation effect [31] and spectral broadening of the gain medium are rarely considered in above mentioned works.

On the other hand, optical bistability (OB) is a nonlinear optical phenomenon and is of ongoing interest almost four decades due to its possible applications in all-optical information processing. In early studies, one of the ways to realize OB is introducing Kerr-type nonlinear materials into a feedback system [32]. As for most nonlinear optical processes, the Kerr effect is weak, such that large input power is required to obtain a significant response. Then, the use of SPPs, which cause strong confinement and enhancement of the electric-field, is proposed to enhance the nonlinear effects [10] so as to reduce the thresholds of OB [33–35]. As a result, OB in plasmonic systems is one of the hot topics and has been widely studied, both theoretically [35–41] and experimentally [33,34,42,43]. By means of plasmonic platforms, bistable ATR [33,36–38,42], bistable transmission [35,39,43], bistable lateral shift [44] and so on, many nonlinear phenomena of bistability have been investigated. However, to the best of our knowledge, the phenomenon of bistable ETR has not been reported before.

In this paper, we theoretically investigate the reflection of a TM-polarized light beam from a Kretschmann configuration containing a saturable gain medium with the help of Fresnel formulas. The permittivity of the gain medium is described by a classical Lorentzian oscillator model. Meanwhile, gain saturation effect and spectral broadening of the gain medium are considered here. It is found that bistable ETR with the simultaneous excitation of SPPs exists in this structure due to gain saturation effect. The effects of the angle of incidence, the thickness of metal film, the value of small-signal gain and spectral broadening of the gain medium on bistable ETR are discussed in detail. These results may be helpful for the designs of all-optical switch and active plasmonic device.

2. Excitation of SPPs in the Kretschmann configuration

The prism-metal-dielectric structure, as known as the Kretschmann geometry is shown in the inset of Fig. 1. A thin metal film with thickness dm and permittivity m is sandwiched between a prism and a dielectric layer. A high permittivity 0 prism is used here for ATR excitation of SPPs. The thickness of the adjacent dielectric layer with permittivity d is of the order of 10λ, here λ is the wavelength of the incident TM-polarized light beam in vacuum.

 figure: Fig. 1

Fig. 1 Reflectivity R as a function of the incident angle θ for different thicknesses of metal film. Here i is the imaginary part of d, θc is the critical angle for total internal reflection, and θSPP is the surface plasmon resonance angle. The inset is the Kretschmann configuration for SPPs excitation. For all data sets [17]: 0 = 3.18, m = −15.584 + 0.424i, d = 2.25, and the wavelength of the incident TM-polarized light beam λ = 594nm.

Download Full Size | PPT Slide | PDF

The electromagnetic field of SPPs at the metal-dielectric interface can be obtained from the solution of Maxwell’s equations in each medium, and the associated boundary conditions. The dispersion of SPPs can be written as [1,4,6],

kSPP=ωcmdm+d,
here kSPP is the wavevector of SPPs, ω represents the angular frequency of the incident light, and c is the speed of light in free space. Note that, kSPP usually is a complex number, and Eq. (1) is still valid even if m and d are both complex numbers.

SPPs will be resonantly excited if the wavevector component of the incident beam along the interface kx=ωc0sinθ, here θ is the angle of incidence, matches the wavevector of SPPs, i.e.,

ωc0sin(θSPP)=Re(kSPP),
here θSPP is known as the surface plasmon resonance angle. At this angle, the energy of incident light is resonantly transferred to SPPs, yielding that the curve of the reflectivity R versus θ exhibits a dip, as shown in Fig. 1.

The reflectivity R for a TM-polarized light in this structure is given by [1,17,30]

R=|r0m+rmdexp(2ikmzdm)1+r0mrmdexp(2ikmzdm)|2,
and the transmissivity T can be written as
T=|t0mtmdexp(ikmzdm)1+r0mrmdexp(2ikmzdm)|2.
Here rij=jkizikjzjkiz+ikjz and tij=2jkizjkiz+ikjz (i, j = 0, m, d) are respectively the Fresnel factors for the reflection and the transmission of a TM-polarized light beam between two adjacent media, with
kiz=±ωci0sin2θ,i=0,m,d.
here kiz(i = 0, m, d) represent the normal components of the wavevector in three different media. It should be pointed out that the sign of the square root in Eq. (5) must be selected to enforce the physical energy propagation [17].

The normal ATR excitation of SPPs in the Kretschmann configuration is shown in Fig. 1. The inset of Fig. 1 is the Kretschmann geometry. The parameters are taken as those used by M. A. Noginov et al. [17]: the prism with permittivity 0 = 3.18, silver film with permittivity m = −15.584 + 0.424i at λ = 594nm, the dielectric with permittivity d = 2.25. The dielectric without optical gain (i.e., the imaginary part of the dielectric i = 0) is considered here, and the signs of the square root in Eq. (5) are all positive in three different media. In Fig. 1, θc=arcsind0=57.27° is the critical angle for total internal reflection, and θSPP = 65.38°, which is determined by Eqs. (1) and (2), is the surface plasmon resonance angle. The reflectivity R as a function of the incident angle θ for different thicknesses of metal film is illustrated in Fig. 1. Figure 1 clearly demonstrates that a dip associated with the excitation of SPPs exists in the angular dependence of the reflectivity R(θ), and that the width and depth of the reflectivity dip strongly depend on the thickness of metal film. As dm increases, the full width at half maximum (FWHM) of the reflection dip decreases, while the value of reflectivity minimum decreases firstly and then increases. Figure 1 also clearly shows that an optimal thickness [45] of silver film dopt = dm2 = 53.9nm for SPPs excitation exists in this structure. The energy of the incident light is almost 100% transferred to SPPs at θ = θSPP and dm = dopt. Actually, SPPs can be effectively excited in this structure when the incident angle θ is close to θSPP and the thickness of metal film dm is in the vicinity of dopt.

3. The permittivity of the gain medium

Assume that the permittivity of the gain medium can be described by a classical Lorentzian oscillator model [4]. Within the usual dipole approximation, the electric polarization P can be expressed as

P=Ne2Vm1(ω02ω2)+iγωE,
here N/V is the number density of dipole moments, e and m are respectively charge and mass of an electron, ω0 is the angular frequency of the harmonic oscillator and γ describes damping, and E = E0 exp(iωt) describes the harmonic electric field.

The electric polarization depends on the electric field in a manner that can often be described by the relationship

P=ε0χE,
where ε0 = 8.85 × 10−12C/(Vm) is the permittivity in vacuum and χ is the susceptibility. Thus the macroscopic electric susceptibility is,
χ(ω)=Ne2Vmε01(ω02ω2)+iγω.
In the limit ωγ and close to resonance, we have,
χr=Reχ(ω)Ne2Vmε0ω02(ω0ω)4(ω0ω)2+γ2,
and
χi=Imχ(ω)Ne2Vmε0ω0γ4(ω0ω)2+γ2.
The imaginary part of the susceptibility χi describes absorption or gain of the dielectric, depending on whether χi is positive or negative, respectively. And χr is associated with χi by the Kramers-Kronig relations [4,13,15] in linear optics.

The relative permittivity d of the gain medium is related to the susceptibility through,

d=1+χb+χ(ω).
where χb is the background susceptibility [46]. The small value of absorption (or gain) of the background susceptibility can be neglected, then d is a complex number and can be written as,
r=1+χb+χr,i=χi.
here r and i are the real and the imaginary parts of d, respectively.

Note that usually |r| ≫ |i|, then the gain coefficient g is related to d through [16,46],

g=ωcir.

4. ETR in the case of small-signal gain

In an optical amplifying medium, small-signal gain coefficient g0 can be expressed as [31],

g0=ΔNσ(v,v0),
where ΔN represents population inversion, and σ(v,v0)=c2ω2πA212n2f(v,v0) represents the stimulated emission cross section, with A21 is the spontaneous emission rate in the host medium, f(v, v0) is the lineshape function, v is the frequency of the incident light and ω = 2πv, v0 is the transition resonance frequency, and n is the refractive index of the host medium at the frequency v. Small-signal gain coefficient g0 can be modulated by the pump power and the density of active ions in the host medium [47,48].

For the light intensity in the gain medium IdIs (here Is is the saturation intensity of the gain medium), small-signal gain coefficient g0 is almost unchanged with the variations of Id. The permittivity d is independent of the light intensity Id.

In the Kretschmann geometry containing a gain medium, the signs of the square root in Eq. (5) are both positive in the prism and metal film, while in the gain medium the sign is negative [17], which coincide with the feature of SPPs that the electromagnetic fields are evanescent in the direction perpendicular to the interface.

Figure 2 illustrates the behavior of R as a function of small-signal gain and the incident angle at three different thicknesses of metal film, (a) dm = 39nm, (b) dm = 60nm, and (c) dm = 70nm. Other parameters are aforementioned. The color bar on the right of Fig. 2 represents log10(R). Small-signal gain coefficients are 705cm−1, 1410cm−1 and 2115cm−1 corresponding to i = −0.010, i = −0.020 and i = −0.030, respectively. Such high optical gain may exist in semiconductor quantum wells [47]. Figure 2 clearly demonstrates that ETR with the simultaneous excitation of SPPs exist in this structure when small-signal gain coefficient g0 above a certain value [30], which is not only a function of the incident angle θ but also depends on the thickness of metal film dm. Subplots (b) and (c) in Fig. 2 clearly show that a singular point and a reflectivity minimum point appear in the curves of the reflectivity R versus i near the surface plasmon resonance angle at a fixed dm, and that the singular point and the reflectivity minimum point are close to each other as dm increases. The singular point of R is determined by the denominator of Eq. (3), i.e., 1 + r0mrmd exp(2ikmzdm) = 0, which is also named as the characteristic equation [3]. Comparing subplots (a) and (c) whit subplot (b), it is found that the more dm close to dopt = 53.9nm is, the larger the value of the singular point of R is, and the smaller the value of the reflectivity minimum point is.

 figure: Fig. 2

Fig. 2 Reflectivity R as a function of small-signal gain (associated with i by Eq. (11)) near the surface plasmon resonance angle θSPP; (a) dm = 39nm, (b) dm = 60nm, and (c) dm = 70nm. The color bar on the right represents log10(R). Other parameters are mentioned in the text.

Download Full Size | PPT Slide | PDF

5. Bistable ETR in the case of gain saturation

As the light intensity in the gain medium Id further increases, gain coefficient g becomes smaller, and this phenomenon is known as gain saturation [31]. According to Eq. (11), d is not independent of Id anymore under gain saturation. r and is are changed simultaneously with the variations of Id, here is, to distinguish i in the case of small signal gain, represents the imaginary part of d in the case of gain saturation. Combining Eqs. (7) and (8) with Eq. (10) provides that

ΔrΔis=ΔχrΔχi=2(ω0ω)γ.
here Δx is a change of x with x = r, is, χr, χi. The value of ΔrΔis will be quite different for different kinds of gain materials [15].

For simplicity, in the following numerical calculations, assume that the frequency of the incident light is close to the frequency of the the harmonic oscillator, i.e., ωω0. Near resonance, r also can be viewed as independent of Id, while is is decreased as Id increases.

5.1. The gain medium with a homogeneously broadened line

In a homogeneously broadened (HB) gain medium, the gain profile has a Lorentzian lineshape [31,49]. And the gain coefficient can be written as,

gL(v)=g01+Idf(v)Isf(v0).
where gL represents the gain coefficient in a HB gain medium, f(v) is a normalized Lorentzian function. At line center v = v0, the gain coefficient can be simplified as,
gL=g01+Id/Is.
Combining Eqs. (9)(11) with Eq. (15), the relative permittivity d of a HB gain medium at line center can be expressed as,
d=r+ii1+Id/Is.

Note that, the distribution of the light intensity Id in the gain medium is inhomogenous in the Kretschmann geometry owing to the evanescent character of SPP. is changes gradually with increasing distance from the interface. An effective dielectric constant is proposed here, by utilizing the mean light intensity Id¯ instead of the gradient light intensity Id in the gain medium.

Assume that the magnetic field at the metal-dielectric interface is Hmd, then the light intensity at the interface can be depicted by Imd=121Re(d)ε0c|Hmd|2, here |Hmd| represents the amplitude of Hmd. And then the mean light intensity Id¯ in the gain medium can be approximated as,

Id¯12Imd=141Re(d)ε0c|Hmd|2.
Once the magnetic field Hmd is known, the value of the input intensity I can be written as,
I=121(0)ε0c|Hmd|2T.
Combining Eqs. (3) and (4) with Eqs. (16)(18), the relationship between the input intensity I and the reflectivity R can be constructed with Hmd.

To obtain the angular regime for SPPs excitation, a dielectric without optical gain is considered firstly. A reflection dip corresponding to the excitation of SPPs is shown in Fig. 3 at dm = 60nm and i = 0, other parameters are aforementioned. The FWHM of the reflection dip range from 65° to 65.86°. To avoid damaging the structure, a dielectric with high optical gain and low saturation intensity is proposed here. We assume that small-signal gain coefficient i = −0.020 and Is = 1MW/cm2 [50].

 figure: Fig. 3

Fig. 3 Reflectivity curve variation with the incident angle θ at a fixed thickness of metal film dm = 60nm when i = 0. Assume that i = −0.020 and Is = 1MW/cm2. The inset (a) depicts the curves of ETR changes as the variations of the input intensity I in the case of θ < θSPP, while the inset (b) corresponds to θ > θSPP. Other parameters are mentioned in the text.

Download Full Size | PPT Slide | PDF

The inset (a) of Fig. 3 depicts that the reflectivity R as a function of input intensity I for different angles of incidence under gain saturation. It should be noted that θSPP = 65.38°. The blue-dashed, red-dotted and black-solid curves in the inset (a) correspond to θ1 = 65.34°, θ2 = 65.30° and θ3 = 65.26°, respectively. The inset (a) clearly demonstrates that the curves of ETR show hysteresis loops associated with OB when the incident angle θ is in close proximity to θSPP, and that the phenomenon of bistable ETR will disappear if the deviation between θ and θSPP exceeds a certain value, as shown by the black-solid curve. The inset (a) also clearly illustrates that, the width of OB hysteresis will be wider and the peak value of bistable ETR will be larger as θ tends to θSPP. In addition, as θ approaches θSPP, SPPs in this structure will be excited effectively, and the electromagnetic fields associated with SPPs will be significantly enhanced, hence both the lower switch threshold and the higher switch threshold of OB hysteresis move toward the lower input intensity. Similar results also can be obtained in the case of θ > θSPP, as shown in the inset (b) of Fig. 3.

The thickness of metal film dm plays an important role for the excitation of SPPs in the Kretschmann geometry, as shown in Fig. 1. Here, the effect of dm on bistable ETR is investigated when θ = 65.46° and i = −0.020. Other parameters are mentioned above. It is worth mentioning that, the optimal thickness of silver film for SPPs excitation in this structure is dopt = 53.9nm. The red-dashed, blue-dashdotted, black-dotted and magenta-solid curves in Fig. 4 correspond to dm1 = 58nm, dm2 = 60nm, dm3 = 62nm and dm4 = 64nm, respectively. The red-dashed curve shows that, the phenomenon of bistable ETR will disappear if dm is below a certain value, which mainly relies on the incident angle θ. In Fig. 4, the blue-dashdotted and black-dotted curves of ETR show S-shaped hysteresis loops, and the magenta-solid curve of ETR shows a X-shaped hysteresis loop. Figure 4 clearly illustrates that, as dm increases, both switch thresholds and the width of OB hysteresis will increase, while the peak value of bistable ETR will decrease.

 figure: Fig. 4

Fig. 4 ETR as a function of the input intensity I for different thicknesses of metal film when θ = 65.46° and i = −0.020. Other parameters are mentioned in the text.

Download Full Size | PPT Slide | PDF

Figure 5 illustrates the effect of the value of small-signal gain g0 associated with i by Eq. (11) on bistable ETR when dm = 60nm and θ = 65.46°. Other parameters are forementioned. The red-dashed, blue-dashdotted, black-dotted and magenta-solid curves in Fig. 5 correspond to i1 = −0.018 (g10=1269cm1), i2 = −0.020 (g20=1410cm1), i3 = −0.022 (g30=1551cm1) and i4 = −0.024 (g10=1692cm1), respectively. The red-dashed curve shows that, if g0 is below a certain value, the phenomenon of bistable ETR will disappear. In Fig. 5, the blue-dashdotted and black-dotted curves of ETR show S-shaped hysteresis loops, and the magenta-solid curve of ETR shows a X-shaped hysteresis loop. Figure 5 clearly demonstrates that, both switch thresholds and the width of OB hysteresis will synchronously increase as g0 increases, but the peak value of bistable ETR is independent of g0.

 figure: Fig. 5

Fig. 5 ETR as a function of the input intensity I for different values of small-signal gain coefficient when dm = 60nm and θ = 65.46°. Other parameters are mentioned in the text.

Download Full Size | PPT Slide | PDF

5.2. The gain medium with an inhomogeneously broadened line

The gain profile has a Gaussian lineshape in an inhomogeneously broadened (inHB) gain medium [31,49]. When the spectral line is inHB, the saturation phenomenon is more complicated. But at line center, the gain coefficient can be simplified as [31],

gG=g01+Id/Is.
here gG represents the gain coefficient in an inHB gain medium at v = v0. Then the relative permittivity d of an inHB gain medium at line center can be expressed as,
d=r+ii1+Id/Is.

Figure 6 illustrates the effect of spectral broadening of the gain medium on bistable ETR when dm = 56nm, i = −0.020, and θ = 65.40°. Here, assume that the saturation intensity in an inHB gain medium is the same as that in a HB gain medium, Is = 1MW/cm2. Other parameters are mentioned above. The blue-dashed curve and the red-solid curve in Fig. (6) respectively correspond to bistable ETR in a HB and an inHB gain media. Figure 6 shows that the phenomenon of bistable ETR also exist in an inHB gain medium. As shown in Fig. 5, the peak value of bistable ETR is determined by dm and θ, therefore the blue-dashed and the red-solid curves in Fig. (6) have the same peak value. According to Eqs. (16) and (20), the decrement of is in an inHB gain medium is littler than that in a HB gain medium under the same light intensity Id¯. At a fixed dm and θ, the lower (or higher) switch threshold of OB hysteresis corresponds to a certain value of is. Comparing with a HB gain medium, an inHB gain medium need a higher light intensity Id¯ to obtain the same value of is. Therefore, both switch thresholds and the width of OB hysteresis in the red-solid curve are respectively larger than those in the blue-dashed curve, as shown in Fig. 6.

 figure: Fig. 6

Fig. 6 ETR as a function of the input intensity I in a HB (blue-dashed curve) and an inHB (red-solid curve) gain material when dm = 56nm, i = −0.020, and θ = 65.40°. Assume that the saturation intensity in an inHB gain medium is Is = 1MW/cm2. Other parameters are mentioned in the text.

Download Full Size | PPT Slide | PDF

6. Conclusion

In the Kretschmann geometry for SPPs excitation, the dielectric with a variable real part of d, such as a nonlinear Kerr medium [36] and a refractive index thermosensitive dielectric [42], contributes to the formation of bistabe ATR; the dielectric with a negative and fixed imaginary part of d, e.g., a typical gain medium in the case of small-signal gain, gives rise to the appearance of ETR [17, 30]. In this work, we theoretically demonstrate that the dielectric with a negative and variable imaginary part of d, as an example, an optical gain medium in the case of gain saturation at line center, leads to the emergence of bistabe ETR.

In conclusion, the reflection of a TM-polarized light beam from a Kretschmann configuration containing a saturable gain medium is theoretically investigated with the help of Fresnel formulas. It is found that bistable ETR with the simultaneous excitation of SPPs exists in this structure due to gain saturation effect. The regime that is convenient for the emergence of bistable ETR in this structure can be summarized as follows: 1) the incident angle is close to θSPP; 2) the thickness of metal film is a little bigger than dopt; 3) small-signal gain is above a certain value; 4) significant gain saturation exists in the gain medium. In addition, to avoid damaging the structure, an optical amplifying medium with high optical gain and low saturation intensity is proposed here. The exact bistability condition [51] for bistable ETR in this structure will be further studied. Bistable ETR should be more expected than bistable ATR for the design of all-optical switch.

Funding

National Natural Science Foundation of China (NSFC) (11304274, 11404186, 51661029, 61665014, 21661036); Foundation of Yunnan Educational Committee (2013Y430); Doctoral Scientific Research Foundation of YNNU.

References and links

1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988). [CrossRef]  

2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009). [CrossRef]  

3. L. Novotny and B. Hecht, Principles of Nano-Optics (2nd Ed., Cambridge, 2012), Chap. 12. [CrossRef]  

4. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015). [CrossRef]  

5. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004). [CrossRef]   [PubMed]  

6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]  

7. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006). [CrossRef]   [PubMed]  

8. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012). [CrossRef]   [PubMed]  

9. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(43), 433001 (2012). [CrossRef]  

10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6(11), 737–748 (2012). [CrossRef]  

11. V. M. Shalaev and S. Kawata, Nanophotoncis with surface plasmons (Elsevier, 2007).

12. J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photon. 4(2), 157–321 (2012). [CrossRef]  

13. S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photon. 9(4), 775–826 (2017). [CrossRef]  

14. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef]   [PubMed]  

15. J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005). [CrossRef]   [PubMed]  

16. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express 15(1), 176–182 (2007). [CrossRef]   [PubMed]  

17. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008). [CrossRef]   [PubMed]  

18. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4(6), 382–387 (2010). [CrossRef]  

19. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010). [CrossRef]   [PubMed]  

20. X. Zhang, Y. Li, T. Li, S. Y. Lee, C. Feng, L. Wang, and T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35(18), 3075–3077 (2010). [CrossRef]   [PubMed]  

21. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011). [CrossRef]   [PubMed]  

22. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photon. 6(1), 16–24 (2012). [CrossRef]  

23. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009). [CrossRef]   [PubMed]  

24. F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011). [CrossRef]  

25. T. U. Tumkur, G. Zhu, and M. A. Noginov, “Strong coupling of surface plasmon polaritons and ensembles of dye molecules,” Opt. Express 24(4), 3921–3928 (2016). [CrossRef]   [PubMed]  

26. Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011). [CrossRef]  

27. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008). [CrossRef]   [PubMed]  

28. T. Okamoto, T. Kamiyama, and I. Yamaguchi, “All-optical spatial light modulator with surface plasmon resonance,” Opt. Lett. 18(18), 1570–1572 (1993). [CrossRef]   [PubMed]  

29. Z. Ruan, “Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator,” Opt. Lett. 40(4), 601–604 (2015). [CrossRef]   [PubMed]  

30. G. A. Plotz, H. J. Simon, and J. M. Tucciarone, “Enhanced total reflection with surface plasmons,” J. Opt. Soc. Am. 69(3), 419–422 (1979). [CrossRef]  

31. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 3–4. [CrossRef]  

32. R. Reinisch and G. Vitrant, “Optical Bistability,” Prog. Quant. Electr. 18, 1–38 (1994). [CrossRef]  

33. Z. Zhang, H. Wang, P. Ye, Y. Shen, and X. Fu, “Low-power and broadband optical bistability by excitation of surface plasmons in doped polymer film,” Appl. Opt. 32(24), 4495–4500 (1993). [CrossRef]   [PubMed]  

34. P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013). [CrossRef]  

35. X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Scientific Reports 5, 12271 (2015). [CrossRef]   [PubMed]  

36. G. M. Wysin, H. J. Simon, and R. T. Deck, “Optical bistability with surface plasmons,” Opt. Lett. 6(1), 30–32 (1981). [CrossRef]   [PubMed]  

37. R. K. Hickernell and D. Sarid, “Optical bistability using prism-coupled, long-range surface plasmons,” J. Opt. Soc. Am. B 3(8), 1059–1069 (1986). [CrossRef]  

38. S. D. Gupta and G. S. Agarwal, “Optical bistability with surface plasmons beyond plane waves in a nonlinear dielectric,” J. Opt. Soc. Am. B 3(2), 236–238 (1986). [CrossRef]  

39. J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009). [CrossRef]  

40. F. Zhou, Y. Liu, Z. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18(13), 13337–13344 (2010). [CrossRef]   [PubMed]  

41. C. Argyropoulos, C. Ciracì, and D. R. Smith, “Enhanced optical bistability with film-coupled plasmonic nanocubes,” Appl. Phys. Lett. 104(6), 063108 (2014). [CrossRef]  

42. P. Martinot, A. Koster, and S. Laval, “Experimental Observation of Optical Bistability by Excitation of a Surface Plasmon Wave,” IEEE J. Quantum Electron. 21(8), 1140–1143 (1985). [CrossRef]  

43. G. A. Wurtz, R. Pollard, and A.V. Zayats, “Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals,” Phys. Rev. Lett. 97(5), 057402 (2006). [CrossRef]   [PubMed]  

44. H. Zhou, X. Chen, P. Hou, and C. Li, “Giant bistable lateral shift owing to surface plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric,” Opt. Lett. 33(11), 1249–1251 (2008). [CrossRef]   [PubMed]  

45. E. Kretschmann, “The Determination of the Optical Constant of Metals by Excitation of Surface Plasmons,” Z. Physik 241, 313–324 (1971). [CrossRef]  

46. M. A. Parker, Physics of Optoelectronics (CRC, 2005), Chap. 7. [CrossRef]  

47. D. Ahn and S. L. Chuang, “High optical gain of I–VII semiconductor quantum wells for efficient light-emitting devices,” Appl. Phys. Lett. 102(12), 121114 (2013). [CrossRef]  

48. C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016). [CrossRef]  

49. K. F. Renk, Basics of Laser Physics: For Students of Science and Engineering (Springer, 2012), Chap. 4. [CrossRef]  

50. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004) [CrossRef]  

51. A. V. Malyshev, “Condition for resonant optical bistability,” Phys. Rev. A 86(6), 065804 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
    [Crossref]
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
    [Crossref]
  3. L. Novotny and B. Hecht, Principles of Nano-Optics (2nd Ed., Cambridge, 2012), Chap. 12.
    [Crossref]
  4. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  5. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [Crossref] [PubMed]
  6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  7. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  8. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
    [Crossref] [PubMed]
  9. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(43), 433001 (2012).
    [Crossref]
  10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6(11), 737–748 (2012).
    [Crossref]
  11. V. M. Shalaev and S. Kawata, Nanophotoncis with surface plasmons (Elsevier, 2007).
  12. J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photon. 4(2), 157–321 (2012).
    [Crossref]
  13. S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photon. 9(4), 775–826 (2017).
    [Crossref]
  14. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [Crossref] [PubMed]
  15. J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
    [Crossref] [PubMed]
  16. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express 15(1), 176–182 (2007).
    [Crossref] [PubMed]
  17. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [Crossref] [PubMed]
  18. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4(6), 382–387 (2010).
    [Crossref]
  19. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
    [Crossref] [PubMed]
  20. X. Zhang, Y. Li, T. Li, S. Y. Lee, C. Feng, L. Wang, and T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35(18), 3075–3077 (2010).
    [Crossref] [PubMed]
  21. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
    [Crossref] [PubMed]
  22. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photon. 6(1), 16–24 (2012).
    [Crossref]
  23. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
    [Crossref] [PubMed]
  24. F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
    [Crossref]
  25. T. U. Tumkur, G. Zhu, and M. A. Noginov, “Strong coupling of surface plasmon polaritons and ensembles of dye molecules,” Opt. Express 24(4), 3921–3928 (2016).
    [Crossref] [PubMed]
  26. Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
    [Crossref]
  27. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
    [Crossref] [PubMed]
  28. T. Okamoto, T. Kamiyama, and I. Yamaguchi, “All-optical spatial light modulator with surface plasmon resonance,” Opt. Lett. 18(18), 1570–1572 (1993).
    [Crossref] [PubMed]
  29. Z. Ruan, “Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator,” Opt. Lett. 40(4), 601–604 (2015).
    [Crossref] [PubMed]
  30. G. A. Plotz, H. J. Simon, and J. M. Tucciarone, “Enhanced total reflection with surface plasmons,” J. Opt. Soc. Am. 69(3), 419–422 (1979).
    [Crossref]
  31. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 3–4.
    [Crossref]
  32. R. Reinisch and G. Vitrant, “Optical Bistability,” Prog. Quant. Electr. 18, 1–38 (1994).
    [Crossref]
  33. Z. Zhang, H. Wang, P. Ye, Y. Shen, and X. Fu, “Low-power and broadband optical bistability by excitation of surface plasmons in doped polymer film,” Appl. Opt. 32(24), 4495–4500 (1993).
    [Crossref] [PubMed]
  34. P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
    [Crossref]
  35. X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Scientific Reports 5, 12271 (2015).
    [Crossref] [PubMed]
  36. G. M. Wysin, H. J. Simon, and R. T. Deck, “Optical bistability with surface plasmons,” Opt. Lett. 6(1), 30–32 (1981).
    [Crossref] [PubMed]
  37. R. K. Hickernell and D. Sarid, “Optical bistability using prism-coupled, long-range surface plasmons,” J. Opt. Soc. Am. B 3(8), 1059–1069 (1986).
    [Crossref]
  38. S. D. Gupta and G. S. Agarwal, “Optical bistability with surface plasmons beyond plane waves in a nonlinear dielectric,” J. Opt. Soc. Am. B 3(2), 236–238 (1986).
    [Crossref]
  39. J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
    [Crossref]
  40. F. Zhou, Y. Liu, Z. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18(13), 13337–13344 (2010).
    [Crossref] [PubMed]
  41. C. Argyropoulos, C. Ciracì, and D. R. Smith, “Enhanced optical bistability with film-coupled plasmonic nanocubes,” Appl. Phys. Lett. 104(6), 063108 (2014).
    [Crossref]
  42. P. Martinot, A. Koster, and S. Laval, “Experimental Observation of Optical Bistability by Excitation of a Surface Plasmon Wave,” IEEE J. Quantum Electron. 21(8), 1140–1143 (1985).
    [Crossref]
  43. G. A. Wurtz, R. Pollard, and A.V. Zayats, “Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [Crossref] [PubMed]
  44. H. Zhou, X. Chen, P. Hou, and C. Li, “Giant bistable lateral shift owing to surface plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric,” Opt. Lett. 33(11), 1249–1251 (2008).
    [Crossref] [PubMed]
  45. E. Kretschmann, “The Determination of the Optical Constant of Metals by Excitation of Surface Plasmons,” Z. Physik 241, 313–324 (1971).
    [Crossref]
  46. M. A. Parker, Physics of Optoelectronics (CRC, 2005), Chap. 7.
    [Crossref]
  47. D. Ahn and S. L. Chuang, “High optical gain of I–VII semiconductor quantum wells for efficient light-emitting devices,” Appl. Phys. Lett. 102(12), 121114 (2013).
    [Crossref]
  48. C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
    [Crossref]
  49. K. F. Renk, Basics of Laser Physics: For Students of Science and Engineering (Springer, 2012), Chap. 4.
    [Crossref]
  50. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004)
    [Crossref]
  51. A. V. Malyshev, “Condition for resonant optical bistability,” Phys. Rev. A 86(6), 065804 (2012).
    [Crossref]

2017 (1)

2016 (2)

T. U. Tumkur, G. Zhu, and M. A. Noginov, “Strong coupling of surface plasmon polaritons and ensembles of dye molecules,” Opt. Express 24(4), 3921–3928 (2016).
[Crossref] [PubMed]

C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
[Crossref]

2015 (3)

Z. Ruan, “Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator,” Opt. Lett. 40(4), 601–604 (2015).
[Crossref] [PubMed]

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Scientific Reports 5, 12271 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

2014 (1)

C. Argyropoulos, C. Ciracì, and D. R. Smith, “Enhanced optical bistability with film-coupled plasmonic nanocubes,” Appl. Phys. Lett. 104(6), 063108 (2014).
[Crossref]

2013 (2)

P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
[Crossref]

D. Ahn and S. L. Chuang, “High optical gain of I–VII semiconductor quantum wells for efficient light-emitting devices,” Appl. Phys. Lett. 102(12), 121114 (2013).
[Crossref]

2012 (6)

A. V. Malyshev, “Condition for resonant optical bistability,” Phys. Rev. A 86(6), 065804 (2012).
[Crossref]

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(43), 433001 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6(11), 737–748 (2012).
[Crossref]

J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photon. 4(2), 157–321 (2012).
[Crossref]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photon. 6(1), 16–24 (2012).
[Crossref]

2011 (3)

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

2010 (4)

2009 (3)

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (1)

2006 (2)

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, and A.V. Zayats, “Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

2005 (2)

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

2004 (3)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
[Crossref] [PubMed]

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004)
[Crossref]

1994 (1)

R. Reinisch and G. Vitrant, “Optical Bistability,” Prog. Quant. Electr. 18, 1–38 (1994).
[Crossref]

1993 (2)

1986 (2)

1985 (1)

P. Martinot, A. Koster, and S. Laval, “Experimental Observation of Optical Bistability by Excitation of a Surface Plasmon Wave,” IEEE J. Quantum Electron. 21(8), 1140–1143 (1985).
[Crossref]

1981 (1)

1979 (1)

1971 (1)

E. Kretschmann, “The Determination of the Optical Constant of Metals by Excitation of Surface Plasmons,” Z. Physik 241, 313–324 (1971).
[Crossref]

Adegoke, J. A.

Agarwal, G. S.

Ahn, D.

D. Ahn and S. L. Chuang, “High optical gain of I–VII semiconductor quantum wells for efficient light-emitting devices,” Appl. Phys. Lett. 102(12), 121114 (2013).
[Crossref]

Aitchison, J. S.

Alam, M. Z.

Argyropoulos, C.

C. Argyropoulos, C. Ciracì, and D. R. Smith, “Enhanced optical bistability with film-coupled plasmonic nanocubes,” Appl. Phys. Lett. 104(6), 063108 (2014).
[Crossref]

Bahoura, M.

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photon. 6(1), 16–24 (2012).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4(6), 382–387 (2010).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[Crossref]

Bolger, P. M.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Boriskina, S. V.

Bröll, M.

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Chen, G.

Chen, J.

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

Chen, X.

Chen, Y.

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

Chuang, S. L.

D. Ahn and S. L. Chuang, “High optical gain of I–VII semiconductor quantum wells for efficient light-emitting devices,” Appl. Phys. Lett. 102(12), 121114 (2013).
[Crossref]

Ciracì, C.

C. Argyropoulos, C. Ciracì, and D. R. Smith, “Enhanced optical bistability with film-coupled plasmonic nanocubes,” Appl. Phys. Lett. 104(6), 063108 (2014).
[Crossref]

Cooper, T. A.

Dai, X.

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Scientific Reports 5, 12271 (2015).
[Crossref] [PubMed]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photon. 6(1), 16–24 (2012).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4(6), 382–387 (2010).
[Crossref]

Deck, R. T.

Dickson, W.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 3–4.
[Crossref]

Eng, L.

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Fainman, Y.

Feng, C.

Fröb, H.

C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
[Crossref]

Fu, J.

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

Fu, X.

Fujimura, R.

P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
[Crossref]

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Gupta, S. D.

Hakala, T. K.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Hayashi, S.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (2nd Ed., Cambridge, 2012), Chap. 12.
[Crossref]

Heitmann, D.

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Hickernell, R. K.

Hickey, S. G.

Hou, P.

Huang, Y.

Jiang, L.

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Scientific Reports 5, 12271 (2015).
[Crossref] [PubMed]

Kajikawa, K.

P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
[Crossref]

Kamiyama, T.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6(11), 737–748 (2012).
[Crossref]

Kawata, S.

V. M. Shalaev and S. Kawata, Nanophotoncis with surface plasmons (Elsevier, 2007).

Koster, A.

P. Martinot, A. Koster, and S. Laval, “Experimental Observation of Optical Bistability by Excitation of a Surface Plasmon Wave,” IEEE J. Quantum Electron. 21(8), 1140–1143 (1985).
[Crossref]

Krasavin, A. V.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

Kretschmann, E.

E. Kretschmann, “The Determination of the Optical Constant of Metals by Excitation of Surface Plasmons,” Z. Physik 241, 313–324 (1971).
[Crossref]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Laval, S.

P. Martinot, A. Koster, and S. Laval, “Experimental Observation of Optical Bistability by Excitation of a Surface Plasmon Wave,” IEEE J. Quantum Electron. 21(8), 1140–1143 (1985).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004)
[Crossref]

Lee, S. Y.

Leo, K.

C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
[Crossref]

Li, C.

Li, J.

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

Li, T.

Li, Y.

Li, Z.

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

F. Zhou, Y. Liu, Z. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18(13), 13337–13344 (2010).
[Crossref] [PubMed]

Liebscher, L.

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Liu, S.

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

Liu, Y.

Lu, Y.

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

Mahan, G.

Malyshev, A. V.

A. V. Malyshev, “Condition for resonant optical bistability,” Phys. Rev. A 86(6), 065804 (2012).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Martinot, P.

P. Martinot, A. Koster, and S. Laval, “Experimental Observation of Optical Bistability by Excitation of a Surface Plasmon Wave,” IEEE J. Quantum Electron. 21(8), 1140–1143 (1985).
[Crossref]

Mayy, M.

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Mei, T.

Meier, J.

Mendach, S.

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Meroueh, L.

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 3–4.
[Crossref]

Ming, H.

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

Mischok, A.

C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
[Crossref]

Mojahedi, M.

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Nezhad, M. P.

Ni, G.

Noginov, M. A.

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (2nd Ed., Cambridge, 2012), Chap. 12.
[Crossref]

Oh, Sang-Hyun

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(43), 433001 (2012).
[Crossref]

T. Okamoto, T. Kamiyama, and I. Yamaguchi, “All-optical spatial light modulator with surface plasmon resonance,” Opt. Lett. 18(18), 1570–1572 (1993).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Parker, M. A.

M. A. Parker, Physics of Optoelectronics (CRC, 2005), Chap. 7.
[Crossref]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Plotz, G. A.

Podolskiy, V. A.

Pollard, R.

G. A. Wurtz, R. Pollard, and A.V. Zayats, “Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
[Crossref]

Reinisch, R.

R. Reinisch and G. Vitrant, “Optical Bistability,” Prog. Quant. Electr. 18, 1–38 (1994).
[Crossref]

Ren, M.

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

Renk, K. F.

K. F. Renk, Basics of Laser Physics: For Students of Science and Engineering (Springer, 2012), Chap. 4.
[Crossref]

Reynolds, K.

Ritzo, B. A.

Ruan, Z.

Sarid, D.

Schwaiger, S.

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev and S. Kawata, Nanophotoncis with surface plasmons (Elsevier, 2007).

Shen, Y.

Simon, H. J.

Skryabin, D. V.

Smith, D. R.

C. Argyropoulos, C. Ciracì, and D. R. Smith, “Enhanced optical bistability with film-coupled plasmonic nanocubes,” Appl. Phys. Lett. 104(6), 063108 (2014).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Sudzius, M.

C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
[Crossref]

Takanishi, Y.

P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
[Crossref]

Tanaka, D.

P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
[Crossref]

Tetz, K.

Thanh, P. T.

P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
[Crossref]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Tong, J. K.

Toppari, J. J.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Tsurimaki, Y.

Tucciarone, J. M.

Tumkur, T. U.

Tzschaschel, C.

C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
[Crossref]

Valmorra, F.

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Vitrant, G.

R. Reinisch and G. Vitrant, “Optical Bistability,” Prog. Quant. Electr. 18, 1–38 (1994).
[Crossref]

Vo, T. P.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

Wang, B.

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

Wang, H.

Wang, L.

Wang, P.

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

Wang, X.

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

Welzel, N.

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A.V. Zayats, “Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Wysin, G. M.

Xia, Y.

Xiang, Y.

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Scientific Reports 5, 12271 (2015).
[Crossref] [PubMed]

Yamaguchi, I.

Ye, P.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6(11), 737–748 (2012).
[Crossref]

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[Crossref] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zayats, A.V.

G. A. Wurtz, R. Pollard, and A.V. Zayats, “Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Zeng, L.

Zhan, Q.

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, X.

Zhang, Z.

Zheng, R.

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

Zhou, F.

Zhou, H.

Zhu, G.

Adv. Opt. Photon. (3)

Appl. Opt. (1)

Appl. Phys. Express (1)

P. T. Thanh, D. Tanaka, R. Fujimura, Y. Takanishi, and K. Kajikawa, “Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure,” Appl. Phys. Express 6(1), 011701 (2013).
[Crossref]

Appl. Phys. Lett. (7)

F. Valmorra, M. Bröll, S. Schwaiger, N. Welzel, D. Heitmann, and S. Mendach, “Strong coupling between surface plasmon polariton and laser dye rhodamine 800,” Appl. Phys. Lett. 99(5), 051110 (2011).
[Crossref]

Y. Chen, J. Li, M. Ren, B. Wang, J. Fu, S. Liu, and Z. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98(26), 261912 (2011).
[Crossref]

J. Chen, P. Wang, X. Wang, Y. Lu, R. Zheng, H. Ming, and Q. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett. 94(8), 081117 (2009).
[Crossref]

C. Argyropoulos, C. Ciracì, and D. R. Smith, “Enhanced optical bistability with film-coupled plasmonic nanocubes,” Appl. Phys. Lett. 104(6), 063108 (2014).
[Crossref]

D. Ahn and S. L. Chuang, “High optical gain of I–VII semiconductor quantum wells for efficient light-emitting devices,” Appl. Phys. Lett. 102(12), 121114 (2013).
[Crossref]

C. Tzschaschel, M. Sudzius, A. Mischok, H. Fröb, and K. Leo, “Net gain in small mode volume organic microcavities,” Appl. Phys. Lett. 108(2), 023304 (2016).
[Crossref]

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004)
[Crossref]

IEEE J. Quantum Electron. (1)

P. Martinot, A. Koster, and S. Laval, “Experimental Observation of Optical Bistability by Excitation of a Surface Plasmon Wave,” IEEE J. Quantum Electron. 21(8), 1140–1143 (1985).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Nano Lett. (1)

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-Plasmonic Modulation via Stimulated Emission of Copropagating Surface Plasmon Polaritons on a Substrate with Gain,” Nano Lett. 11(6), 2231–2235 (2011).
[Crossref] [PubMed]

Nature Photon. (3)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nature Photon. 6(1), 16–24 (2012).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4(6), 382–387 (2010).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Photon. 6(11), 737–748 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. A (1)

A. V. Malyshev, “Condition for resonant optical bistability,” Phys. Rev. A 86(6), 065804 (2012).
[Crossref]

Phys. Rev. Lett. (5)

G. A. Wurtz, R. Pollard, and A.V. Zayats, “Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[Crossref] [PubMed]

Prog. Quant. Electr. (1)

R. Reinisch and G. Vitrant, “Optical Bistability,” Prog. Quant. Electr. 18, 1–38 (1994).
[Crossref]

Rep. Prog. Phys. (2)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and Sang-Hyun Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Scientific Reports (1)

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Scientific Reports 5, 12271 (2015).
[Crossref] [PubMed]

Z. Physik (1)

E. Kretschmann, “The Determination of the Optical Constant of Metals by Excitation of Surface Plasmons,” Z. Physik 241, 313–324 (1971).
[Crossref]

Other (6)

M. A. Parker, Physics of Optoelectronics (CRC, 2005), Chap. 7.
[Crossref]

K. F. Renk, Basics of Laser Physics: For Students of Science and Engineering (Springer, 2012), Chap. 4.
[Crossref]

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010), Chap. 3–4.
[Crossref]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (2nd Ed., Cambridge, 2012), Chap. 12.
[Crossref]

V. M. Shalaev and S. Kawata, Nanophotoncis with surface plasmons (Elsevier, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Reflectivity R as a function of the incident angle θ for different thicknesses of metal film. Here i is the imaginary part of d, θc is the critical angle for total internal reflection, and θSPP is the surface plasmon resonance angle. The inset is the Kretschmann configuration for SPPs excitation. For all data sets [17]: 0 = 3.18, m = −15.584 + 0.424i, d = 2.25, and the wavelength of the incident TM-polarized light beam λ = 594nm.
Fig. 2
Fig. 2 Reflectivity R as a function of small-signal gain (associated with i by Eq. (11)) near the surface plasmon resonance angle θSPP; (a) dm = 39nm, (b) dm = 60nm, and (c) dm = 70nm. The color bar on the right represents log10(R). Other parameters are mentioned in the text.
Fig. 3
Fig. 3 Reflectivity curve variation with the incident angle θ at a fixed thickness of metal film dm = 60nm when i = 0. Assume that i = −0.020 and Is = 1MW/cm2. The inset (a) depicts the curves of ETR changes as the variations of the input intensity I in the case of θ < θSPP, while the inset (b) corresponds to θ > θSPP. Other parameters are mentioned in the text.
Fig. 4
Fig. 4 ETR as a function of the input intensity I for different thicknesses of metal film when θ = 65.46° and i = −0.020. Other parameters are mentioned in the text.
Fig. 5
Fig. 5 ETR as a function of the input intensity I for different values of small-signal gain coefficient when dm = 60nm and θ = 65.46°. Other parameters are mentioned in the text.
Fig. 6
Fig. 6 ETR as a function of the input intensity I in a HB (blue-dashed curve) and an inHB (red-solid curve) gain material when dm = 56nm, i = −0.020, and θ = 65.40°. Assume that the saturation intensity in an inHB gain medium is Is = 1MW/cm2. Other parameters are mentioned in the text.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

k SPP = ω c m d m + d ,
ω c 0 sin ( θ SPP ) = Re ( k SPP ) ,
R = | r 0 m + r md exp ( 2 i k m z d m ) 1 + r 0 m r md exp ( 2 i k m z d m ) | 2 ,
T = | t 0 m t md exp ( i k m z d m ) 1 + r 0 m r md exp ( 2 i k m z d m ) | 2 .
k i z = ± ω c i 0 sin 2 θ , i = 0 , m , d .
P = Ne 2 Vm 1 ( ω 0 2 ω 2 ) + i γ ω E ,
P = ε 0 χ E ,
χ ( ω ) = Ne 2 Vm ε 0 1 ( ω 0 2 ω 2 ) + i γ ω .
χ r = Re χ ( ω ) N e 2 V m ε 0 ω 0 2 ( ω 0 ω ) 4 ( ω 0 ω ) 2 + γ 2 ,
χ i = Im χ ( ω ) N e 2 V m ε 0 ω 0 γ 4 ( ω 0 ω ) 2 + γ 2 .
d = 1 + χ b + χ ( ω ) .
r = 1 + χ b + χ r , i = χ i .
g = ω c i r .
g 0 = Δ N σ ( v , v 0 ) ,
Δ r Δ is = Δ χ r Δ χ i = 2 ( ω 0 ω ) γ .
g L ( v ) = g 0 1 + I d f ( v ) I s f ( v 0 ) .
g L = g 0 1 + I d / I s .
d = r + i i 1 + I d / I s .
I d ¯ 1 2 I md = 1 4 1 Re ( d ) ε 0 c | H md | 2 .
I = 1 2 1 ( 0 ) ε 0 c | H md | 2 T .
g G = g 0 1 + I d / I s .
d = r + i i 1 + I d / I s .

Metrics