Abstract

We demonstrate time-resolved tomography with 200 fs resolution for the three-dimensional analysis of the non-linear dynamics of ultrafast laser-matter interaction inside the volume of transparent materials. We reconstruct as an example the three-dimensional spatial distribution of the transient extinction coefficient induced by focusing higher-order Bessel-Gaussian-beams into Gorilla glass. This approach can be employed to gaseous, liquid and transparent solid state matter which interact with laser light.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ultrashort pulse lasers have become a unique tool for a huge variety of applications, ranging from investigations of nonlinear propagation effects for atmospheric analysis [1,2], spectroscopic investigations in gases [3, 4], analysis of the interaction with water with a focus on medical applications [5,6] to interactions with solids like crystals, polymers or glasses, where permanent material modifications are locally induced [7–9]. The reason is, apart from the short interaction time that yields a high temporal resolution, the high intensities that lead to nonlinear interaction processes which enable interactions with practically all materials, whether absorbing or transparent, gaseous, liquid or solid.

The interaction between matter and ultrashort laser pulses is a notoriously complex process involving transient states and dynamics that span time scales from microseconds down to the femtosecond regime [7,10–12]. At its heart, different ionization mechanisms [13] and the interplay between radiation and plasma give rise to highly nonlinear behavior [14,15]. In the aftermath of the energy deposition itself, the presence of non-equilibrium material states [7, 11, 16–18] and their various competing dissipation channels present serious challenges to a comprehensive numerical simulation of the overall process and the resulting permanent material modifications. Moreover, the wide range of possible objects of investigation show multifaceted differences in their interaction with ultrashort laser pulses. Thus, in-situ observation of these transient processes is essential for their understanding and tailoring. Typically, this is achieved by pump-probe measurements yielding the required temporal resolution in the femtosecond regime. However, these techniques typically provide only two-dimensional spatial information due to observation in- or perpendicular to the laser beam direction [5, 6, 12, 19, 20]. Complex three-dimensional structural dynamics are therefore hard to analyze. Such complex dynamics occur e.g. in ultrafast laser processing, where advanced focusing strategies based on asymmetric beam shaping are used. For example, special beam geometries are applied in glass processing to induce cracks with a predominant direction [21,22] or to generate hollow structures [23,24]. Another application example is the 3D additive manufacturing using short laser pulses, where micro- or nanoobjects are realized via two-photon polymerization. In this case, the final size of the structure is dependent on complicated three-dimensional effects, like thermal and chemical interactions as well as chain-scission of organic and inorganic materials [25,26].

In this paper, we demonstrate a tomographic approach to obtain the full three-dimensional information of the laser-matter interaction, in particular the change in the extinction, with high spatio-temporal resolution and the possibility to reveal details of potentially obscured or even hollow structures. However, this technique can be also adapted to polarization, refractive index, phase difference or dark field sensitive measurements. For example, we analyze the interaction of ultrashort higher-order Bessel-Gaussian beams with glass. Such intensity distributions/ beam shaping approaches show promising prospects for material modifications and processing, e.g. the precise cutting of glass [24,27–29]. Already before the last section, where the limitations of our setup will be discussed in detail, we would like to emphasize at this point that multiple shots are needed for reconstruction purposes and thus, need reproducible conditions. This implements that identical laser pulses and comparable material reaction are required, common to all pump-probe setups.

2. Materials and methods

For the time-resolved three-dimensional analysis of the transient state evolution with sufficient temporal and spatial resolution a transverse pump-probe microscope [19,20], recording cross-sectional images, would have to be set up, acquiring images in different projection directions which have to be tomographically reconstructed [30]. Instead, in the approach presented here, only one projection is sufficient; the experimental setup is sketched in Fig. 1.

 

Fig. 1 Schematic of the experimental setup for time-resolved tomographic microscopy. Pulses of 7.5 ps duration at 1026 nm serve as pump whereas pulses of 200 fs duration at 513 nm are used to probe the beam shaped focal region inside the glass volume spatially and temporally. The SLM-based beam shaping unit generates Bessel-Gaussian-beams from the pump-source and ensures appropriate beam orientation.

Download Full Size | PPT Slide | PDF

Single laser pulses at a wavelength of λ = 1026 nm and Δτ = 200 fs pulse duration are emitted from a PHAROS-SP system from Light Conversion and split by a beam splitter. One beam can be stretched in time to the duration of interest e.g. 7.5 ps here, and serves as pump pulse, whereas the other (probe beam), transmits the interaction area transversely. This probe beam is frequency doubled to λ = 513 nm to distinguish it from parasitic background radiation from the pump beam and samples the laser-matter interaction in a time window of 200 fs (pulse duration) at a given point in time defined by an adjustable delay line. The starting point t = 0 ps is defined by the first occurrence of significant signal drop in the shadowgraphic image. For instance, we measure here after a delay time of 7.5 ps, i.e. at the end of the pump pulse. However, it is possible to sample at any specific point in time, during the generation of free electrons or their subsequent relaxation.

A telescope with 20× magnification images the interaction area onto a CCD camera where shadowgraphic images are recorded. A bandpass filter in front of the CCD is used to avoid overexposure due to the broadband plasma radiation and scattered pump light. As glass sample Corning Gorilla® Glass 3 is chosen and moved after every shot to a pristine position.

The setup is completed by implementing digital-holographic beam shaping techniques into the pump light path. Holograms displayed on a reflective liquid-crystal-on-silicon based spatial light modulator (SLM, Hamamatsu LCoS X13138-03 with 1280 × 1024 pixels, illumination angle < 5 °) allow the flexible generation of Bessel-Gaussian beams of desired order with varying orientation. A subsequent 4f-setup with 20× telescopic demagnification scales the shaped optical fields to the required micrometer dimensions and focuses them into the glass volume. Figure 2 illustrates the employed phase-only transmission functions T(x, y) displayed by the SLM for higher-order Bessel-Gaussian beam shaping.

 

Fig. 2 Central details of SLM phase masks arg [T(x, y)] to generate petal-like Bessel-Gaussian beams of first-order, lm = [−1, 1] (a), first-order rotated by θ = π/4 (b) and third-order lm = [−3, 3] (c) as well as the pure Bessel-Gaussian beam of third-order l = −3 (d).

Download Full Size | PPT Slide | PDF

A radial symmetric blazed phase grating (Fresnel-axicon-type) with transmission according to Tax (r) = exp (ιβr) [31] acts as carrier into which superpositions of azimuthal phase components Taz(ϕ)=exp{ιarg[mexp(ιlmϕ)]}, lm ∈ ℤ are multiplexed in order to obtain Bessel-Gaussian beams of higher order [32], see Figs. 2(a), (c) and (d). The slope β of these digital axicons is connected to “real” axicons of angle α and refractive index n via β ≈ 2π (n − 1) α/λ [31]. The simulated propagation behavior of the generated beams in vacuum with corresponding transverse beam profiles is shown for three examples in Fig. 3 where we consider two superpositions Figs. 3(a), (b) and one pure higher-order Bessel-Gaussian beam Fig. 3(c). For the first two examples, the typical petal-like intensity features distributed point-symmetrically around the optical axis are clearly recognizable. Consequently, we adopt the appellation “petal-like” [32] for this class of beams. Common to all beam examples is the extreme aspect ratio in the focal zone of a few micrometer in transverse to several hundreds in longitudinal direction [24,28,33].

 

Fig. 3 Simulated propagation characteristics in vacuum of Bessel-Gaussian beams (profile cut along x-axis) of first order, petal-like (a) third order, petal-like (b) and third-order, pure (c) using the SLM phase masks shown in Figs. 2(a), (c) and (d), respectively, and subsequent 20× demagnification. The insets show the corresponding transverse beam profile at z = 150 μm. This color scheme representation is based on ideas from D. Green [36].

Download Full Size | PPT Slide | PDF

Using transverse pump-probe microscopy we gain access to the local extinction zone in the (x, z)-plane (z-axis corresponds to propagation direction, y-axis to observation direction), by recording shadowgraphic images IS (x, z) and corresponding background images I0 (x, z).

From this information we calculate the optical depth τ [34](dimensionless) from

τ(x,z)=ln[I0(x,z)IS(x,z)].

Here, all effects (e.g. absorption, free electrons, Bremsstrahlung, scattering effects, ...) that locally reduce the transmission of the probe pulse [20,34] are contributing to increased values of τ(x, z). Considering Lambert-Beer’s law and our coordinate system definition (for one projection) depicted in Fig. 4, the optical depth represents the integral over the local extinction coefficient κ(r) = κ (x, y, z) along y-direction: τ (x, z) = ∫ dy κ(x, y, z) (coordinate system Σ).

 

Fig. 4 Extinction distribution at a certain propagation plane κ (x, y; z = z′) defined in coordinate system Σ and corresponding projections (optical depths) τθ (xθ, z′) for different projection angles θ in their respective rotated coordinate system Σ′. The z-axis corresponds to the beam’s propagation direction.

Download Full Size | PPT Slide | PDF

However, for volume rendering of a three-dimensional object, a finite number of two-dimensional projections from different projection angles are required [30]. State-of-the-art tomographic techniques are based on a rotational scan around the measuring object. In our case a rotational scan of probe illumination and observation system around the glass sample would be needed. This approach is tremendously challenging since the fs resolution would suffer from the smallest changes within the delay line. Moreover, this realization becomes complex from a technical and optical point of view. For example, a change of the observation direction causes wavefront aberrations due to the different angles of incidence on different sides of the cuboid glass sample, which needs to be corrected foremost. In addition, variations in the sampling time due to different propagation lengths through the glass would have to be taken into account.

Thus, an alternative concept to access the different projections is needed. One possibility is the rotation of the pump beam around a desired angle θ. Typical beam rotation concepts are based on Dove prism or telescopes consisting of cylindrical lenses [35], which are prone to adjustment errors. A much simpler approach is to make use of the SLM not only for beam shaping but also for rotation by varying the orientation of the displayed phase mask, see Fig. 2(b).

Using this approach easily allows to obtain the projections for different rotations around the z-axis. In the rotated system Σ′ [again, see Fig. 4], the corresponding projections τθ (xθ, z) along yθ are directly accessible

τθ(xθ,z)=0ymaxdyθκ(xθcosθyθsinθ,xθsinθ+yθcosθ,z).
In this representation τθ (xθ, z) is known as the Radon transform of κ (x, y, z) [30].

Several techniques exist to numerically invert Eq. (1) and, thus, to completely reconstruct the spatial distribution of the extinction coefficient κ (x, y, z) [30]. We apply the filtered backprojection algorithm to the measured projections τ (xθ, z) to perform the inverse Radon transform [30] and render volumetric images.

3. Results and discussion

In order to demonstrate the efficacy of this approach we analyze the non-radial symmetric extinction zone caused by focusing the first-order petal-like Bessel-Gaussian beam [Ep = 40 μJ, see Fig. 3(a)] into the glass. The corresponding measured optical depths τθ (xθ, z) at a delay time of 7.5 ps for five different projection angles θ are depicted in Figs. 5(a) – (e), as an example. Here, the beam orientation at θ = 0 [Fig. 5(a)] equals the one used in the propagation simulation shown in Fig. 3(a). Similar to the beam’s simulated intensity distribution, the extinction zone is characterized by two parallel-running elongated areas of 300 μm length, transverse distance of ≈ 2 μm and maximum optical depth values of τ (x, z = 0) ≈ 1.0. Beam rotation to θ = π/4 and π/2, respectively, gradually leads to a single elongated projection exhibiting maximum τ-values of ≈ 1.9 at z = 0. A further increase of the rotation angle to θ = 3π/4 and, finally, π restores the original optical depth distribution since τθ = τθ.

 

Fig. 5 Measured optical depths τθ (xθ, z) of petal-like Bessel-Gaussian beam of first-order at five different projection angles θ = (0 . . . π) (a) – (e).

Download Full Size | PPT Slide | PDF

For the reconstruction of the spatial extinction coefficient κ(r) using the backprojection algorithm the sinogram representation [30] is beneficial. Adapted to the problem at hand, we plot τθ (θ, xθ) for a specific z-value and include the complete measurement series where θ was varied from 0 to π within 41 steps, see Fig. 6(a). In this representation, the aforementioned transition from a two-lobe extinction projection at θ = 0 to a single, stronger one at θ = π/2 and back to the original distribution at θ = π can be seen more clearly. From this measured data we derive the transverse distribution of the extinction coefficient κ(x, y) at the focal position z = 0 using the inverse Radon transform. The result depicted in Fig. 6(b) clearly shows an extinction distribution exhibiting two distinct maxima of distance 2 μm distributed point-symmetrically around the optical axis. In this particular case highest reconstructed κ-values were determined to about 0.7 μm−1.

 

Fig. 6 (a) Sinogram representation τθ (θ, xθ) for the measurements shown in Fig. 5 at z = 0. (b) Reconstruction result of transverse extinction distribution κ(x, y) at z = 0 of petal-like Bessel-Gaussian beam of first-order using inverse Radon transform of the corresponding sinogram.

Download Full Size | PPT Slide | PDF

To complete the reconstruction of κ(r) in all three dimensions we compute the inverse Radon transform for each z-position. This volume data allows to evaluate the measurement as a “flight” through the entire extinction distribution representing the material’s complete spatial extinction response caused by the pump pulse at a fixed temporal delay, see Visualization 1.

To gain visual access to the complete 3D-data of κ(r) simultaneously, an isosurface representation can be extracted, which is depicted in Fig. 7 (also, see Visualization 2). Here, five areas of equal extinction relative to the maximum value of κmax = 0.7 μm−1 are combined to surfaces of equal color and transparency.

 

Fig. 7 Isosurface representation of the reconstructed extinction distribution κ(r) caused by focusing the first-order petal-like Bessel-Gaussian beam into the sample. The colored iso-contours represent five extinction thresholds relative to κmax = 0.7 μm−1.

Download Full Size | PPT Slide | PDF

As a next step we analyze a more complex situation and investigate the measured optical depths τ(x, z) arising from focussing the petal-like Bessel-Gaussian beam of third order [Ep = 74 μJ, cf. Fig. 3(c)] into the sample. During the beam rotation from θ = (0 . . . π) within 81 steps (due to the more complex energy distribution) the extinction distribution is subject to considerable alternating fluctuations and is, for example, altered from two to three elongated τ-zones for θ = 0 and θ = π/6, respectively, see Figs. 8(a), (b). Between these projection angles, in a transitional area, a single noticeably broadened optical depth distribution can be found, see, e.g., Fig. 8(c), where θ = π/12.

 

Fig. 8 Measured optical depths τθ (xθ, z) of petal-like Bessel-Gaussian beam of third-order at three different projection angles θ = 0 (a), θ = π/6 (b) and θ = π/12 (c).

Download Full Size | PPT Slide | PDF

The corresponding sinogram τθ (θ, xθ) at a fixed propagation distance z = 0 [cf. Fig. 9(a)], expresses this process more clearly where a threefold repetition until θ = π can be seen for symmetry reasons, since τθ = τθ+π/3, for this particular beam. The reconstruction of the transverse extinction distribution κ(x, y) shown in Fig. 9(b) reveals this symmetry and six petals with maximum κ-values of 0.4 μm−1 appear.

 

Fig. 9 (a) Sinogram representation τθ (θ, xθ) for the measurements shown in Fig. 8 at z = 0. (b) Reconstruction result of transverse extinction distribution κ(x, y) at z = 0 of petal-like Bessel-Gaussian beam of third-order using inverse Radon transform of the corresponding sinogram.

Download Full Size | PPT Slide | PDF

Additionally, the isosurface representation of the total κ(r)-distribution reveals their parallel-running elongated behavior with similar κ(r) - values along the entire propagation distance, see Fig. 10(a) and Visualization 3.

 

Fig. 10 Isosurface representation of the reconstructed extinction distribution κ(r) caused by focusing the Bessel-Gaussian beam of third-order, petal-like (a) and pure third-order (b) into the sample. The colored iso-contours represent five extinctions thresholds relative to κmax = 0.4 μm−1 (a) and κmax = 0.1 μm−1 (b), respectively.

Download Full Size | PPT Slide | PDF

To highlight the ability of our technique we focus the pure Bessel-Gaussian beam of third order [Ep = 74 μJ] into the glass. The beam’s caustic is characterized by an elongated ring-like distribution, see Fig. 3(c). Also in this case, the corresponding reconstructed extinction distribution, depicted in Fig. 10(b), accurately follows this intensity profile and an extinction zone of hollow cylindrical symmetry appears exhibiting ≈ 3 μm diameter, a few hundred μm length and maximum κ-values of 0.1 μm−1. This example, emphasized in Visualization 4, clearly illustrates the ability to transfer tomographic imaging techniques onto ultrafast detection methods and reveals details of potentially obscured or even hollowed extinction distributions.

The spatial resolution dmin of these details is given by the diffraction limit determined by NA and wavelength of the employed observation microscope which corresponds to dmin = 800 nm in our particular case. Choosing dmin as desired resolution for the reconstruction of the κ (r)-signal with a corresponding effective diameter of Dmax = 8 μm, see, e.g., Fig. 9, the number of required projections N within the interval θ = [0, π] for a sufficient sampling is estimated to N > πdmin/Dmax ≈ 31 [30]. Further increasing of N will decrease the impact of statistical errors, such as, e.g., camera noise, and, thus, will yield smoothed reconstruction signals. However, the corresponding spatial resolution limit will not be affected. It is important to note that the measurement technique reported here is based on the reproducibility of the laser-matter interaction process as is the case for all pump-probe measurements. Thus, typical statistical phenomena like filamentation of intensive femtosecond laser pulses [15] can not be reconstructed clearly. This also applies to processes close too a certain threshold value, like the generation of free electrons. Small fluctuations of the laser intensity or material impurities would hinder a definite rendering. In addition, the sample used needs to be invariant for a sample translation and beam rotation. With respect to the technical limitations we have to consider Eq. (1) where we assume to measure optical depths as integrals along straight lines. This condition is fulfilled only in a small region around the focus where plane phase fronts are present and which can be identified in first approximation with the axial Rayleigh length zR. The transverse (x, y)-extension of the extinction zone under investigation has to fit inside an area with edge length of ≈ 2zR. Considering the high NA of 0.4 of the observation objective used in our setup we obtain a Rayleigh length of zR ≈ 5 μm. Larger extensions have to be characterized with adapted objective lenses or the procedure described in [30] has to be applied where the rotational scan of the extinction zone is combined with a depth scan in yθ-direction and an additional, depth-dependent filter function is required [30] for the backprojection algorithm.

Finally, we would like to pay attention to Fig. 5 where parallel to the dual extinction zone close to x = 0, further weaker elongated extinction zones are apparent (in fact, they appear in all measurements). One might assume that these lines are caused by the sidelobes which are typical for Bessel-Gaussian beams [cf. Fig. 3]. However, as these extinction lines alternate with areas of negative extinction (τmin ≈ −0.2), which would indicate amplification, this effect is similar to diffraction of coherent sources on slits or edges, known as Gibbs phenomenon, see e.g. [37], and is further enhanced by the nonlinearity of the logarithm applied to the shadowgraph signals.

The measured overshoots have a strong influence on the reconstruction of κ as can be seen in Fig. 6(a) where a ring-like structure surrounds the actual signal. To circumvent this issue, deconvolution algorithms [38], known from astronomy and microscopy, respectively, could be applied to the measured data. A deconvolution with a simulated or measured point-spread function would damp the overshoots and yield a cleaned extinction signal.

4. Conclusions

To conclude, the presented procedure combines all features of classical tomographic measurements where arbitrary spatial extinction distributions are reconstructed with the ability to investigate the process with a high temporal resolution provided by pump-probe imaging techniques. Although we focused on the spatial properties within this work, the procedure allows to investigate the temporal dynamics of the three dimensional extinction coefficient κ(r) with a resolution of 200 fs, provided by state-of-the-art pump-probe microscopes. The procedure is not limited to investigate the spatio-temporal extinction behavior of the glass sample only but could be expanded with little effort, e.g. to characterize the three-dimensional energy distribution of the two beam interaction of externally refuelled optical filaments [2] or double coaxial beams [39] in air, where a complex spatio-temporal beam shaping is needed and multi-filamentation needs to be suppressed. Moreover, this approach can be implemented for various other pump-probe setups using interferometric approaches or polarization sensitive devices. This could unravel the complex three-dimensional laser-matter interaction and could pave the way towards precisely controlled two- und three-dimensional in-volume modifications.

Funding

Federal Ministry of Education and Research (BMBF) (FKZ 13N13927, FKZ 13N13930); TRUMPF Laser- und Systemtechnik GmbH.

References and links

1. J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003). [CrossRef]   [PubMed]  

2. M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014). [CrossRef]  

3. Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006). [CrossRef]  

4. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010). [CrossRef]  

5. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002). [CrossRef]   [PubMed]  

6. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008). [CrossRef]   [PubMed]  

7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008). [CrossRef]  

8. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006). [CrossRef]  

9. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016). [CrossRef]  

10. S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002). [CrossRef]  

11. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004). [CrossRef]  

12. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005). [CrossRef]  

13. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006). [CrossRef]  

14. Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966). [CrossRef]  

15. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]  

16. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007). [CrossRef]   [PubMed]  

17. S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006). [CrossRef]  

18. T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012). [CrossRef]  

19. S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004). [CrossRef]  

20. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011). [CrossRef]   [PubMed]  

21. J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016). [CrossRef]   [PubMed]  

22. R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017). [CrossRef]   [PubMed]  

23. C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015). [CrossRef]  

24. C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015). [CrossRef]   [PubMed]  

25. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010). [CrossRef]  

26. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016). [CrossRef]  

27. J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]  

28. F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013). [CrossRef]  

29. D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

30. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

31. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006). [CrossRef]   [PubMed]  

32. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher–order bessel beams,” Opt. Express 17, 23389–23395 (2009). [CrossRef]  

33. M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010). [CrossRef]  

34. D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016). [CrossRef]   [PubMed]  

35. A. Michalowski, Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (Herbert Utz Verlag, 2014).

36. D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).

37. W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

38. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36, 1766–1775 (1997). [CrossRef]   [PubMed]  

39. H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
    [Crossref] [PubMed]
  2. M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
    [Crossref]
  3. Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
    [Crossref]
  4. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
    [Crossref]
  5. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
    [Crossref] [PubMed]
  6. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
    [Crossref] [PubMed]
  7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
    [Crossref]
  8. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
    [Crossref]
  9. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
    [Crossref]
  10. S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [Crossref]
  11. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
    [Crossref]
  12. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
    [Crossref]
  13. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
    [Crossref]
  14. Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
    [Crossref]
  15. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  16. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
    [Crossref] [PubMed]
  17. S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
    [Crossref]
  18. T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
    [Crossref]
  19. S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [Crossref]
  20. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
    [Crossref] [PubMed]
  21. J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016).
    [Crossref] [PubMed]
  22. R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
    [Crossref] [PubMed]
  23. C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
    [Crossref]
  24. C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
    [Crossref] [PubMed]
  25. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
    [Crossref]
  26. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
    [Crossref]
  27. J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [Crossref]
  28. F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
    [Crossref]
  29. D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).
  30. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  31. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006).
    [Crossref] [PubMed]
  32. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher–order bessel beams,” Opt. Express 17, 23389–23395 (2009).
    [Crossref]
  33. M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
    [Crossref]
  34. D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
    [Crossref] [PubMed]
  35. A. Michalowski, Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (Herbert Utz Verlag, 2014).
  36. D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).
  37. W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).
  38. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36, 1766–1775 (1997).
    [Crossref] [PubMed]
  39. H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
    [Crossref]

2017 (1)

2016 (4)

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016).
[Crossref] [PubMed]

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

2015 (2)

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

2014 (1)

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

2013 (2)

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

2012 (1)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

2011 (2)

D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

2010 (3)

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

2009 (1)

2008 (2)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

2007 (2)

2006 (5)

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006).
[Crossref] [PubMed]

2005 (1)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

2004 (2)

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

2003 (1)

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

2002 (2)

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
[Crossref] [PubMed]

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

1997 (1)

1966 (1)

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
[Crossref]

Akturk, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

André, Y.-B.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Andrews, M.

Anisimov, S.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Arlt, J.

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

Arnold, C. L.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Ashkenasi, D.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Bergner, K.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Bhuyan, M.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Biggs, D. S. C.

Bonanomi, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Bourayou, R.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Bulgakova, N.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Burakov, I.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Chen, Q.-D.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Cheng, W.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Chin, S.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Christodoulides, D. N.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Couairon, A.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Courvoisier, F.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Daigle, J.-F.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Dholakia, K.

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

Dudley, A.

Dudley, J.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Dudley, J. M.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Dudutis, J.

Esposito, E.

Fan, C.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Flamm, D.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Forbes, A.

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Frey, S.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Furfaro, L.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Gailevicius, D.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Gamaly, E. G.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

GeCys, P.

Gibson, G. M.

Girkin, J. M.

Giust, R.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Glezer, E. N.

Gord, J. R.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Green, D. A.

D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).

Gross, H.

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Grossmann, D.

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Guizard, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Hertel, I.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Hirao, K.

Hosseini, S.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Hsu, P. S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Husakou, A.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Itina, T.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Itoh, K.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

Jacquot, M.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Jedrkiewicz, O.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Jonavicius, T.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Jukna, V.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Kaiser, M.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Kalupka, C.

Kasparian, J.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Khilo, N.

Kim, A. M.-T.

Kleiner, J.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Kolesik, M.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Kulatilaka, W. D.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Kumkar, M.

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Lacourt, P.

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Lacourt, P.-A.

Leach, J.

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Luo, Q.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Mao, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Martin, P.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Matsumoto, M.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
[Crossref] [PubMed]

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

McConnell, G.

Méjean, G.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Meyer, R.

Michalowski, A.

A. Michalowski, Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (Herbert Utz Verlag, 2014).

Milián, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Mills, M. S.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Miri, M.-A.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Miura, K.

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Moloney, J. V.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Mysyrowicz, A.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Nishimura, N.

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Ouadghiri-Idrissi, I.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Ozeki, Y.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Padgett, M. J.

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Petite, G.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Polynkin, P.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Poprawe, R.

Qiao, C.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Quere, F.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

RaCiukaitis, G.

Raizer, Y. P.

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
[Crossref]

Rapp, L.

Reininghaus, M.

Rekštyte, S.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Rethfeld, B.

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Rodríguez, M.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Roy, S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Russo, R.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Safioui, J.

Sakakura, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref] [PubMed]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

Salmon, E.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Salut, R.

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Sauerbrey, R.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
[Crossref] [PubMed]

Scheller, M.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Sharifi, M.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Shimotsuma, Y.

Singer, W.

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Sokolowski-Tinten, K.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Stauffer, H. U.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Stoian, R.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Sun, H.-B.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Sundaram, S.

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref] [PubMed]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

Théberge, F.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Totzeck, M.

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Trapani, P. Di.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Vasilyeu, R.

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Von Der Linde, D.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Wang, H.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

Wille, H.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Winkler, S.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Wolf, J.-P.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Wöste, L.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Wright, A. J.

Xia, H.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Xie, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Xu, H.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Yoshino, T.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Yu, J.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Zhang, J.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Zhang, P.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Zhang, Y.-L.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Adv. Opt. Mater. (1)

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (4)

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Appl. Phys. B (1)

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Appl. Phys. Lett. (2)

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Bull. Astr. Soc. India (1)

D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).

J. Phys. B (1)

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Light Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

MRS Bull (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

Nano Today (1)

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Nat. Mater. (1)

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Nat. photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Opt. Commun. (2)

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. B (2)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Phys. Usp. (1)

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
[Crossref]

Rev. Sci. Instrum. (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Science (1)

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Other (4)

A. Michalowski, Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (Herbert Utz Verlag, 2014).

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Supplementary Material (4)

NameDescription
» Visualization 1       The complete reconstruction of a first-order petal-like Bessel- Gaussian beam as "flight" through presentation.
» Visualization 2       Isosurface representation of the reconstructed extinction distribution caused by focusing the first-order petal-like Bessel-Gaussian beam into the sample. The dyed surfaces represent five extinction thresholds.
» Visualization 3       Isosurface representation of the reconstructed extinction distribution caused by focusing the third-order petal-like Bessel-Gaussian beam into the sample. The dyed surfaces represent five extinction thresholds.
» Visualization 4       Isosurface representation of the reconstructed extinction distribution caused by focusing the pure third-order Bessel-Gaussian beam into the sample. The dyed surfaces represent five extinction thresholds.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the experimental setup for time-resolved tomographic microscopy. Pulses of 7.5 ps duration at 1026 nm serve as pump whereas pulses of 200 fs duration at 513 nm are used to probe the beam shaped focal region inside the glass volume spatially and temporally. The SLM-based beam shaping unit generates Bessel-Gaussian-beams from the pump-source and ensures appropriate beam orientation.
Fig. 2
Fig. 2 Central details of SLM phase masks arg [T(x, y)] to generate petal-like Bessel-Gaussian beams of first-order, lm = [−1, 1] (a), first-order rotated by θ = π/4 (b) and third-order lm = [−3, 3] (c) as well as the pure Bessel-Gaussian beam of third-order l = −3 (d).
Fig. 3
Fig. 3 Simulated propagation characteristics in vacuum of Bessel-Gaussian beams (profile cut along x-axis) of first order, petal-like (a) third order, petal-like (b) and third-order, pure (c) using the SLM phase masks shown in Figs. 2(a), (c) and (d), respectively, and subsequent 20× demagnification. The insets show the corresponding transverse beam profile at z = 150 μm. This color scheme representation is based on ideas from D. Green [36].
Fig. 4
Fig. 4 Extinction distribution at a certain propagation plane κ (x, y; z = z′) defined in coordinate system Σ and corresponding projections (optical depths) τθ (xθ, z′) for different projection angles θ in their respective rotated coordinate system Σ′. The z-axis corresponds to the beam’s propagation direction.
Fig. 5
Fig. 5 Measured optical depths τθ (xθ, z) of petal-like Bessel-Gaussian beam of first-order at five different projection angles θ = (0 . . . π) (a) – (e).
Fig. 6
Fig. 6 (a) Sinogram representation τθ (θ, xθ) for the measurements shown in Fig. 5 at z = 0. (b) Reconstruction result of transverse extinction distribution κ(x, y) at z = 0 of petal-like Bessel-Gaussian beam of first-order using inverse Radon transform of the corresponding sinogram.
Fig. 7
Fig. 7 Isosurface representation of the reconstructed extinction distribution κ(r) caused by focusing the first-order petal-like Bessel-Gaussian beam into the sample. The colored iso-contours represent five extinction thresholds relative to κmax = 0.7 μm−1.
Fig. 8
Fig. 8 Measured optical depths τθ (xθ, z) of petal-like Bessel-Gaussian beam of third-order at three different projection angles θ = 0 (a), θ = π/6 (b) and θ = π/12 (c).
Fig. 9
Fig. 9 (a) Sinogram representation τθ (θ, xθ) for the measurements shown in Fig. 8 at z = 0. (b) Reconstruction result of transverse extinction distribution κ(x, y) at z = 0 of petal-like Bessel-Gaussian beam of third-order using inverse Radon transform of the corresponding sinogram.
Fig. 10
Fig. 10 Isosurface representation of the reconstructed extinction distribution κ(r) caused by focusing the Bessel-Gaussian beam of third-order, petal-like (a) and pure third-order (b) into the sample. The colored iso-contours represent five extinctions thresholds relative to κmax = 0.4 μm−1 (a) and κmax = 0.1 μm−1 (b), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ ( x , z ) = ln [ I 0 ( x , z ) I S ( x , z ) ] .
τ θ ( x θ , z ) = 0 y max d y θ κ ( x θ cos θ y θ sin θ , x θ sin θ + y θ cos θ , z ) .

Metrics