Abstract

Robust universal quantum gates with an extremely high fidelity hold an important position in large-scale quantum computing. Here, we propose a scheme for several robust universal photonic quantum gates on a two-or three-photon system, including the controlled-NOT gate, the Toffoli gate, and the Fredkin gate, assisted by low-Q single-sided cavities. In our scheme, the quantum gates are robust against imperfect process occurring with the photons and the electron spins in diamond nitrogen-vacancy (NV) centers inside low-Q cavities. Errors due to the imperfect process are transferred to some heralding responses, which may lead to a direct recycling procedure to remedy the success probability of the quantum gates. As a result, the adverse impact of the imperfect process on fidelity is eliminated, greatly relaxing the restrictions on implementation of various quantum gates in experiments. Furthermore, the scheme is designed in a compact and heralded style, which can increase the robustness against environmental noise and local fluctuation, thus decreasing the operation time, the error probability, and the quantum resource consumption in a large-scale integrated quantum circuit. The near-unity fidelity and not-too-low efficiency with current achievable experimental techniques guarantees the feasibility of the scheme.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum computation [1] has grown to be one of the most important applications in quantum information processing (QIP) for its excellent performance in certain tasks, including factoring an n-bit integer with the famous Shor algorithm [2] and searching for data in an unsorted database with the Grover algorithm [3] or the optimal Long algorithm [4], for which no traditional counterpart can up to in practical time. The key element in quantum computation is the quantum logic gate, since any quantum task can be decomposed into a series of universal single-qubit unitary gates and two-qubit conditional gates [1, 5–7]. However, if only single- and two-qubit gates are employed, the circuit for certain quantum tasks may be extremely complicated as the number of qubits increases rapidly and therefore is hard to implement in practice [8–12]. Thus the construction of multi-qubit gates such as Toffoli gate [13] and Fredkin gate [14] gains much more attention as it can simplify the design, accelerate the operation, decrease the resource, and lower the decoherence. In addition, these two kinds of multi-qubit gates play a very important role in phase estimation [1], complex quantum algorithms [2–4], quantum error correction [15], and fault tolerant quantum circuit [16].

Tremendous efforts have been devoted to universal quantum gates in both theory and experiment with a variety of special quantum systems, such as the ion trap [17], the nuclear magnetic resonance (NMR) [18,19], quantum dots (QDs) [20–23], nitrogen-vacancy (NV) centers [24–26], superconducting circuits [27–31], photons with only polarization degree of freedom (DOF) [32, 33] and with both polarization and spatial-mode DOFs (hyperparallel photonic quantum computation) [34–40], and hybrid systems [22, 41–45]. Among these systems, the optical one is especially competitive in quantum computation since photons are the ideal quantum information carriers with many advantages, including robustness against the decoherence, easy generation, flexible manipulation and modification, and fast long-distance communication. The main obstacle in scalable quantum computation for optical systems is the lack of strong interaction between individual photons. Some strategies to tackle this problem on different platforms have been developed. A linear quantum computation scheme [46] based on linear optical elements and auxiliary photons is achieved with projective measurements and feedback operations in a probabilistic way. An optical controlled-NOT (CNOT) gate is built by resorting to the nondemolition detection using the cross-kerr nonlinearity in a near-deterministic way [47]. Some proposals [48–52] based on matter-cavity platforms exploiting the cavity quantum electrodynamics (QED) are also put forward.

Among these strategies, an NV center in diamond coupling to a single-sided cavity is attractive because of the flexibility in utilizing the photon-photon interaction, the photon-matter interaction, or the matter-matter interaction in QIP. In recent years, many extraordinary properties in NV centers have been realised in experiment, including ultralong coherence time even at room temperature [45, 53, 54], simple population via highly stable optical transition [55], high-fidelity manipulation [56–58] and read out [59, 60] by using the microwave excitation, efficient information transfer between electron and nuclear spins [61–63], second-scale storage time [64, 65], and good scalability. These properties have enabled rapid progress with NV centers in QIP such as entanglement generation and analysis [39,66–70], hyperentanglement purification and concentration [71–75], and implementation of universal quantum gates and the hyperparallel quantum computation [24, 26, 36, 37, 39, 76–79].

Usually the matter-cavity platforms are expected to work in strong coupling regime where the Rabi frequency exceeds the decay rates of both the cavity and the involved matter spin, leading to a near-deterministic input-output process which in turn results in high performance for many proposals [24, 26, 36, 37, 39, 39, 66, 69–74, 76, 77]. The decrease in coupling strength aggravates the input-output process and leads to an imperfect one, which may further deteriorate the fidelity, the scalability, or the feasibility of the schemes. Several tactics have been introduced to mitigate this problem and it turns out that the performances of the QIP in both weak and strong coupling regimes have been improved greatly. A maximally entangling gate between the atom and the photon is achieved with an error-heralding mechanism [80]. A near-deterministic controlled phase gate in optical cavity is achieved in a heralded way [81]. Some error-detected blocks [82–84] are built on quantum dot-spins assisted by single-or double-sided cavities. A quadratic fidelity improvement in controlled gates is achieved in superconducting system [85]. A robust hyperparallel quantum entangling gate [39] for a two-photon system assisted by a one-sided cavity NV-center system with the balance condition is proposed.

In this paper, we present a scheme for robust photonic quantum computation, including the construction of the CNOT gate, the Toffoli gate, and the Fredkin gate on photon qubits, workable with imperfect process in low-Q single-sided cavities. Usually, the imperfect process inevitably introduces some errors in the quantum gates. Here, some detectors are employed to herald the errors, which, together with subsequent repeat-until-success remedies, guarantees an extremely high fidelity of the quantum gates. As a result, the adverse impact of the imperfect process on fidelity is eliminated, greatly relaxing the restrictions on experiment.

2. The NV-cavity platform

The negatively charged NV center, a defect in a diamond, shown in Fig. 1a, consists of a substitutional nitrogen atom replacing a carbon atom, an adjacent vacancy and six electrons from the nitrogen atom and the three carbons that surrounds the vacancy. The ground triple state splits with 2.88 GHz between the magnetic sublevels |0〉 (|ms = 0〉) and |±〉 (|ms = ±1〉) due to the spin-spin interaction [45, 86]. The dynamics including the spin-spin interaction, the spin-orbit interaction, and C3v symmetry results in six excited states of which the specific state |A2=12(|E|+1+|E+|1) is utilized to implement a Λ-type three-level system shown in Fig. 1b [45, 86, 87]. |E±〉 are orbital states with angular momentum projection ±1 along the NV axis. According to spin-conserving optical transitions shown in Fig. 1b, the excited state |A2〉decays with an equal probability to the two ground states |+〉 and |−〉 radiating a right-circular polarized photon |R〉 and a left-circular polarized photon |L〉, respectively.

 

Fig. 1 The schematic of a diamond NV center in a cavity and the possible Λ-type energy level. Quantum information is encoded in the spin states |+〉 and |−〉. The optical transitions |+〉→|A2〉 and |−〉 → |A2〉 are driven by a right-circular polarized photon (denoted by |R〉) and a left-circular polarized photon (denoted by |L〉), respectively.

Download Full Size | PPT Slide | PDF

An NV-cavity unit, where the optical transition process of the NV center can be enhanced by coupling it to an single-sided optical cavity, can supply nonlinearity interaction between a circularly polarized light and a diamond NV center. The cavity have two frequency-degenerate but polarization-nondegenerate modes [88]. The dynamics of the system can be described by the Hamiltonian [89]

H^=ω0|AA|+ωc,La^La^L+ωc,Ra^Ra^R+g(a^Lσ^+a^Lσ^+a^Rσ^++a^Rσ^+),
where g represents the Rabi frequency. The level transitions of NV centers with σ^±=|±A2| and σ^±=|A2±| follow the selection rules, that is, a right-circular polarized photon |R〉 can only couple the transition between |A2〉 and |+〉 while a left-circular polarized photon |L〉 can only couple the other. The cavity field creation operator a^k(k=R,L) and the cavity field annihilation operator a^k creates and annihilates a photon in |k〉 state with cavity frequency ωc,k, respectively.

In the case when the input photon is coupled with the transition, the Heisenberg-Langevin equations for the NV transition operator σ^ (where the subscripts ± are neglected) with spontaneous emission rate γ and for the cavity field annihilation operator a^ driven by the single photon input field a^in and subject to the side-leakage bath s^in with strength κ and κs respectively are [20, 90]

da^dt=[i(ωcωp)+κ2+κs2]a^gσ^κa^inκss^in,dσ^dt=[i(ω0ωp)+γ2]σ^(t)gσ^za^+γσ^zN^,
where ωp, ω0, and ωc are the frequencies of the cavity, the single photon, and the transition of NV center, respectively. σ^z=σ^σ^σ^σ^. Operator N^ presents the noise bath related to the spontaneous emission of the NV center. The reflection coefficient is determined by the ratio between the effective output field and the input field. Using the standard cavity input-output relationship a^out=a^in+κa^ and the Fourier transformation, the reflection coefficient can be expressed analytically in the weak excitation limit (σ^z=1) as [20, 90]
r(ωp)=[i(ωcωp)κ2+κs2][i(ω0ωp)+γ2]+g2[i(ωcωp)+κ2+κs2][i(ω0ωp)+γ2]+g2.

In the case when the input photon is uncoupled with the transition, the coupling strength g vanishes in the reflection coefficient in Eq. (3). In the following, we add subscript j to distinguish the case where the input photon uncouples with the transition (j = 0) from the other one where the input photon couples with the transition (j = 1). Considering the system in the resonant condition ω0 = ωp = ωc, the reflection coefficients are reduced to

r1=(κsκ)γ+4g2(κs+κ)γ+4g2,r0=(κsκ)γ(κs+κ)γ.

3. Robust photonic CNOT gate

The photonic CNOT gate completes a bit-flip operation on photon 2 (the target qubit) when photon 1 (the control qubit) is in the right-circular polarization |R〉; Otherwise, nothing is done on the target qubit. The quantum circuit for implementing a robust photonic CNOT gate is shown in Fig. 2. The two photons are prepared in the polarization state |ϕp1 = α1|R1 + β1|L1 and |ϕp2 = α2|R2+ β2|L2, and the NV center is prepared in |ϕe=12(|++|). Hi(i = 1, 2, 3) and H′ are the half wave plates which achieve the rotation, |R12(|R+|L), |L12(|R|L) and the rotation, |R12(|R+|L), |L12(|L|R), respectively. Rθ modifies the shape and the amplitude of the photon passing through. PBSi (i = 1, 2) is the polarized beam splitter which transmits the right-circular polarized photon and reflects the left-circular polarized photon. D is a single-photon detector. The optical switch SWi (i = 1, 2) makes photons 1 and 2 pass through the device successively. The time interval between the two photons should be less than the decoherence time of the NV center. First, photon 1 splits into two modes at PBS1, the transmitted component of which interacts with H2, the NV center, H′ and combines with the modified mode reflected by PBS1 at PBS2. If the detector doesn’t click, the system gets into

|ψ1=α12|R1(|+|)+β12|L1(|++|).

Then, a Hadamard operation He, |+|x+=12(|++|) and ||x=12(|+|), is performed on the NV center before the optical switch allows photon 2 to enter. Upon photon 2’s presence, the system is in the state

|ψ2=(α1|R1|+β1|L1|+)|ϕp2.

Third, the second photon passes through H1, PBS1, PBS2, and H3. Provided that the detector does not click, the system becomes

|ψ3=α1|R1(α2|L2+β21|R2)|+β1|L1(α2|R2+β2|L2)|+.

Fourth, a Hadamard operation is performed on the NV center, and the state evolves into

|ψ4=|[α1|R1(α2|L2+β2|R2)+β1|L1(α2|R2+β2|L2)]+|+[α1|R1(α2|L2+β2|R2)+β1|L1(α2|R2+β2|L2)].

If the outcome of the measurement on the NV center is |−〉, the robust CNOT gate on the polarization of photons is directly achieved. Otherwise, one has to implement a phase-flip operation σz = |L〉〈L|−|R〉〈R| on the first photon.

 

Fig. 2 Schematic of the robust photonic CNOT gate completing a bit-flip operation on photon 2 (the target qubit) when photon 1 (the control qubit) is in the right-circular polarization |R〉. PBS is the circular polarization beam splitter which transmits the right-circular polarized photon and reflects the left-circular polarized photon. H and H′ are half-wave plates which achieve the rotations, |R12(|R+|L), |L12(|R|L) and the rotations, |R12(|R+|L), |L12(|L|R), respectively. Rθ modifies the shape and the intensity of the photon passing through. D is a single-photon detector. SW is an optical switch which controls photons 1 and 2 passing through the system successively.

Download Full Size | PPT Slide | PDF

4. Robust photonic Toffoli gate

The photonic Toffoli gate completes a bit-flip operation on photon 3 (the target qubit) when both photon 1 and photon 2 (the control qubits) are in the right-circular polarization |R〉; Otherwise, nothing is done on the target qubit. The quantum circuit for implementing a robust photonic Toffoli gate is shown in Fig. 3. The initial state of the photons are prepared in |ϕpi = αi |Ri + βi |LI (i = 1, 2, 3) and the initial state of the two NV centers are prepared in |ϕe=1/2(|+i+|i)(i=1,2). First, the control qubits, photon 1 and photon 2, pass through the system, i.e. photon 1 passes through PBS1, H1(Rθ1), NV1, H1 and PBS2 and photon 2 passes through PBS3, H2 (Rθ2), NV2, H2 and PBS4. If the detectors don’t click, the system, composed of the two control qubits and the two NV centers, evolves into

|φ1=[α1|R1(|+1|1)+β1|L1(|+1+|1)][α2|R2(|+2|2)+β2|L2(|+2+|2)].

Then, a Hadamard operation He is performed on the two NV centers respectively. Photon 1 and photon 2 get entangled with NV1 and NV2, respectively. It can be detailed as

|φ2=(α1|R1|1+β1|L1|+1)(α2|R2|2+β2|L2|+2).

Third, photon 3 is injected into the system and experiences a Hadamard operation at H3, the system becomes

|φ3=12(α3β3)|R3(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+1+β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2)+12(α3+β3)|L3(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+1+β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2).

Clearly, the first term in Eq. (11) will be transmitted to interact the optical elements and the NV centers while the second term in Eq. (11) will be reflected by PBS5 to the export directly. For the present, we only consider the evolution of the component |τ0, where

|τ0=|R3(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+2+β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2).

Fourth, the photon passes through H3, PBS6, H4 (Rθ3), NV1, H4 and PBS7. If the detector doesn’t click, the state evolves into

|τ1=12(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+2)(|R3+|L3)+12(β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2)(|R3+|L3).

After the photon experiences a Hadamard operation at H5, the state becomes

|τ2=(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+2)|L3+(β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2)|R3.

Fifth, the photon passes through PBS8, Rθ4(H6, NV2, H5), and PBS9. If the detector does not click, the state becomes

|τ3=(α1α2|R1|R2|1|2α1β2|R1|L2|1|+2)|L3+(β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2)|R3.

Then, after the photon passes through the H10, PBS12, H9 (Rθ6), NV1, H6, PBS11 and H8, the state changes into

|τ4=|R3(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+2+β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2).

Seventh, substituting the component |τ4 into Eq. (11). After the reflected mode from PBS5 is modified by Rθ5 and combines with the component |τ4 at PBS10 with no detector clicks, the system evolves into

|φ5=12(α3+β3)|L3(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+1+β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2)+12(α3β3)|R3(α1α2|R1|R2|1|2+α1β2|R1|L2|1|+1+β1α2|L1|R2|+1|2+β1β2|L1|L2|+1|+2).

A bit-flip operation at X and a Hadamard operation at H7 transform the system into

|φ4=α1α2|R1|R2|1|2(α3|L3+β3|R3)+α1β2|R1|L2|1|+2(α3|R3+β3|L3)+β1α2|L1|R2|+1|2(α3|R3+β3|L3)+β1β2|L1|L2|+1|+2(α3|R3+β3|L3).

Finally, a Hadamard operation is performed on the two NV centers respectively and a σ^z operation is performed on photon i (i = 1, 2) if the outcome of the measurement on the i-th NV is |−〉. The robust photonic Toffoli gate is achieved,

|φ5=α1α2|R1|R2(α3|L3+β3|R3)+α1β2|R1|L2(α3|R3+β3|L3)+β1α2|L1|R2(α3|R3+β3|L3)+β1β2|L1|L2(α3|R3+β3|L3).

 

Fig. 3 (a) Schematic of the robust photonic quantum Toffoli gate completing a bit-flip operation on photon 3 (the target qubit) when both photon 1 and photon 2 (the control qubits) are in the right-circular polarization |R〉. X achieves a bit-flip operation on the polarization of a photon passing through. (b) The order of the operations that photons interact with NV centers for Toffoli gate.

Download Full Size | PPT Slide | PDF

5. Robust photonic Fredkin gate

The photonic Fredkin gate completes a polarization swap operation between photon 2 and photon 3 (the target qubits) if photon 1 (the control qubit) is in the right-circular polarization |R〉; If the photon is in the left-circular polarization |L〉, nothing is done on the target qubits. The quantum circuit for implementing a robust photonic Fredkin gate is shown in Fig. 4. The photonic Fredkin gate can be easily achieved [91] by performing a CNOT operation with photon 3 as the control qubit and photon 2 as the target qubit before and after the photons are injected into the import of the Toffoli gate as the one depicted in Fig. 3. Photon 1, photon 3 and photon 2 are injected into the system subsequently. First, a Hadamard operation is performed on NV1 after photon 3 interacts with it. Then, photon 2 interacts with NV1, if the detectors don’t click, the system evolves into

|ϑ1=12|x+1[α3|R3(α2|L2+β2|R2)+β3|L3(α2|R2+β2|L2)]|ϕp1+12|x1[α3|R3(α2|L2+β2|R2)+β3|L3(α2|R2+β2|L2)]|ϕp1.

 

Fig. 4 (a) Schematic of the robust photonic quantum Fredkin gate completing a polarization swap operation between photon 2 and photon 3 (the target qubits) if photon 1 (the control qubit) is in right-circular polarization |R〉. X achieves a bit-flip operation on the polarization of a photon passing through. T is the robust photonic Toffoli gate depicted in Section 4. (b) The order of operation that photons interact with NV centers for Fredkin gate.

Download Full Size | PPT Slide | PDF

Third, NV1 is measured in the basis |x±〉. If NV1 is measured in |x〉, nothing is done on the photon, else, photon 3 should experience a phase operation |R〉 →−|R〉. Here, we assume NV1 is in |x+〉. Forth, the photons enter the T and experience a Toffoli gate operation, if the detectors don’t click, the state evolves into

|ϑ=α1|R1(α2α3|L2|R3+β2α3|R2|L3+α2β3|R2|R3+β2β3|L2|L3)|x++β1|L1(α2α3|L2|R3+β2α3|R2|R3+α2β3|R2|L3+β2β3|L2|L3)|x+.

Fifth, photon 3 and photon 2 pass through NV1 successively. Before and after photon 2 passes through NV1, a Hadamard operation is performed on NV1. If the detectors do not click, the system evolves into

|ϑ=|1{α1|R1(α2α3|R2|R3+β2α3|R2|L3+α2β3|L2|R3+β2β3|L2|L3)+β1|L1(α2α3|R2|R3+β2α3|L2|R3+α2β3|R2|L3+β2β3|L2|L3)}+|+1{α1|R1(α2α3|R2|R3+β2α3|R2|L3α2β3|L2|R3+β2β3|L2|L3)+β1|L1(α2α3|R2|R3β2α3|L2|R3+α2β3|R2|L3+β2β3|L2|L3)}.

If the NV1 is measured on the state |−〉, the Fredkin gate is achieved directly. If NV1 is measured on the state |+〉, a phase flip operation performed on photon 3 completes the Fredkin gate. Besides, if NV1 is measured on the |x〉 in the third step, a phase operation to achieve |−〉 → −|−〉 should be performed before photon 2 and photon 3 interact with it for the second time.

6. Discussion and summary

The efficiency of the gate can be characterized by the ratio of the output photon number n¯output to the input photon number n¯input, i.e., η=n¯output/n¯input. If a photon, |T〉 = (α|R〉 + β|L〉)|NV〉, flies to interact with an NV center unit including PBS, H(Rθ), H′, and PBS. It first splits into two channels at PBS. Then one of the channels, here we use α|R〉 to do this demonstration, encounters a Hadamard operation at H. The state becomes |T=(α2(|R+|L)+β|L)|NV. If the NV center is in |NV〉 = a|+〉 + b|−〉, the state evolves into |T=α2[(ar|++br0|)|R+(ar0|++br|)|L]+β|L|NV. Fourth, the photon experiences a Hadamard-like operation at H′, the state becomes |T=α2[(rr0)(a|+b|)|R+(r0+r)(a|++b|)|L]+β|L|NV. Another channel, β|L〉 encounters a Rθ, then the state of the system can be rewrote as |T=12(rr0)[a|+(α|R+β|L)b|(α|Rβ|L)]+12(r0+r)β|R|NV. The second term in |T〉 represents the error. The first term in |T〉 is the successful case with a probability of T=|r+r02|2. Then, the efficiencies ηC, ηT and ηF corresponding to those of our CNOT gate, Toffoli gate and Fredkin gate, respectively, can be derived as

ηC=T1,ηT=T1+T2+T12T23,ηF=T2+T12T3+T12T22T33,
where Tk=|r1kr0k2|2 represents the survival probability after the photon interacts with the k-th NV center. We evaluate the efficiencies changing vs. the cooperativity C=g(κs+κ)γ with different leak rates κs/κ in Fig. 5, which shows that the efficiencies of all three gates asymptotically approach to unity with large cooperativity C and small leak rates κs/κ. However, the increase in the side-leakage κs does lead to some inefficiency. A comparison among the three gates indicates that the fewer times the photon interacts with the NV center, the less adverse effect the side-leakage imposes and the higher the efficiency is achieved. Therefore, one can complete these gates with much better performance when a large cooperativity C and a small leakage rate κs/κ are available. With parameters gZPL = 2π × 0.3 GHz, κ = 2π × 26 GHz, γtotal = 2π × 13 MHz, γZPL = 2π × 0.4 MHz [92], the cooperativity C can approximately reach 3. With this achievable cooperativity, the efficiencies of these gates can reach ηC = 0.95, ηT = 0.91, and ηF = 0.85 when no side-leakage presents, and ηC = 0.78, ηT = 0.68, and ηF = 0.52 with a leakage rate κs/κ = 0.1 (pink solid vertical lines shown in the figure). Besides, these quantum gates can be successfully achieved in the end by some recycling procedures heralded by the clicks on the single-photon detectors, even in a low efficiency situation where the leakage rate is large and the cooperativity is not strong enough.

 

Fig. 5 The efficiencies vs. the cooperativity C=g(κsκ)γ with leak rates κs = 0 (the red solid line), κs = 0.01κ (the blue dashed line), κs = 0.05κ (the brown dash-dot line), and κs = 0.10κ (the orange dotted line):(a) the efficiency ηC of the CNOT gate, (b) the efficiency ηT of the Toffoli gate, and (c) the efficiency ηF of the Fredkin gate. The pink solid vertical line indicates the achievable cooperativity C = 3 with current technology.

Download Full Size | PPT Slide | PDF

The fidelities of these gates can in principle reach unity if both the imperfection of the linear optical elements and the dephasing of the NV centers are ignored. In our proposed scheme, all parameters characterizing the imperfect NV centers and the finite line-width of single photons have been incorporated into the global coefficient of the final state, exhibiting good robustness to the local noise and the local fluctuation. Thus, the infidelity due to the imperfect input-output procedure or the not strong enough coupling strength has been transformed into the inefficiency, which can be ultimately controlled. Moreover, the dephasing of the NV centers hardly affects the fidelities of these quantum gates since the short timescale of the input-output process (about 2 ns) [45], the subnanosecond electron-spin manipulation control [57], and the photon coherence time (about 10 ns) are much shorter than the electron-spin coherence time which exceeds 10 ms [54].

In summary, we have proposed a scheme for the robust photonic quantum computation including the CNOT gate, the Toffoli gate, and the Fredkin gate assisted by the NV-cavity platform with the practical input-output procedure. The scheme improves the fidelity of these quantum gates to unity at the cost of nominal inefficiency, showing great robustness to the imperfect input-output process and various sources of practical noise. The coupling strength does not impact the fidelity of the gates, which means the scheme can work well in all coupling strength regimes. The scheme is designed in a compact and heralded style, which greatly lessens the adverse impact of the environmental noise, the local fluctuation, and the finite line-width of the single photon on the fidelity and the efficiency. Thus, the scheme is expected to decrease the operation time, the error probability, and the quantum resource consumption in a large scale integrated quantum circuit. The near-unity fidelity and not-too-low efficiency promises that the scheme is realizable with current technology.

Funding

National Natural Science Foundation of China (11475021); National Key Basic Research Program of China (2013CB922000).

Acknowledgments

We thank H. R. Wei, B. C. Ren, and F. G. Deng for the discussion about the calculations in our scheme.

References

1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge University Press, Cambridge, U.K., 2000).

2. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997). [CrossRef]  

3. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325 (1997). [CrossRef]  

4. G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001). [CrossRef]  

5. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995). [CrossRef]   [PubMed]  

6. T. Sleator and H. Weinfurter, “Realizable universal quantum logic gate,” Phys. Rev. Lett. 74, 4087 (1995). [CrossRef]   [PubMed]  

7. Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates,” Int. J. Quant. Inform. 6, 447–462 (2008). [CrossRef]  

8. G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-NOT gates,” Phys. Rev. A 69, 010301 (2004). [CrossRef]  

9. F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A 69, 032315 (2004). [CrossRef]  

10. J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004). [CrossRef]  

11. V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004). [CrossRef]  

12. V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in two-qubit operators,” Phys. Rev. A 70, 012310 (2004). [CrossRef]  

13. Y. Y. Shi, “Both Toffoli and controlled-NOT need little help to universal quantum computing,” Quantum Inf. Comput. 3, 84–92 (2003).

14. E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982). [CrossRef]  

15. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998). [CrossRef]  

16. E. Dennis, “Toward fault-tolerant quantum computation without concatenation,” Phys. Rev. A 63, 052314 (2001). [CrossRef]  

17. L. M. Liang and C. Z. Li, “Realization of quantum SWAP gate between flying and stationary qubits,” Phys. Rev. A 72, 024303 (2005). [CrossRef]  

18. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998). [CrossRef]  

19. G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic Holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013). [CrossRef]   [PubMed]  

20. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]  

21. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009). [CrossRef]  

22. C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010). [CrossRef]  

23. H. R. Wei and F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014). [CrossRef]   [PubMed]  

24. H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013). [CrossRef]  

25. X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016). [CrossRef]  

26. X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016). [CrossRef]  

27. M. Wallquist, V. S. Shumeiko, and G. Wendin, “Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity,” Phys. Rev. B 74, 224506 (2006). [CrossRef]  

28. A. O. Niskanen, J. J. Vartiainen, and M. M. Salomaa, “Optimal multiqubit operations for Josephson charge qubits,” Phys. Rev. Lett. 90, 197901 (2003). [CrossRef]   [PubMed]  

29. M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012). [CrossRef]   [PubMed]  

30. A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012). [CrossRef]  

31. M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018). [CrossRef]  

32. H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013). [CrossRef]   [PubMed]  

33. H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015). [CrossRef]  

34. B. C. Ren, H. R. Wei, and F.G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013). [CrossRef]  

35. B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computing with coupled quantum dots,” Sci. Rep. 4, 4623 (2014). [CrossRef]  

36. B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with the dipole induced transparency in weak-coupling regime,” Phys. Rev. A 91, 032328 (2015). [CrossRef]  

37. H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24, 18619–18630 (2016). [CrossRef]   [PubMed]  

38. T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016). [CrossRef]  

39. B. C. Ren and F. G. Deng, “Robust hyperparallel photonic quantum entangling gate with cavity QED,” Opt. Express 25, 10863–10873 (2017). [CrossRef]   [PubMed]  

40. G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018). [CrossRef]   [PubMed]  

41. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013). [CrossRef]  

42. J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014). [CrossRef]  

43. T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014). [CrossRef]  

44. T. Liu, B. Q. Guo, C. S. Yu, and W. N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26, 4498–4511 (2018). [CrossRef]   [PubMed]  

45. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010). [CrossRef]   [PubMed]  

46. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]   [PubMed]  

47. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]  

48. I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005). [CrossRef]  

49. S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011). [CrossRef]   [PubMed]  

50. T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012). [CrossRef]   [PubMed]  

51. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995). [CrossRef]   [PubMed]  

52. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]   [PubMed]  

53. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009). [CrossRef]   [PubMed]  

54. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013). [CrossRef]   [PubMed]  

55. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004). [CrossRef]   [PubMed]  

56. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006). [CrossRef]  

57. G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009). [CrossRef]   [PubMed]  

58. B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010). [CrossRef]   [PubMed]  

59. L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009). [CrossRef]   [PubMed]  

60. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011). [CrossRef]   [PubMed]  

61. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007). [CrossRef]   [PubMed]  

62. L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006). [CrossRef]   [PubMed]  

63. P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).

64. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011). [CrossRef]  

65. J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013). [CrossRef]  

66. Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011). [CrossRef]  

67. L. Zhou and Y. B. Sheng, “Complete logic Bell-state analysis assisted with photonic Faraday rotation,” Phys. Rev. A , 92, 042314 (2015). [CrossRef]  

68. L. Zhou and Y. B. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,” Phys. Rev. A 90, 024301 (2014). [CrossRef]  

69. Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015). [CrossRef]  

70. X. Han, Q. Guo, A. D. Zhu, S. Zhang, and H. F. Wang, “Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators,” Opt. Express 25, 17701–17712 (2017). [CrossRef]   [PubMed]  

71. B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013). [CrossRef]  

72. G. Y. Wang, Q. Liu, and F. G. Deng, “Hyperentanglement purification for two-photon six-qubit quantum systems,” Phys. Rev. A 94, 032319 (2016). [CrossRef]  

73. F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62, 46–68 (2017). [CrossRef]  

74. Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

75. L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,” Ann. Phys. 385, 10–35 (2017). [CrossRef]  

76. M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015). [CrossRef]  

77. L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24, 15429–15445 (2016). [CrossRef]   [PubMed]  

78. J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).

79. L. Zhou and Y. B. Sheng, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017). [CrossRef]  

80. Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012). [CrossRef]   [PubMed]  

81. J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015). [CrossRef]   [PubMed]  

82. T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016). [CrossRef]  

83. G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016). [CrossRef]   [PubMed]  

84. W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017). [CrossRef]  

85. T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018). [CrossRef]  

86. A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: Theory,” Phys. Rev. B 53, 13441–13455 (1996). [CrossRef]  

87. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006). [CrossRef]  

88. Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011). [CrossRef]   [PubMed]  

89. C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013). [CrossRef]   [PubMed]  

90. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]  

91. J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855 (1996). [CrossRef]   [PubMed]  

92. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge University Press, Cambridge, U.K., 2000).
  2. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997).
    [Crossref]
  3. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325 (1997).
    [Crossref]
  4. G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
    [Crossref]
  5. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
    [Crossref] [PubMed]
  6. T. Sleator and H. Weinfurter, “Realizable universal quantum logic gate,” Phys. Rev. Lett. 74, 4087 (1995).
    [Crossref] [PubMed]
  7. Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates,” Int. J. Quant. Inform. 6, 447–462 (2008).
    [Crossref]
  8. G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-NOT gates,” Phys. Rev. A 69, 010301 (2004).
    [Crossref]
  9. F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A 69, 032315 (2004).
    [Crossref]
  10. J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004).
    [Crossref]
  11. V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
    [Crossref]
  12. V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in two-qubit operators,” Phys. Rev. A 70, 012310 (2004).
    [Crossref]
  13. Y. Y. Shi, “Both Toffoli and controlled-NOT need little help to universal quantum computing,” Quantum Inf. Comput. 3, 84–92 (2003).
  14. E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
    [Crossref]
  15. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
    [Crossref]
  16. E. Dennis, “Toward fault-tolerant quantum computation without concatenation,” Phys. Rev. A 63, 052314 (2001).
    [Crossref]
  17. L. M. Liang and C. Z. Li, “Realization of quantum SWAP gate between flying and stationary qubits,” Phys. Rev. A 72, 024303 (2005).
    [Crossref]
  18. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998).
    [Crossref]
  19. G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic Holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
    [Crossref] [PubMed]
  20. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [Crossref]
  21. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [Crossref]
  22. C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
    [Crossref]
  23. H. R. Wei and F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
    [Crossref] [PubMed]
  24. H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
    [Crossref]
  25. X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016).
    [Crossref]
  26. X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
    [Crossref]
  27. M. Wallquist, V. S. Shumeiko, and G. Wendin, “Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity,” Phys. Rev. B 74, 224506 (2006).
    [Crossref]
  28. A. O. Niskanen, J. J. Vartiainen, and M. M. Salomaa, “Optimal multiqubit operations for Josephson charge qubits,” Phys. Rev. Lett. 90, 197901 (2003).
    [Crossref] [PubMed]
  29. M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
    [Crossref] [PubMed]
  30. A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
    [Crossref]
  31. M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
    [Crossref]
  32. H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
    [Crossref] [PubMed]
  33. H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
    [Crossref]
  34. B. C. Ren, H. R. Wei, and F.G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
    [Crossref]
  35. B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computing with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
    [Crossref]
  36. B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with the dipole induced transparency in weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
    [Crossref]
  37. H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24, 18619–18630 (2016).
    [Crossref] [PubMed]
  38. T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
    [Crossref]
  39. B. C. Ren and F. G. Deng, “Robust hyperparallel photonic quantum entangling gate with cavity QED,” Opt. Express 25, 10863–10873 (2017).
    [Crossref] [PubMed]
  40. G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
    [Crossref] [PubMed]
  41. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
    [Crossref]
  42. J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
    [Crossref]
  43. T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
    [Crossref]
  44. T. Liu, B. Q. Guo, C. S. Yu, and W. N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26, 4498–4511 (2018).
    [Crossref] [PubMed]
  45. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
    [Crossref] [PubMed]
  46. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  47. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [Crossref]
  48. I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
    [Crossref]
  49. S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011).
    [Crossref] [PubMed]
  50. T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
    [Crossref] [PubMed]
  51. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
    [Crossref] [PubMed]
  52. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [Crossref] [PubMed]
  53. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
    [Crossref] [PubMed]
  54. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
    [Crossref] [PubMed]
  55. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
    [Crossref] [PubMed]
  56. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
    [Crossref]
  57. G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
    [Crossref] [PubMed]
  58. B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010).
    [Crossref] [PubMed]
  59. L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
    [Crossref] [PubMed]
  60. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
    [Crossref] [PubMed]
  61. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
    [Crossref] [PubMed]
  62. L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
    [Crossref] [PubMed]
  63. P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).
  64. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011).
    [Crossref]
  65. J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013).
    [Crossref]
  66. Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
    [Crossref]
  67. L. Zhou and Y. B. Sheng, “Complete logic Bell-state analysis assisted with photonic Faraday rotation,” Phys. Rev. A,  92, 042314 (2015).
    [Crossref]
  68. L. Zhou and Y. B. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,” Phys. Rev. A 90, 024301 (2014).
    [Crossref]
  69. Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
    [Crossref]
  70. X. Han, Q. Guo, A. D. Zhu, S. Zhang, and H. F. Wang, “Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators,” Opt. Express 25, 17701–17712 (2017).
    [Crossref] [PubMed]
  71. B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
    [Crossref]
  72. G. Y. Wang, Q. Liu, and F. G. Deng, “Hyperentanglement purification for two-photon six-qubit quantum systems,” Phys. Rev. A 94, 032319 (2016).
    [Crossref]
  73. F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62, 46–68 (2017).
    [Crossref]
  74. Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).
  75. L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,” Ann. Phys. 385, 10–35 (2017).
    [Crossref]
  76. M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015).
    [Crossref]
  77. L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24, 15429–15445 (2016).
    [Crossref] [PubMed]
  78. J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).
  79. L. Zhou and Y. B. Sheng, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
    [Crossref]
  80. Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
    [Crossref] [PubMed]
  81. J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
    [Crossref] [PubMed]
  82. T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
    [Crossref]
  83. G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
    [Crossref] [PubMed]
  84. W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
    [Crossref]
  85. T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018).
    [Crossref]
  86. A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: Theory,” Phys. Rev. B 53, 13441–13455 (1996).
    [Crossref]
  87. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
    [Crossref]
  88. Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
    [Crossref] [PubMed]
  89. C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
    [Crossref] [PubMed]
  90. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [Crossref]
  91. J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855 (1996).
    [Crossref] [PubMed]
  92. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
    [Crossref]

2018 (5)

M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
[Crossref]

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

T. Liu, B. Q. Guo, C. S. Yu, and W. N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26, 4498–4511 (2018).
[Crossref] [PubMed]

J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).

T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018).
[Crossref]

2017 (6)

L. Zhou and Y. B. Sheng, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

X. Han, Q. Guo, A. D. Zhu, S. Zhang, and H. F. Wang, “Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators,” Opt. Express 25, 17701–17712 (2017).
[Crossref] [PubMed]

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62, 46–68 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,” Ann. Phys. 385, 10–35 (2017).
[Crossref]

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

B. C. Ren and F. G. Deng, “Robust hyperparallel photonic quantum entangling gate with cavity QED,” Opt. Express 25, 10863–10873 (2017).
[Crossref] [PubMed]

2016 (8)

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24, 18619–18630 (2016).
[Crossref] [PubMed]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016).
[Crossref]

X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
[Crossref]

G. Y. Wang, Q. Liu, and F. G. Deng, “Hyperentanglement purification for two-photon six-qubit quantum systems,” Phys. Rev. A 94, 032319 (2016).
[Crossref]

L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24, 15429–15445 (2016).
[Crossref] [PubMed]

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

2015 (7)

J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015).
[Crossref]

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with the dipole induced transparency in weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

L. Zhou and Y. B. Sheng, “Complete logic Bell-state analysis assisted with photonic Faraday rotation,” Phys. Rev. A,  92, 042314 (2015).
[Crossref]

2014 (5)

L. Zhou and Y. B. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,” Phys. Rev. A 90, 024301 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computing with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
[Crossref]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
[Crossref] [PubMed]

2013 (10)

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

B. C. Ren, H. R. Wei, and F.G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic Holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013).
[Crossref]

P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
[Crossref]

2011 (5)

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011).
[Crossref] [PubMed]

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011).
[Crossref]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

2010 (3)

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

2009 (6)

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

2008 (2)

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates,” Int. J. Quant. Inform. 6, 447–462 (2008).
[Crossref]

2007 (1)

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

2006 (4)

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

M. Wallquist, V. S. Shumeiko, and G. Wendin, “Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity,” Phys. Rev. B 74, 224506 (2006).
[Crossref]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

2005 (2)

L. M. Liang and C. Z. Li, “Realization of quantum SWAP gate between flying and stationary qubits,” Phys. Rev. A 72, 024303 (2005).
[Crossref]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[Crossref]

2004 (8)

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-NOT gates,” Phys. Rev. A 69, 010301 (2004).
[Crossref]

F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A 69, 032315 (2004).
[Crossref]

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004).
[Crossref]

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in two-qubit operators,” Phys. Rev. A 70, 012310 (2004).
[Crossref]

2003 (2)

Y. Y. Shi, “Both Toffoli and controlled-NOT need little help to universal quantum computing,” Quantum Inf. Comput. 3, 84–92 (2003).

A. O. Niskanen, J. J. Vartiainen, and M. M. Salomaa, “Optimal multiqubit operations for Josephson charge qubits,” Phys. Rev. Lett. 90, 197901 (2003).
[Crossref] [PubMed]

2001 (3)

E. Dennis, “Toward fault-tolerant quantum computation without concatenation,” Phys. Rev. A 63, 052314 (2001).
[Crossref]

G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

1998 (2)

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998).
[Crossref]

1997 (2)

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997).
[Crossref]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325 (1997).
[Crossref]

1996 (2)

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855 (1996).
[Crossref] [PubMed]

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: Theory,” Phys. Rev. B 53, 13441–13455 (1996).
[Crossref]

1995 (3)

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gate,” Phys. Rev. Lett. 74, 4087 (1995).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

1982 (1)

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Ai, Q.

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016).
[Crossref]

X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
[Crossref]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015).
[Crossref]

Alkemade, P. F. A.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Alsaedi, A.

M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
[Crossref]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Aolita, L.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Ates, C.

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011).
[Crossref] [PubMed]

Awschalom, D. D.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011).
[Crossref]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010).
[Crossref] [PubMed]

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
[Crossref] [PubMed]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Barclay, P. E.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Barenco, A.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Bassett, L. C.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010).
[Crossref] [PubMed]

Baur, M.

A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
[Crossref]

Beausoleil, R. G.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Beck, M. A.

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
[Crossref]

Bennett, C. H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Bernien, H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Blok, M. S.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Bonato, C.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

Borregaard, J.

J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Bouwmeester, D.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

Buckley, B. B.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010).
[Crossref] [PubMed]

Bullock, S. S.

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in two-qubit operators,” Phys. Rev. A 70, 012310 (2004).
[Crossref]

Burkard, G.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011).
[Crossref]

Chang, D. E.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Childress, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

Chuang, I. L.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998).
[Crossref]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge University Press, Cambridge, U.K., 2000).

Cleve, R.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Cory, D. G.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

da Silva, M. P.

A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
[Crossref]

Dawson, C. M.

G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-NOT gates,” Phys. Rev. A 69, 010301 (2004).
[Crossref]

Deng, F. G.

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
[Crossref]

T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018).
[Crossref]

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62, 46–68 (2017).
[Crossref]

B. C. Ren and F. G. Deng, “Robust hyperparallel photonic quantum entangling gate with cavity QED,” Opt. Express 25, 10863–10873 (2017).
[Crossref] [PubMed]

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24, 18619–18630 (2016).
[Crossref] [PubMed]

X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016).
[Crossref]

X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
[Crossref]

G. Y. Wang, Q. Liu, and F. G. Deng, “Hyperentanglement purification for two-photon six-qubit quantum systems,” Phys. Rev. A 94, 032319 (2016).
[Crossref]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with the dipole induced transparency in weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computing with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

Deng, F.G.

B. C. Ren, H. R. Wei, and F.G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

Dennis, E.

E. Dennis, “Toward fault-tolerant quantum computation without concatenation,” Phys. Rev. A 63, 052314 (2001).
[Crossref]

DiCarlo, L.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

Ding, D.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

DiVincenzo, D. P.

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855 (1996).
[Crossref] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Dobrovitski, V. V.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
[Crossref] [PubMed]

Domhan, M.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Du, J. F.

P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

Eto, Y.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Fedorov, A.

A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
[Crossref]

Feng, G. R.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic Holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Feng, M.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Firstenberg, O.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

Fleischhauer, M.

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[Crossref]

Fredkin, E.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Friedler, I.

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[Crossref]

Frunzio, L.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

Fu, K. M. C.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Fuchs, G. D.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011).
[Crossref]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010).
[Crossref] [PubMed]

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
[Crossref] [PubMed]

Gaebel, T.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Gao, J. C.

T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018).
[Crossref]

Gershenfeld, N.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998).
[Crossref]

Girvin, S. M.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

Gorshkov, A. V.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

Greentree, A. D.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325 (1997).
[Crossref]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Gudat, J.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

Guo, B. Q.

Guo, Q.

Guo, R.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

Han, X.

Hanson, R.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Harrison, J. P.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Haupt, F.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

Havel, T. F.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

Hayat, T.

M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
[Crossref]

He, L. Y.

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Henkel, N.

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011).
[Crossref] [PubMed]

Hensen, B.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Heremans, F. J.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
[Crossref] [PubMed]

Hodges, J. S.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

Hofferberth, S.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

Hong, Z. P.

J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).

Hood, C. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Hu, C. Y.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Hua, M.

M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
[Crossref]

M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015).
[Crossref]

Isaacs, J. A.

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
[Crossref]

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Jelezko, F.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Jiao, R. Z.

Jin, G. S.

Ju, C. Y.

P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).

Kessler, E. M.

J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Kimble, H. J.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Klimov, P. V.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Komar, P.

J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Koolstra, G.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Kozuma, M.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Kubinec, M. G.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998).
[Crossref]

Kurizki, G.

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[Crossref]

Kwek, L. C.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

Lange, W.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Lenef, A.

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: Theory,” Phys. Rev. B 53, 13441–13455 (1996).
[Crossref]

Leung, D. W.

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998).
[Crossref]

Li, C. Z.

L. M. Liang and C. Z. Li, “Realization of quantum SWAP gate between flying and stationary qubits,” Phys. Rev. A 72, 024303 (2005).
[Crossref]

Li, T.

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018).
[Crossref]

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

Li, X. H.

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62, 46–68 (2017).
[Crossref]

Li, Y.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

Liang, L. M.

L. M. Liang and C. Z. Li, “Realization of quantum SWAP gate between flying and stationary qubits,” Phys. Rev. A 72, 024303 (2005).
[Crossref]

Liang, Q. Y.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

Liu, B. J.

J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).

Liu, Q.

G. Y. Wang, Q. Liu, and F. G. Deng, “Hyperentanglement purification for two-photon six-qubit quantum systems,” Phys. Rev. A 94, 032319 (2016).
[Crossref]

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

Liu, T.

Liu, Y.

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates,” Int. J. Quant. Inform. 6, 447–462 (2008).
[Crossref]

Long, G. L.

T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018).
[Crossref]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24, 18619–18630 (2016).
[Crossref] [PubMed]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic Holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates,” Int. J. Quant. Inform. 6, 447–462 (2008).
[Crossref]

G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
[Crossref]

Lukin, M. D.

J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

Maas, W.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

Mabuchi, H.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Manson, N. B.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Margolus, N.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Markham, M.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Markov, I. L.

V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in two-qubit operators,” Phys. Rev. A 70, 012310 (2004).
[Crossref]

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

Maurer, P.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Maze, J. R.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

McDermott, R.

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
[Crossref]

Meijer, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Miranowicz, A.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nemoto, K.

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Neumann, P.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge University Press, Cambridge, U.K., 2000).

Niemeyer, I.

J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013).
[Crossref]

Nigg, S. E.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

Niskanen, A. O.

A. O. Niskanen, J. J. Vartiainen, and M. M. Salomaa, “Optimal multiqubit operations for Josephson charge qubits,” Phys. Rev. Lett. 90, 197901 (2003).
[Crossref] [PubMed]

Noguchi, A.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Nori, F.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Oemrawsingh, S. S.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

Pan, J.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

Petrosyan, D.

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[Crossref]

Peyronel, T.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

Pfaff, W.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Pohl, T.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011).
[Crossref] [PubMed]

Popa, I.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Prawer, S.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Price, M. D.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

Pritchard, J. D.

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
[Crossref]

Qin, W.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Qiu, J.

X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016).
[Crossref]

X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
[Crossref]

Rabeau, J. R.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Rand, S. C.

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: Theory,” Phys. Rev. B 53, 13441–13455 (1996).
[Crossref]

Rarity, J. G.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Reed, M. D.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

Ren, B. C.

B. C. Ren and F. G. Deng, “Robust hyperparallel photonic quantum entangling gate with cavity QED,” Opt. Express 25, 10863–10873 (2017).
[Crossref] [PubMed]

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62, 46–68 (2017).
[Crossref]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with the dipole induced transparency in weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computing with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref]

B. C. Ren, H. R. Wei, and F.G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

Robledo, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

Saffman, M.

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
[Crossref]

Salomaa, M. M.

A. O. Niskanen, J. J. Vartiainen, and M. M. Salomaa, “Optimal multiqubit operations for Josephson charge qubits,” Phys. Rev. Lett. 90, 197901 (2003).
[Crossref] [PubMed]

Santori, C.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Sastry, S.

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004).
[Crossref]

Schoelkopf, R. J.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

Sellars, M. J.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Sevinçli, S.

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011).
[Crossref] [PubMed]

Shende, V. V.

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in two-qubit operators,” Phys. Rev. A 70, 012310 (2004).
[Crossref]

Sheng, Y. B.

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,” Ann. Phys. 385, 10–35 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

L. Zhou and Y. B. Sheng, “Complete logic Bell-state analysis assisted with photonic Faraday rotation,” Phys. Rev. A,  92, 042314 (2015).
[Crossref]

L. Zhou and Y. B. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,” Phys. Rev. A 90, 024301 (2014).
[Crossref]

Shi, F. Z.

P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).

Shi, Y. Y.

Y. Y. Shi, “Both Toffoli and controlled-NOT need little help to universal quantum computing,” Quantum Inf. Comput. 3, 84–92 (2003).

Shim, J. H.

J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013).
[Crossref]

Shor, P.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Shor, P. W.

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997).
[Crossref]

Shumeiko, V. S.

M. Wallquist, V. S. Shumeiko, and G. Wendin, “Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity,” Phys. Rev. B 74, 224506 (2006).
[Crossref]

Sleator, T.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gate,” Phys. Rev. Lett. 74, 4087 (1995).
[Crossref] [PubMed]

Smolin, J. A.

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855 (1996).
[Crossref] [PubMed]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Somaroo, S. S.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

Song, X. K.

X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
[Crossref]

X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016).
[Crossref]

Sørensen, A. S.

J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Srensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

Stavrias, N.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Steffen, L.

A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
[Crossref]

Sun, L.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

Sun, Y.

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates,” Int. J. Quant. Inform. 6, 447–462 (2008).
[Crossref]

Suter, D.

J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013).
[Crossref]

Taminiau, T. H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Tao, M. J.

M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
[Crossref]

M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015).
[Crossref]

Taylor, J. M.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Toffoli, T.

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

Toyli, D. M.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
[Crossref] [PubMed]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

Twamley, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Twitchen, D. J.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

Ueda, M.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Vala, J.

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004).
[Crossref]

van Exter, M. P.

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

Vartiainen, J. J.

A. O. Niskanen, J. J. Vartiainen, and M. M. Salomaa, “Optimal multiqubit operations for Josephson charge qubits,” Phys. Rev. Lett. 90, 197901 (2003).
[Crossref] [PubMed]

Vatan, F.

F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A 69, 032315 (2004).
[Crossref]

Vidal, G.

G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-NOT gates,” Phys. Rev. A 69, 010301 (2004).
[Crossref]

Vuletic, V.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

Wallquist, M.

M. Wallquist, V. S. Shumeiko, and G. Wendin, “Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity,” Phys. Rev. B 74, 224506 (2006).
[Crossref]

Wallraff, A.

A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
[Crossref]

Walsworth, R. L.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

Wang, C.

Wang, G. Y.

Wang, H. F.

Wang, L.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

Wang, P. F.

P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).

Wang, T. J.

L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24, 15429–15445 (2016).
[Crossref] [PubMed]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
[Crossref]

Wang, X.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Wei, H. R.

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24, 18619–18630 (2016).
[Crossref] [PubMed]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F.G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

Weinfurter, H.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gate,” Phys. Rev. Lett. 74, 4087 (1995).
[Crossref] [PubMed]

Wendin, G.

M. Wallquist, V. S. Shumeiko, and G. Wendin, “Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity,” Phys. Rev. B 74, 224506 (2006).
[Crossref]

Whaley, K. B.

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004).
[Crossref]

Williams, C.

F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A 69, 032315 (2004).
[Crossref]

Wittmann, C.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

Wrachtrup, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Xu, G. F.

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic Holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

Xue, Z. Y.

J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).

Yacoby, A.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

Yang, W.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Yu, C. S.

Zhang, Hao

X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
[Crossref]

Zhang, J.

J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013).
[Crossref]

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004).
[Crossref]

Zhang, M.

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

Zhang, P.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

Zhang, S.

Zhang, W. N.

Zhang, Y.

Zhong, Z.

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

Zhou, J.

J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).

Zhou, L.

L. Zhou and Y. B. Sheng, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,” Ann. Phys. 385, 10–35 (2017).
[Crossref]

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

L. Zhou and Y. B. Sheng, “Complete logic Bell-state analysis assisted with photonic Faraday rotation,” Phys. Rev. A,  92, 042314 (2015).
[Crossref]

L. Zhou and Y. B. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,” Phys. Rev. A 90, 024301 (2014).
[Crossref]

Zhu, A. D.

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

Zurek, W. H.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

Ann. Phys. (2)

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,” Ann. Phys. 385, 10–35 (2017).
[Crossref]

T. Li, J. C. Gao, F. G. Deng, and G. L. Long, “High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities,” Ann. Phys. 391, 150–160 (2018).
[Crossref]

Ann. Phys. (Berlin) (1)

M. Hua, M. J. Tao, A. Alsaedi, T. Hayat, and F. G. Deng, “Universal distributed quantum computing on superconducting qutrits with dark photons,” Ann. Phys. (Berlin) 530, 1700402 (2018).
[Crossref]

Appl. Phys. Lett. (1)

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
[Crossref]

Chin. Sci. Bull. (1)

P. F. Wang, C. Y. Ju, F. Z. Shi, and J. F. Du, “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chin. Sci. Bull. 58, 2920–2923 (2013).

Int. J. Quant. Inform. (1)

Y. Liu, G. L. Long, and Y. Sun, “Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates,” Int. J. Quant. Inform. 6, 447–462 (2008).
[Crossref]

Int. J. Theor. Phys. (1)

E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[Crossref]

Laser Phys. Lett. (2)

B. C. Ren, H. R. Wei, and F.G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

Nat. Mater. (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref] [PubMed]

Nat. Phys. (2)

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
[Crossref]

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen-vacancy centres in diamond,” Nat. Phys. 7, 789–793 (2011).
[Crossref]

Nature (7)

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by 3 meters,” Nature 497, 86–90 (2013).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578 (2011).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Srensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730 (2010).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[Crossref] [PubMed]

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature 482, 382–385 (2012).
[Crossref] [PubMed]

A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, “Implementation of a Toffoli gate with superconducting circuits,” Nature 481, 170–172 (2012).
[Crossref]

New J. Phys. (1)

X. K. Song, Hao Zhang, Q. Ai, J. Qiu, and F. G. Deng, “Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm,” New J. Phys. 18, 023001 (2016).
[Crossref]

Opt. Express (10)

H. R. Wei and F. G. Deng, “Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities,” Opt. Express 22, 593–607 (2014).
[Crossref] [PubMed]

H. R. Wei and F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[Crossref] [PubMed]

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24, 18619–18630 (2016).
[Crossref] [PubMed]

B. C. Ren and F. G. Deng, “Robust hyperparallel photonic quantum entangling gate with cavity QED,” Opt. Express 25, 10863–10873 (2017).
[Crossref] [PubMed]

G. Y. Wang, T. Li, Q. Ai, and F. G. Deng, “self-error-corrected hyperparallel photonic quantum computation working with both the polarization and the spatial-mode degrees of freedom,” Opt. Express 26, 23333–23346 (2018).
[Crossref] [PubMed]

T. Liu, B. Q. Guo, C. S. Yu, and W. N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26, 4498–4511 (2018).
[Crossref] [PubMed]

L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24, 15429–15445 (2016).
[Crossref] [PubMed]

X. Han, Q. Guo, A. D. Zhu, S. Zhang, and H. F. Wang, “Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators,” Opt. Express 25, 17701–17712 (2017).
[Crossref] [PubMed]

G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, “Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities,” Opt. Express 24, 28444–28458 (2016).
[Crossref] [PubMed]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21, 19252–19260 (2013).
[Crossref] [PubMed]

Phys. Rev. A (29)

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[Crossref]

J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate,” Phys. Rev. A 53, 2855 (1996).
[Crossref] [PubMed]

W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, “Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators,” Phys. Rev. A 96, 012315 (2017).
[Crossref]

T. Li and F. G. Deng, “Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities,” Phys. Rev. A 94, 062310 (2016).
[Crossref]

M. J. Tao, M. Hua, Q. Ai, and F. G. Deng, “Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED,” Phys. Rev. A 91, 062325 (2015).
[Crossref]

J. H. Shim, I. Niemeyer, J. Zhang, and D. Suter, “Room-temperature high-speed nuclear-spin quantum memory in diamond,” Phys. Rev. A 87, 012301 (2013).
[Crossref]

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

L. Zhou and Y. B. Sheng, “Complete logic Bell-state analysis assisted with photonic Faraday rotation,” Phys. Rev. A,  92, 042314 (2015).
[Crossref]

L. Zhou and Y. B. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,” Phys. Rev. A 90, 024301 (2014).
[Crossref]

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

G. Y. Wang, Q. Liu, and F. G. Deng, “Hyperentanglement purification for two-photon six-qubit quantum systems,” Phys. Rev. A 94, 032319 (2016).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with the dipole induced transparency in weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, “Long-range interactions and entanglement of slow single-photon pulses,” Phys. Rev. A 72, 043803 (2005).
[Crossref]

H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A 87, 022305 (2013).
[Crossref]

J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, “Hybrid atom-photon quantum gate in a superconducting microwave resonator,” Phys. Rev. A 89, 010301 (2014).
[Crossref]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90, 052310 (2014).
[Crossref]

T. Li and G. L. Long, “Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities,” Phys. Rev. A 94, 022343 (2016).
[Crossref]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88, 042323 (2013).
[Crossref]

X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, “Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics,” Phys. Rev. A 93, 052324 (2016).
[Crossref]

E. Dennis, “Toward fault-tolerant quantum computation without concatenation,” Phys. Rev. A 63, 052314 (2001).
[Crossref]

L. M. Liang and C. Z. Li, “Realization of quantum SWAP gate between flying and stationary qubits,” Phys. Rev. A 72, 024303 (2005).
[Crossref]

G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-NOT gates,” Phys. Rev. A 69, 010301 (2004).
[Crossref]

F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A 69, 032315 (2004).
[Crossref]

J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A 69, 042309 (2004).
[Crossref]

V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Phys. Rev. A 69, 062321 (2004).
[Crossref]

V. V. Shende, S. S. Bullock, and I. L. Markov, “Recognizing small-circuit structure in two-qubit operators,” Phys. Rev. A 70, 012310 (2004).
[Crossref]

G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64, 022307 (2001).
[Crossref]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457 (1995).
[Crossref] [PubMed]

Phys. Rev. B (5)

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

M. Wallquist, V. S. Shumeiko, and G. Wendin, “Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity,” Phys. Rev. B 74, 224506 (2006).
[Crossref]

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: Theory,” Phys. Rev. B 53, 13441–13455 (1996).
[Crossref]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Phys. Rev. Lett. (13)

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett. 106, 160501 (2011).
[Crossref] [PubMed]

A. O. Niskanen, J. J. Vartiainen, and M. M. Salomaa, “Optimal multiqubit operations for Josephson charge qubits,” Phys. Rev. Lett. 90, 197901 (2003).
[Crossref] [PubMed]

C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. lett. 104, 160503 (2010).
[Crossref]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325 (1997).
[Crossref]

G. R. Feng, G. F. Xu, and G. L. Long, “Experimental realization of nonadiabatic Holonomic quantum computation,” Phys. Rev. Lett. 110, 190501 (2013).
[Crossref] [PubMed]

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152 (1998).
[Crossref]

T. Sleator and H. Weinfurter, “Realizable universal quantum logic gate,” Phys. Rev. Lett. 74, 4087 (1995).
[Crossref] [PubMed]

S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett. 107, 153001 (2011).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710 (1995).
[Crossref] [PubMed]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109, 160504 (2012).
[Crossref] [PubMed]

J. Borregaard, P. Komar, E. M. Kessler, A. S. Sørensen, and M. D. Lukin, “Heralded quantum gates with integrated error detection in optical cavities,” Phys. Rev. Lett. 114, 110502 (2015).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, “Bulk quantum computation with nuclear magnetic resonance: theory and experiment,” Proc. R. Soc. Lond. A 454, 447–467 (1998).
[Crossref]

Quantum Inf. Comput. (1)

Y. Y. Shi, “Both Toffoli and controlled-NOT need little help to universal quantum computing,” Quantum Inf. Comput. 3, 84–92 (2003).

Sci. Bull. (2)

L. Zhou and Y. B. Sheng, “Distributed secure quantum machine learning,” Sci. Bull. 62, 1025–1029 (2017).
[Crossref]

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62, 46–68 (2017).
[Crossref]

Sci. China: Phys., Mech. Astron. (2)

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China: Phys., Mech. Astron. 58, 060301 (2015).

J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, “Fast holonomic quantum computation based on solid-state spins with all-optical control,” Sci. China: Phys., Mech. Astron. 61, 010312 (2018).

Sci. Rep. (1)

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computing with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref]

Science (5)

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007).
[Crossref] [PubMed]

L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314, 281–285 (2006).
[Crossref] [PubMed]

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, “Gigahertz dynamics of a strongly driven single quantum spin,” Science 326, 1520–1522 (2009).
[Crossref] [PubMed]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212–1215 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009).
[Crossref] [PubMed]

SIAM J. Sci. Stat. Comput. (1)

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997).
[Crossref]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge University Press, Cambridge, U.K., 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic of a diamond NV center in a cavity and the possible Λ-type energy level. Quantum information is encoded in the spin states |+〉 and |−〉. The optical transitions |+〉→|A2〉 and |−〉 → |A2〉 are driven by a right-circular polarized photon (denoted by |R〉) and a left-circular polarized photon (denoted by |L〉), respectively.
Fig. 2
Fig. 2 Schematic of the robust photonic CNOT gate completing a bit-flip operation on photon 2 (the target qubit) when photon 1 (the control qubit) is in the right-circular polarization |R〉. PBS is the circular polarization beam splitter which transmits the right-circular polarized photon and reflects the left-circular polarized photon. H and H′ are half-wave plates which achieve the rotations, | R 1 2 ( | R + | L ) , | L 1 2 ( | R | L ) and the rotations, | R 1 2 ( | R + | L ) , | L 1 2 ( | L | R ) , respectively. Rθ modifies the shape and the intensity of the photon passing through. D is a single-photon detector. SW is an optical switch which controls photons 1 and 2 passing through the system successively.
Fig. 3
Fig. 3 (a) Schematic of the robust photonic quantum Toffoli gate completing a bit-flip operation on photon 3 (the target qubit) when both photon 1 and photon 2 (the control qubits) are in the right-circular polarization |R〉. X achieves a bit-flip operation on the polarization of a photon passing through. (b) The order of the operations that photons interact with NV centers for Toffoli gate.
Fig. 4
Fig. 4 (a) Schematic of the robust photonic quantum Fredkin gate completing a polarization swap operation between photon 2 and photon 3 (the target qubits) if photon 1 (the control qubit) is in right-circular polarization |R〉. X achieves a bit-flip operation on the polarization of a photon passing through. T is the robust photonic Toffoli gate depicted in Section 4. (b) The order of operation that photons interact with NV centers for Fredkin gate.
Fig. 5
Fig. 5 The efficiencies vs. the cooperativity C = g ( κ s κ ) γ with leak rates κs = 0 (the red solid line), κs = 0.01κ (the blue dashed line), κs = 0.05κ (the brown dash-dot line), and κs = 0.10κ (the orange dotted line):(a) the efficiency ηC of the CNOT gate, (b) the efficiency ηT of the Toffoli gate, and (c) the efficiency ηF of the Fredkin gate. The pink solid vertical line indicates the achievable cooperativity C = 3 with current technology.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

H ^ = ω 0 | A A | + ω c , L a ^ L a ^ L + ω c , R a ^ R a ^ R + g ( a ^ L σ ^ + a ^ L σ ^ + a ^ R σ ^ + + a ^ R σ ^ + ) ,
d a ^ d t = [ i ( ω c ω p ) + κ 2 + κ s 2 ] a ^ g σ ^ κ a ^ i n κ s s ^ i n , d σ ^ d t = [ i ( ω 0 ω p ) + γ 2 ] σ ^ ( t ) g σ ^ z a ^ + γ σ ^ z N ^ ,
r ( ω p ) = [ i ( ω c ω p ) κ 2 + κ s 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2 [ i ( ω c ω p ) + κ 2 + κ s 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2 .
r 1 = ( κ s κ ) γ + 4 g 2 ( κ s + κ ) γ + 4 g 2 , r 0 = ( κ s κ ) γ ( κ s + κ ) γ .
| ψ 1 = α 1 2 | R 1 ( | + | ) + β 1 2 | L 1 ( | + + | ) .
| ψ 2 = ( α 1 | R 1 | + β 1 | L 1 | + ) | ϕ p 2 .
| ψ 3 = α 1 | R 1 ( α 2 | L 2 + β 21 | R 2 ) | + β 1 | L 1 ( α 2 | R 2 + β 2 | L 2 ) | + .
| ψ 4 = | [ α 1 | R 1 ( α 2 | L 2 + β 2 | R 2 ) + β 1 | L 1 ( α 2 | R 2 + β 2 | L 2 ) ] + | + [ α 1 | R 1 ( α 2 | L 2 + β 2 | R 2 ) + β 1 | L 1 ( α 2 | R 2 + β 2 | L 2 ) ] .
| φ 1 = [ α 1 | R 1 ( | + 1 | 1 ) + β 1 | L 1 ( | + 1 + | 1 ) ] [ α 2 | R 2 ( | + 2 | 2 ) + β 2 | L 2 ( | + 2 + | 2 ) ] .
| φ 2 = ( α 1 | R 1 | 1 + β 1 | L 1 | + 1 ) ( α 2 | R 2 | 2 + β 2 | L 2 | + 2 ) .
| φ 3 = 1 2 ( α 3 β 3 ) | R 3 ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 1 + β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) + 1 2 ( α 3 + β 3 ) | L 3 ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 1 + β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) .
| τ 0 = | R 3 ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 2 + β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) .
| τ 1 = 1 2 ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 2 ) ( | R 3 + | L 3 ) + 1 2 ( β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) ( | R 3 + | L 3 ) .
| τ 2 = ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 2 ) | L 3 + ( β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) | R 3 .
| τ 3 = ( α 1 α 2 | R 1 | R 2 | 1 | 2 α 1 β 2 | R 1 | L 2 | 1 | + 2 ) | L 3 + ( β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) | R 3 .
| τ 4 = | R 3 ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 2 + β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) .
| φ 5 = 1 2 ( α 3 + β 3 ) | L 3 ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 1 + β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) + 1 2 ( α 3 β 3 ) | R 3 ( α 1 α 2 | R 1 | R 2 | 1 | 2 + α 1 β 2 | R 1 | L 2 | 1 | + 1 + β 1 α 2 | L 1 | R 2 | + 1 | 2 + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ) .
| φ 4 = α 1 α 2 | R 1 | R 2 | 1 | 2 ( α 3 | L 3 + β 3 | R 3 ) + α 1 β 2 | R 1 | L 2 | 1 | + 2 ( α 3 | R 3 + β 3 | L 3 ) + β 1 α 2 | L 1 | R 2 | + 1 | 2 ( α 3 | R 3 + β 3 | L 3 ) + β 1 β 2 | L 1 | L 2 | + 1 | + 2 ( α 3 | R 3 + β 3 | L 3 ) .
| φ 5 = α 1 α 2 | R 1 | R 2 ( α 3 | L 3 + β 3 | R 3 ) + α 1 β 2 | R 1 | L 2 ( α 3 | R 3 + β 3 | L 3 ) + β 1 α 2 | L 1 | R 2 ( α 3 | R 3 + β 3 | L 3 ) + β 1 β 2 | L 1 | L 2 ( α 3 | R 3 + β 3 | L 3 ) .
| ϑ 1 = 1 2 | x + 1 [ α 3 | R 3 ( α 2 | L 2 + β 2 | R 2 ) + β 3 | L 3 ( α 2 | R 2 + β 2 | L 2 ) ] | ϕ p 1 + 1 2 | x 1 [ α 3 | R 3 ( α 2 | L 2 + β 2 | R 2 ) + β 3 | L 3 ( α 2 | R 2 + β 2 | L 2 ) ] | ϕ p 1 .
| ϑ = α 1 | R 1 ( α 2 α 3 | L 2 | R 3 + β 2 α 3 | R 2 | L 3 + α 2 β 3 | R 2 | R 3 + β 2 β 3 | L 2 | L 3 ) | x + + β 1 | L 1 ( α 2 α 3 | L 2 | R 3 + β 2 α 3 | R 2 | R 3 + α 2 β 3 | R 2 | L 3 + β 2 β 3 | L 2 | L 3 ) | x + .
| ϑ = | 1 { α 1 | R 1 ( α 2 α 3 | R 2 | R 3 + β 2 α 3 | R 2 | L 3 + α 2 β 3 | L 2 | R 3 + β 2 β 3 | L 2 | L 3 ) + β 1 | L 1 ( α 2 α 3 | R 2 | R 3 + β 2 α 3 | L 2 | R 3 + α 2 β 3 | R 2 | L 3 + β 2 β 3 | L 2 | L 3 ) } + | + 1 { α 1 | R 1 ( α 2 α 3 | R 2 | R 3 + β 2 α 3 | R 2 | L 3 α 2 β 3 | L 2 | R 3 + β 2 β 3 | L 2 | L 3 ) + β 1 | L 1 ( α 2 α 3 | R 2 | R 3 β 2 α 3 | L 2 | R 3 + α 2 β 3 | R 2 | L 3 + β 2 β 3 | L 2 | L 3 ) } .
η C = T 1 , η T = T 1 + T 2 + T 1 2 T 2 3 , η F = T 2 + T 1 2 T 3 + T 1 2 T 2 2 T 3 3 ,

Metrics