Abstract

In this paper, we propose a protocol for the estimation of angular displacement based upon orbital angular momentum and an SU(1,1)-SU(2) hybrid interferometer. This interferometer consists of an optical parametric amplifier, a beam splitter, and reflection mirrors; the balanced homodyne detection is used as the detection strategy. The results indicate that super-resolution and super-sensitivity can be achieved with an ideal scenario. Additionally, we study the effect of photon loss on resolution and sensitivity, and the robustness of our protocol is also discussed. Finally, the advantage of our protocol compared with an SU(1,1) protocol is demonstrated, and the merits of orbital angular momentum-enhanced protocol are summarized.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, apart from phase estimation, much attention has been paid to the estimation of angular displacement [1–7]. Angular displacement can be divided into two distinct physical scenarios: one is the rotation of polarization [3,5], and the other is the relative rotation of light axis [1,2,4,6,7]. The rotation of polarization is often caused by the birefringence effect of wave plates or the Faraday magneto-optical rotation effect of optical crystals. The rotation of the light axis corresponds to the rotation of prism or, equivalently, the rotation of the reference coordinate system [1].

For the first case, in the field of classical metrology, Malus’s Law and shot-noise limit (SNL) are two typical parametric representations. Therefore, much work has been carried out to improve such sensitivity [3,5,8,9]. It has been shown that the sensitivity can be increased by using N00N states [3] or two-mode squeezed vacuum [5] along with a quantum detection strategy (projective or parity measurement). Of the angular displacement-type measurements, including spin angular momentum (SAM) [10] and orbital angular momentum (OAM) [11], OAM performs better than SAM. This is because SAM forms a two-dimensional Hilbert space (spin up or spin down), whereas OAM space is inherently infinite dimensional.

Recently, OAM-based Heisenberg-limited estimation protocols for angular displacement have been achieved in both SU(1,1) and SU(2) interferometers [6, 7]. Owing to the difficulty in preparing exotic non-Gaussian states, such as N00N and entangled coherent states, with large photon numbers, the estimation sensitivities obtained using these quantum states are even inferior to those of high-intensity coherent and coherent pumped squeezed states [12,13]. Therefore, the estimation of angular displacement based upon the coherent states in an SU(2) interferometer has also been extensively studied with the sensitivity being limited by the SNL. On the other hand, some studies have shown that the sensitivity of a single-coherent-beam-stimulated two-mode squeezed state can surpass the SNL [14, 15]. In this paper, we propose an OAM-enhanced protocol that uses an SU(1,1)-SU(2) hybrid interferometer to achieve sub-shot-noise-limited sensitivity, that is better than both SU(1,1) and SU(2) interferometers.

The remainder of this paper is organized as follows. In Sec. 2, we briefly introduce the structure and working principle of hybrid interferometer. Then, we discuss the balanced homodyne detection with an ideal situation in Sec. 3. In Sec. 4, we study the effects of photon loss on resolution and sensitivity, additionally; we compare our protocol and the SU (1,1) protocol. Finally, we conclude our work with a summary in Sec. 5.

2. Fundamental principle and device

Consider a schematic of angular displacement estimation protocol whose main body is an SU(1,1)-SU(2) hybrid interferometer, as illustrated in Fig. 1. This interferometer can be achieved by using an optical parametric amplifier (OPA) to replace the first beam splitter (BS) in an SU(2) interferometer, or, equivalently, by using a BS to replace the second OPA in an SU(1,1) interferometer [16]. The OPA and BS are used as the entry and exit gates of the device, respectively. A coherent state is injected into the hybrid interferometer, and the beam’s OAM degree of freedom is added by two spiral phase plates (SPPs). The difference in angular displacement φ between the two Dove prisms (DPs) is estimated in our study. This difference introduces a phase difference 2ℓφ between the two modes [17]. In what follows, it is assumed that OAM quantum number is a positive number. After the above process is completed, the two modes are recombined at BS1, and any output port can be selected to implement a balanced homodyne detection.

 figure: Fig. 1

Fig. 1 A schematic diagram of the OAM-enhanced angular displacement estimation protocol. The input coherent state and pump light enter a hybrid interferometer. Two sets of spiral phase plates (SPPs) and Dove prisms (DPs) modulate the OAM and introduce angular displacement, respectively, and the output signal is detected by two detectors. The other abbreviations are defined as follows: OPA-optical parametric amplifier, RM-reflection mirror, BS-beam splitter, D-detector.

Download Full Size | PPT Slide | PDF

Because OPA increases the number of photons, the calculation of the mean photon number N in our protocol is consistent with the SU (1,1) case [18],

N=A^A^+B^B^=cosh(2g)|α|2+2sinh2g.
Where
A^=a^coshg+b^sinhg,
B^=b^coshg+a^sinhg,
the parameter g is the squeezing factor of OPA, and |α|2 is the photon number of coherent state before the OPA. Here, â () and â () are creation and annihilation operators for the input mode A (B), respectively. According to the definition of mean photon number, the corresponding SNL and Heisenberg limit (HL) for our protocol can be expressed as follows
ΔφSNL=12cosh(2g)|α|2+2sinh2g,
ΔφHL=12[cosh(2g)|α|2+2sinh2g].

One can find that the two limits are increased by a factor of 2. This indicates that our protocol offers a huge advantage over the protocols that do not utilize OAM as it is easy to prepare an OAM beam with ≤ 10 in the laboratory. Under this situation, our protocol provides an order of magnitude increase over the non-OAM protocols with the same mean photon number.

From the perspective of metrology, the devices after two DPs can be regarded as measuring devices. Thus, our protocol can also be considered as a modified protocol in terms of an SU(1,1) interferometer. In turn, the ultimate precision provided by the quantum Cramér-Rao bound (QCRB), or quantum Fisher information (QFI) of our protocol is the same as that of an SU(1,1) interferometer. The QRCB for our protocol is found to be [19],

ΔφQ=12sinh2(2g)+|α|2[1+2cosh(2g)+cosh(4g)].

3. Balanced homodyne detection

In this section, we analyze the balanced homodyne detection. This is a preeminent method for quantum noise detection by detecting phase quadrature or amplitude quadrature. It can also be used to achieve parity detection for Gaussian states [20]. Take port A as an example, the detection operators have the following forms

X^A=a^out+a^out,
P^A=i(a^outa^out).
Considering X quadrature, we can obtain the expectation value of the X quadrature,
X^A=2|α|[cos(θ+2φ)coshg+cosθsinhg],
by using the transformation relationships
a^out=12[(ei2φa^+b^)ν+(a^+ei2φb^)μ],
a^out=12[(ei2φa^+b^)ν+(a^+ei2φb^)μ].
Where ν = cosh g, μ = sinh g, and θ is the phase angle of input coherent state in the phase space. Equations (10) and (11) can be derived from the transformation matrices in Appendix A.

We plot the output signal 〈A〉 of balanced homodyne detection with φ and θ in Fig. 2. One can see that the signal changes times from −π/2 to π/2, i.e., our protocol has 2-fold super-resolution characteristic in every period (2π), similar to the N00N states. Furthermore, the signal waveform is also modulated by angle θ. In terms of definition of visibility [21],

V=XAmaxXAmin|XAmax|+|XAmin|,
we can find that our protocol has 100% visibility, indicating that θ has no effect on the visibility of signal, but merely moves the position of extremums.

 figure: Fig. 2

Fig. 2 Output signal with balanced homodyne detection as a function of angular displacement φ (radians) and phase angle θ (radians) in the case of g = 1, = 3, and |α|2 = 10.

Download Full Size | PPT Slide | PDF

Another important evaluation criterion is the sensitivity of parameter estimation. Using Eqs. (10) and (11), the expectation value of the square of X quadrature can be written as

X^A2=cos(2θ+4φ)cosh2g|α|2+cos(2θ)sinh2g|α|2+cos(2θ+2φ)sinh(2g)|α|2+[cosh(2g)+cos(2φ)sinh(2g)](|α|2+1).
On the basis of Eqs. (9) and (13), we obtain the fluctuation of X quadrature,
ΔX^A=X^A2X^A2=cosh(2g)+sinh(2g)cos(2φ).
Using error propagation, we can calculate the sensitivity of protocol,
Δφ=ΔX^A|X^A/φ|=cosh(2g)+sinh(2g)cos(2φ)22coshg|α|sin(θ+2φ).

To intuitively observe the behavior of sensitivity, in Fig. 3 the variation in sensitivity on balanced homodyne detection with φ is shown in Fig. 3. The results indicate that the sensitivity of balanced homodyne detection can outperform the SNL and achieve sub-shot-noise-limited sensitivity. In addition, compared with other quantum strategies, the variation in sensitivity curve is slow, indicating that quasi-optimal sensitivity can be obtained in the vicinity of optimal sensitivity. However, the optimal sensitivity in this strategy should satisfy the phase matching condition,

θ+2φ=kπ+π/2
with an arbitrary integer k.

 figure: Fig. 3

Fig. 3 Sensitivity with balanced homodyne detection as a function of angular displacement φ (radians) in the case of g = 2, = 1 and |α|2 = 100. Y and X are the optimal sensitivity and the value of angular displacement φ corresponding to the optimal sensitivity, respectively. The sensitivity sits at its minimum Δφ = 0.001275 when φ = π/2.

Download Full Size | PPT Slide | PDF

Figure 4 shows the effect of θ on the sensitivity. For simplicity, only the regions where the sensitivity is better than the SNL (sub-shot-noise-limited regions) are plotted. The results show 2 optimal positions for sensitivity in our protocol. From Eq. (15), one can find that the optimal sensitivity appears at 2ℓφ = (2k + 1)π and 2ℓφ + θ = + π/2. Thus, the optimum combination of solution is (2k + 1)π/2 and θ = ±π/2.

 figure: Fig. 4

Fig. 4 Sensitivity with balanced homodyne detection as a function of angular displacement φ (radians) and phase angle θ (radians) in the case of g = 1, = 3, and |α|2 = 10. The color bar on the right indicates the corresponding value of the sensitivity.

Download Full Size | PPT Slide | PDF

To quantitatively analyze the degree of super-sensitivity in our protocol, we plot Fig. 5 with our sensitivity and QCRB. We can find that the sensitivity saturates the QCRB with respect to a large g. Additionally, with the increase in |α|2, the sensitivity approaches QCRB quickly. This trend can be observed from the pointed arrow in Fig. 5. Hence, |α|2 ≫ 1 and sinh2 g ≫ 1 are two main conditions for saturating the QCRB. This also indicates that balanced homodyne detection is a locally optimal strategy for our protocol. The globally optimal strategies work optimally for any φ, and the truncated SU(1,1) interferometers may further optimize our detection strategy [22,23]. For simplifying the discussion here, we leave it for a future work.

 figure: Fig. 5

Fig. 5 Optimal sensitivity with balanced homodyne detection (BHD) as a function of squeezing factor in the case of = 1 and different values of |α|2. The arrow shows the intersection points of sensitivities and QCRBs.

Download Full Size | PPT Slide | PDF

For the case of |α|2 ≫ 1 and sinh2 g ≫ 1, we also provide a theoretical proof that the optimal sensitivity of our protocol always saturates the QCRB, i.e., the equivalence between the minimum of Eq. (15) and Eq. (6), see Appendix B for details.

4. Analysis and discussion of realistic factor

In this section, the effect of a common realistic factor, photon loss, on the sensitivity of our protocol is evaluated. A simplified illustration of photon loss is shown in Fig. 6. Suppose that the loss is linear and occurs after the two DPs. Such a linear loss is usually simulated by placing two virtual beam splitters with arbitrary transmissivity in two arms of interferometer [24]. The lost photons are reflected in the environment via the virtual beam splitters. In the following derivation, we assume that the transmissivity of the two virtual beam splitters is T. As the lost photons enter the environment, the number of modes considered increases from two to four, i.e., two environment ports are added. Hence, the transmission matrices change from four-by-four to eight-by-eight; the details are provided in Appendix A. According to the transformation relationships, we can obtain the resolution and sensitivity.

 figure: Fig. 6

Fig. 6 A simplified model for photon loss. Two virtual BSs are used to simulate photon loss. A and B are the operators for two vacuums.

Download Full Size | PPT Slide | PDF

Under the situation when the system suffers from photon loss, the expectation value of X quadrature is calculated as follows:

X^AL=TX^A,
followed by its square,
X^A2L=TX^A2+(1T).
Then, the sensitivity is given by
ΔφL=T[cosh(2g)+sinh(2g)cos(2φ)1]+122Tcoshg|αsin(θ+2φ)|.

Equations (12) and (19) show that the visibility is not affected by photon loss, i.e., 100% visibility can be maintained. The robustness of balanced homodyne detection is exhibited by no change in the signal. Figure 7 shows the sensitivity of homodyne detection with photon loss. One can find that our protocol is robust, for it can resist 38% photon loss in the case of g = 2, = 1, and |α|2 = 100. Moreover, a merit of this protocol is that the change in sensitivity curve is still slow.

 figure: Fig. 7

Fig. 7 Sensitivity with balanced homodyne detection (BHD) as a function of angular displacement φ (radians) in the case of g = 2, = 1, |α|2 = 100 and 38% loss in transmission process.

Download Full Size | PPT Slide | PDF

More generally, Fig. 8 shows the relationship between maximum allowable loss and g with different values of |α|2. It can be seen that the maximum allowable loss has an optimal position with respect to fixed |α|2, and the optimal position moves to the right with the increase in |α|2 (arrow direction). In addition, with increasing |α|2, the maximum allowable loss also increases and gradually becomes saturated. A significant phenomenon is that irrespective of the value of |α|2, the maximum allowable loss ultimately approaches a fixed value when g reaches a threshold value. Overall, the universal conclusion is that our protocol has excellent robustness and can effectively resist photon loss (∼30–40%).

 figure: Fig. 8

Fig. 8 Maximum allowable loss with balanced homodyne detection as a function of squeezing factor in the case of l = 1 and different mean photon numbers of coherent state. The arrow shows the maxima of allowable loss curves.

Download Full Size | PPT Slide | PDF

For an SU(2) interferometer fed by a coherent state, its optimal sensitivity is the SNL. This is inferior to our protocol, sub-shot-noise-limited optimal sensitivity. It should be noted that the same mean photon number is a prerequisite for this conclusion, namely, the mean photon number of coherent state in the SU(2) interferometer is equal to the photon number in Eq. (1). Here, a brief discussion for the advantage of our protocol over SU(1,1) interferometer is provided, also with the same mean photon number [14]. For the case of lossless balanced homodyne detection, the optimal sensitivity of Eq. (15) can be rewritten as

Δφmin14coshgcosh(2g)|α|
with assumptions, |α|2 ≫ 1 and sinh2g ≫ 1. The details of proof are provided in Appendix B. The sensitivity of an SU(1,1) interferometer with coherent and vacuum states as the inputs is given by [14]: ΔφSU(1,1)=1/NOPA(NOPA+2)|α| with NOPA = 2 sinh2 g. From Eq. (20), it can be inferred that even without OAM’s participation, i.e., by removing the factor 1/2 arising from OAM, the sensitivity of our protocol is greater than the SU(1,1) protocol by a factor of 2 under the condition that sinh2g ≃ cosh2g = G with a large g and |α|2 ≫ 1. For a coherent state input, our protocol achieves the QCRB that SU(1,1) wants to achieve without success. Then, the addition of OAM significantly increases the sensitivity. Overall, for a regular SU(1,1) without using OAM, its sensitivity equals 1/2 of the sensitivity of a regular non-OAM hybrid interferometer, also, 1/22 of the sensitivity of an OAM-enhanced hybrid interferometer. The enhancement factor 2 originates from the quantum effect in the OPA, whereas the enhancement factor 2 is a classical effect that originates from OAM.

Finally, the merits of OAM are summarized. It plays three significant roles in our protocol. (1) OAM acts as the linear amplifier for angular displacement to increase the estimation sensitivity in a single trial. (2) OAM extends the super-resolved output signal from a single peak to a 2-fold peak. (3) The multiple optimal positions in sensitivity provided by OAM shorten the scanning range to 1/2.

5. Conclusion

In summary, we present a protocol for estimating angular displacement using an OAM beam and a hybrid interferometer. The balanced homodyne detection is studied, and the results show that both super-resolution and super-sensitivity can be achieved in a lossless scenario. The output signal has 100% visibility, and we demonstrate that a sub-shot-noise-limited optimal sensitivity is reachable. The optimal sensitivity is saturated by QCRB when both |α|2 and sinh2 g are much larger than 1. Additionally, the effects of photon loss on resolution and sensitivity are evaluated. The visibility is maintained in the loss scenarios, and our protocol can resist photon loss of more than 30%. We discuss the advantage of our protocol compared to the SU(1,1) protocol, and the results show that the sensitivity of our protocol is improved by a factor of 2. Compared with the non-OAM protocols, the enhanced effect arising from OAM is reflected by a factor of 2/2 in sensitivity. Finally, the merits of OAM are briefly summarized.

Appendix

A. Transformation matrices of optical processes in the phase space

In this part of Appendix, we provide the transformation matrices of optical processes in the phase space. The matrices for OPA, angular displacement and BS are given by

UOPA=(coshg0sinhg00coshg0sinhgsinhg0coshg00sinhg0coshg),
UAD=(cos(2φ)sin(2φ)00sin(2φ)cos(2φ)0000100001),
UBS=12(1010010110100101).

For the situation of photon loss, the transformation matrices transforms from four-by-four to eight-by-eight, an increase in dimensionality because of the introduction of the environment modes. The specific forms are as follows:

U˜OPA=UOPAI(4),
U˜AD=UADI(4),
U˜VBS=(TI(4)1TI(4)1TI(4)TI(4))8×8,
U˜BS=UBSI(4).
Where I(4) is a four-by-four identity matrix, and ⊕ denotes direct sum.

B. The proof of equivalence between optimal sensitivity of Eq. (15) and QCRB (Eq. (6)), and the proof process of Eq. (20)

In this section, we start off with the equivalence between optimal sensitivity (Eq. (15)) and QCRB (Eq. (6)), i.e., we only need to give the proof of ΔφminφQ = 1. When |α|2 ≫ 1, we have

ΔφminΔφQ=cosh(2g)sinh(2g)2coshg1+2cosh(2g)+cosh(4g)=cosh(2g)sinh(2g)coshgcosh(g)[1+cosh(2g)]1+cosh(2g)2coshg=1
with 2 cosh(2g) ≃ e2g ≃ 2 sinh (2g) and e−2g ≃ 0 for a large g.

Finally, we consider Eq. (20) with the same approximation, the proof is given by

Δφmin=cosh(2g)sinh(2g)22coshg|α|=122e2gcoshg|α|14coshgcosh(2g)|α|.

Funding

National Natural Science Foundation of China (61701139).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013). [CrossRef]  

2. J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998). [CrossRef]  

3. L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017). [CrossRef]  

4. O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014). [CrossRef]  

5. J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017). [CrossRef]   [PubMed]  

6. A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83, 053829 (2011). [CrossRef]  

7. J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017). [CrossRef]  

8. W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014). [CrossRef]   [PubMed]  

9. F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012). [CrossRef]  

10. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]  

11. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]   [PubMed]  

12. B. M. Escher, R. L. D. M. Filho, and L. Davidovich, “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology,” Nat. Phys. 7, 406–411 (2011). [CrossRef]  

13. M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interferometry using a laser power source,” Phys. Rev. Lett. 111, 173601 (2013). [CrossRef]   [PubMed]  

14. Z. Y. Ou, “Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer,” Phys. Rev. A 85, 023815 (2012). [CrossRef]  

15. A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012). [CrossRef]  

16. J. Kong, Z. Y. Ou, and W. Zhang, “Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter,” Phys. Rev. A 87, 023825 (2013). [CrossRef]  

17. M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011). [CrossRef]  

18. X. Ma, C. You, S. Adhikari, E. S. Matekole, R. T. Glasser, H. Lee, and J. P. Dowling, “Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states,” Opt. Express 26, 18492–18504 (2018). [CrossRef]   [PubMed]  

19. C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements,” Phys. Rev. A 93, 023810 (2016). [CrossRef]  

20. W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010). [CrossRef]  

21. J. P. Dowling, “Quantum optical metrology-the lowdown on high-N00N states,” Contemp. Phys 49, 125–143 (2008). [CrossRef]  

22. P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, “Optimized phase sensing in a truncated su(1,1) interferometer,” Opt. Express 26, 391–401 (2018). [CrossRef]   [PubMed]  

23. B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017). [CrossRef]  

24. D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
    [Crossref]
  2. J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
    [Crossref]
  3. L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
    [Crossref]
  4. O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014).
    [Crossref]
  5. J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
    [Crossref] [PubMed]
  6. A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83, 053829 (2011).
    [Crossref]
  7. J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
    [Crossref]
  8. W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014).
    [Crossref] [PubMed]
  9. F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
    [Crossref]
  10. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [Crossref]
  11. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  12. B. M. Escher, R. L. D. M. Filho, and L. Davidovich, “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology,” Nat. Phys. 7, 406–411 (2011).
    [Crossref]
  13. M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interferometry using a laser power source,” Phys. Rev. Lett. 111, 173601 (2013).
    [Crossref] [PubMed]
  14. Z. Y. Ou, “Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer,” Phys. Rev. A 85, 023815 (2012).
    [Crossref]
  15. A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
    [Crossref]
  16. J. Kong, Z. Y. Ou, and W. Zhang, “Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter,” Phys. Rev. A 87, 023825 (2013).
    [Crossref]
  17. M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
    [Crossref]
  18. X. Ma, C. You, S. Adhikari, E. S. Matekole, R. T. Glasser, H. Lee, and J. P. Dowling, “Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states,” Opt. Express 26, 18492–18504 (2018).
    [Crossref] [PubMed]
  19. C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements,” Phys. Rev. A 93, 023810 (2016).
    [Crossref]
  20. W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
    [Crossref]
  21. J. P. Dowling, “Quantum optical metrology-the lowdown on high-N00N states,” Contemp. Phys 49, 125–143 (2008).
    [Crossref]
  22. P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, “Optimized phase sensing in a truncated su(1,1) interferometer,” Opt. Express 26, 391–401 (2018).
    [Crossref] [PubMed]
  23. B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
    [Crossref]
  24. D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014).
    [Crossref]

2018 (2)

2017 (4)

B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
[Crossref]

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
[Crossref] [PubMed]

2016 (1)

C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements,” Phys. Rev. A 93, 023810 (2016).
[Crossref]

2014 (3)

D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014).
[Crossref]

W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014).
[Crossref] [PubMed]

O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014).
[Crossref]

2013 (3)

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interferometry using a laser power source,” Phys. Rev. Lett. 111, 173601 (2013).
[Crossref] [PubMed]

J. Kong, Z. Y. Ou, and W. Zhang, “Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter,” Phys. Rev. A 87, 023825 (2013).
[Crossref]

2012 (3)

Z. Y. Ou, “Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer,” Phys. Rev. A 85, 023815 (2012).
[Crossref]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
[Crossref]

2011 (3)

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[Crossref]

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83, 053829 (2011).
[Crossref]

B. M. Escher, R. L. D. M. Filho, and L. Davidovich, “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology,” Nat. Phys. 7, 406–411 (2011).
[Crossref]

2010 (1)

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
[Crossref]

2008 (1)

J. P. Dowling, “Quantum optical metrology-the lowdown on high-N00N states,” Contemp. Phys 49, 125–143 (2008).
[Crossref]

1998 (1)

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Adhikari, S.

Agarwal, G. S.

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83, 053829 (2011).
[Crossref]

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
[Crossref]

Allen, L.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Anderson, B. E.

P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, “Optimized phase sensing in a truncated su(1,1) interferometer,” Opt. Express 26, 391–401 (2018).
[Crossref] [PubMed]

B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
[Crossref]

Anisimov, P. M.

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
[Crossref]

Aolita, L.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Beduini, F. A.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Boyd, R. W.

O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014).
[Crossref]

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83, 053829 (2011).
[Crossref]

Caves, C. M.

M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interferometry using a laser power source,” Phys. Rev. Lett. 111, 173601 (2013).
[Crossref] [PubMed]

Cen, L.

J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
[Crossref] [PubMed]

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

Chen, L.

W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014).
[Crossref] [PubMed]

Corzo Trejo, N. V.

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

Courtial, J.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[Crossref]

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[Crossref]

D’ambrosio, V.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Davidovich, L.

B. M. Escher, R. L. D. M. Filho, and L. Davidovich, “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology,” Nat. Phys. 7, 406–411 (2011).
[Crossref]

Del Re, L.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Dholakia, K.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[Crossref]

Dowling, J. P.

X. Ma, C. You, S. Adhikari, E. S. Matekole, R. T. Glasser, H. Lee, and J. P. Dowling, “Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states,” Opt. Express 26, 18492–18504 (2018).
[Crossref] [PubMed]

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
[Crossref]

J. P. Dowling, “Quantum optical metrology-the lowdown on high-N00N states,” Contemp. Phys 49, 125–143 (2008).
[Crossref]

Dudley, A.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[Crossref]

Escher, B. M.

B. M. Escher, R. L. D. M. Filho, and L. Davidovich, “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology,” Nat. Phys. 7, 406–411 (2011).
[Crossref]

Filho, R. L. D. M.

B. M. Escher, R. L. D. M. Filho, and L. Davidovich, “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology,” Nat. Phys. 7, 406–411 (2011).
[Crossref]

Forbes, A.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[Crossref]

Gao, H.

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

Glasser, R. T.

Godbout, N.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
[Crossref]

Gupta, P.

P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, “Optimized phase sensing in a truncated su(1,1) interferometer,” Opt. Express 26, 391–401 (2018).
[Crossref] [PubMed]

B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
[Crossref]

Jha, A. K.

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83, 053829 (2011).
[Crossref]

Jones, K. M.

P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, “Optimized phase sensing in a truncated su(1,1) interferometer,” Opt. Express 26, 391–401 (2018).
[Crossref] [PubMed]

B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
[Crossref]

Kong, J.

J. Kong, Z. Y. Ou, and W. Zhang, “Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter,” Phys. Rev. A 87, 023825 (2013).
[Crossref]

Kwek, L. C.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Lang, M. D.

M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interferometry using a laser power source,” Phys. Rev. Lett. 111, 173601 (2013).
[Crossref] [PubMed]

Lavery, M. P. J.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[Crossref]

Lee, H.

X. Ma, C. You, S. Adhikari, E. S. Matekole, R. T. Glasser, H. Lee, and J. P. Dowling, “Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states,” Opt. Express 26, 18492–18504 (2018).
[Crossref] [PubMed]

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
[Crossref]

Lett, P. D.

P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, “Optimized phase sensing in a truncated su(1,1) interferometer,” Opt. Express 26, 391–401 (2018).
[Crossref] [PubMed]

B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
[Crossref]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

Li, D.

D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014).
[Crossref]

Li, F.

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

Li, S.

J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
[Crossref] [PubMed]

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

Li, Y.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Liu, J.

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

Liu, W.

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

Ma, X.

Magaña Loaiza, O. S.

O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014).
[Crossref]

Marino, A. M.

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

Marrucci, L.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Matekole, E. S.

Mirhosseini, M.

O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014).
[Crossref]

Mitchell, M. W.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
[Crossref]

Olivares, S.

C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements,” Phys. Rev. A 93, 023810 (2016).
[Crossref]

Ou, Z. Y.

D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014).
[Crossref]

J. Kong, Z. Y. Ou, and W. Zhang, “Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter,” Phys. Rev. A 87, 023825 (2013).
[Crossref]

Z. Y. Ou, “Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer,” Phys. Rev. A 85, 023815 (2012).
[Crossref]

Padgett, M. J.

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[Crossref]

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[Crossref]

Paris, M. G. A.

C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements,” Phys. Rev. A 93, 023810 (2016).
[Crossref]

Plick, W. N.

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
[Crossref]

Qi, Q.

W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014).
[Crossref] [PubMed]

Robertson, D. A.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[Crossref]

Rodenburg, B.

O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014).
[Crossref]

Schmittberger, B. L.

P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, “Optimized phase sensing in a truncated su(1,1) interferometer,” Opt. Express 26, 391–401 (2018).
[Crossref] [PubMed]

B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
[Crossref]

Sciarrino, F.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Slussarenko, S.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Spagnolo, N.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Sparaciari, C.

C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements,” Phys. Rev. A 93, 023810 (2016).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Sun, Y.

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

Vitelli, C.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
[Crossref]

Walborn, S. P.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Wang, F.

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
[Crossref] [PubMed]

Wei, D.

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Wolfgramm, F.

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
[Crossref]

Yan, L.

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

You, C.

Yu, M.

Yuan, C.-H.

D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014).
[Crossref]

Zhang, J.

J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
[Crossref] [PubMed]

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

Zhang, W.

W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014).
[Crossref] [PubMed]

D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014).
[Crossref]

J. Kong, Z. Y. Ou, and W. Zhang, “Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter,” Phys. Rev. A 87, 023825 (2013).
[Crossref]

Zhang, Z.

J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
[Crossref] [PubMed]

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

Zhao, Y.

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

J. Zhang, Z. Zhang, L. Cen, M. Yu, S. Li, F. Wang, and Y. Zhao, “Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state,” Opt. Express 25, 24907–24916 (2017).
[Crossref] [PubMed]

Zhou, J.

W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014).
[Crossref] [PubMed]

Contemp. Phys (1)

J. P. Dowling, “Quantum optical metrology-the lowdown on high-N00N states,” Contemp. Phys 49, 125–143 (2008).
[Crossref]

Nat. Commun. (1)

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4, 2432 (2013).
[Crossref]

Nat. Photon. (1)

F. Wolfgramm, C. Vitelli, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Entanglement-enhanced probing of a delicate material system,” Nat. Photon. 7, 28–32 (2012).
[Crossref]

Nat. Phys. (1)

B. M. Escher, R. L. D. M. Filho, and L. Davidovich, “General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology,” Nat. Phys. 7, 406–411 (2011).
[Crossref]

New J. Phys. (3)

M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011).
[Crossref]

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optical metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010).
[Crossref]

D. Li, C.-H. Yuan, Z. Y. Ou, and W. Zhang, “The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light,” New J. Phys. 16, 073020 (2014).
[Crossref]

Opt. Express (3)

Photonics Res. (1)

J. Liu, W. Liu, S. Li, D. Wei, H. Gao, and F. Li, “Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1, 1) interferometers,” Photonics Res. 5, 617–622 (2017).
[Crossref]

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Phys. Rev. A (8)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements,” Phys. Rev. A 93, 023810 (2016).
[Crossref]

Z. Y. Ou, “Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer,” Phys. Rev. A 85, 023815 (2012).
[Crossref]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an SU(1,1) interferometer,” Phys. Rev. A 86, 023844 (2012).
[Crossref]

J. Kong, Z. Y. Ou, and W. Zhang, “Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter,” Phys. Rev. A 87, 023825 (2013).
[Crossref]

A. K. Jha, G. S. Agarwal, and R. W. Boyd, “Supersensitive measurement of angular displacements using entangled photons,” Phys. Rev. A 83, 053829 (2011).
[Crossref]

L. Cen, Z. Zhang, J. Zhang, S. Li, Y. Sun, L. Yan, Y. Zhao, and F. Wang, “State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting,” Phys. Rev. A 96, 053846 (2017).
[Crossref]

B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers,” Phys. Rev. A 95, 063843 (2017).
[Crossref]

Phys. Rev. Lett. (4)

O. S. Magaña Loaiza, M. Mirhosseini, B. Rodenburg, and R. W. Boyd, “Amplification of angular rotations using weak measurements,” Phys. Rev. Lett. 112, 200401 (2014).
[Crossref]

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[Crossref]

W. Zhang, Q. Qi, J. Zhou, and L. Chen, “Mimicking faraday rotation to sort the orbital angular momentum of light,” Phys. Rev. Lett. 112, 153601 (2014).
[Crossref] [PubMed]

M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interferometry using a laser power source,” Phys. Rev. Lett. 111, 173601 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic diagram of the OAM-enhanced angular displacement estimation protocol. The input coherent state and pump light enter a hybrid interferometer. Two sets of spiral phase plates (SPPs) and Dove prisms (DPs) modulate the OAM and introduce angular displacement, respectively, and the output signal is detected by two detectors. The other abbreviations are defined as follows: OPA-optical parametric amplifier, RM-reflection mirror, BS-beam splitter, D-detector.
Fig. 2
Fig. 2 Output signal with balanced homodyne detection as a function of angular displacement φ (radians) and phase angle θ (radians) in the case of g = 1, = 3, and |α|2 = 10.
Fig. 3
Fig. 3 Sensitivity with balanced homodyne detection as a function of angular displacement φ (radians) in the case of g = 2, = 1 and |α|2 = 100. Y and X are the optimal sensitivity and the value of angular displacement φ corresponding to the optimal sensitivity, respectively. The sensitivity sits at its minimum Δφ = 0.001275 when φ = π/2.
Fig. 4
Fig. 4 Sensitivity with balanced homodyne detection as a function of angular displacement φ (radians) and phase angle θ (radians) in the case of g = 1, = 3, and |α|2 = 10. The color bar on the right indicates the corresponding value of the sensitivity.
Fig. 5
Fig. 5 Optimal sensitivity with balanced homodyne detection (BHD) as a function of squeezing factor in the case of = 1 and different values of |α|2. The arrow shows the intersection points of sensitivities and QCRBs.
Fig. 6
Fig. 6 A simplified model for photon loss. Two virtual BSs are used to simulate photon loss. A and B are the operators for two vacuums.
Fig. 7
Fig. 7 Sensitivity with balanced homodyne detection (BHD) as a function of angular displacement φ (radians) in the case of g = 2, = 1, |α|2 = 100 and 38% loss in transmission process.
Fig. 8
Fig. 8 Maximum allowable loss with balanced homodyne detection as a function of squeezing factor in the case of l = 1 and different mean photon numbers of coherent state. The arrow shows the maxima of allowable loss curves.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

N = A ^ A ^ + B ^ B ^ = cosh ( 2 g ) | α | 2 + 2 sinh 2 g .
A ^ = a ^ cosh g + b ^ sinh g ,
B ^ = b ^ cosh g + a ^ sinh g ,
Δ φ SNL = 1 2 cosh ( 2 g ) | α | 2 + 2 sinh 2 g ,
Δ φ HL = 1 2 [ cosh ( 2 g ) | α | 2 + 2 sinh 2 g ] .
Δ φ Q = 1 2 sinh 2 ( 2 g ) + | α | 2 [ 1 + 2 cosh ( 2 g ) + cosh ( 4 g ) ] .
X ^ A = a ^ out + a ^ out ,
P ^ A = i ( a ^ out a ^ out ) .
X ^ A = 2 | α | [ cos ( θ + 2 φ ) cosh g + cos θ sinh g ] ,
a ^ out = 1 2 [ ( e i 2 φ a ^ + b ^ ) ν + ( a ^ + e i 2 φ b ^ ) μ ] ,
a ^ out = 1 2 [ ( e i 2 φ a ^ + b ^ ) ν + ( a ^ + e i 2 φ b ^ ) μ ] .
V = X A max X A min | X A max | + | X A min | ,
X ^ A 2 = cos ( 2 θ + 4 φ ) cosh 2 g | α | 2 + cos ( 2 θ ) sinh 2 g | α | 2 + cos ( 2 θ + 2 φ ) sinh ( 2 g ) | α | 2 + [ cosh ( 2 g ) + cos ( 2 φ ) sinh ( 2 g ) ] ( | α | 2 + 1 ) .
Δ X ^ A = X ^ A 2 X ^ A 2 = cosh ( 2 g ) + sinh ( 2 g ) cos ( 2 φ ) .
Δ φ = Δ X ^ A | X ^ A / φ | = cosh ( 2 g ) + sinh ( 2 g ) cos ( 2 φ ) 2 2 cosh g | α | sin ( θ + 2 φ ) .
θ + 2 φ = k π + π / 2
X ^ A L = T X ^ A ,
X ^ A 2 L = T X ^ A 2 + ( 1 T ) .
Δ φ L = T [ cosh ( 2 g ) + sinh ( 2 g ) cos ( 2 φ ) 1 ] + 1 2 2 T cosh g | α sin ( θ + 2 φ ) | .
Δ φ min 1 4 cosh g cosh ( 2 g ) | α |
U OPA = ( cosh g 0 sinh g 0 0 cosh g 0 sinh g sinh g 0 cosh g 0 0 sinh g 0 cosh g ) ,
U AD = ( cos ( 2 φ ) sin ( 2 φ ) 0 0 sin ( 2 φ ) cos ( 2 φ ) 0 0 0 0 1 0 0 0 0 1 ) ,
U BS = 1 2 ( 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 ) .
U ˜ OPA = U OPA I ( 4 ) ,
U ˜ AD = U AD I ( 4 ) ,
U ˜ VBS = ( T I ( 4 ) 1 T I ( 4 ) 1 T I ( 4 ) T I ( 4 ) ) 8 × 8 ,
U ˜ BS = U BS I ( 4 ) .
Δ φ min Δ φ Q = cosh ( 2 g ) sinh ( 2 g ) 2 cosh g 1 + 2 cosh ( 2 g ) + cosh ( 4 g ) = cosh ( 2 g ) sinh ( 2 g ) cosh g cosh ( g ) [ 1 + cosh ( 2 g ) ] 1 + cosh ( 2 g ) 2 cosh g = 1
Δ φ min = cosh ( 2 g ) sinh ( 2 g ) 2 2 cosh g | α | = 1 2 2 e 2 g cosh g | α | 1 4 cosh g cosh ( 2 g ) | α | .

Metrics