Abstract

By controlling interference of Mie resonance modes of various nanostructures, we can achieve a large number of nontrivial effects in nanophotonics. In this work, we propose a cylindrical structure in which the spectral overlap of the Mie-type modes can be controlled by drilling a hole parallel to the axis, thus changing unidirectional scattering. We further demonstrate that the scattering patterns can be tailored by rotating the structure to achieve almost arbitrary scattered wave direction.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the last decade, researchers have been fascinated by the possibilities of light manipulation using subwavelength structures. In particular, high-index all-dielectric nanostructures were proposed for a range of applications due to their ability to provide strong light-matter interaction [1–5]. In such systems the optical resonance can be tuned by varying the material and geometry parameters of the structure. All-dielectric Mie-resonant nanostructures are now seen as a replacement for plasmonics structures that previously were proposed for various applications, including magnetic field localization and enhancement [6], scattering cancellation [7], light absorption and trapping [8–13].

It has been shown both theoretically [14–19] and experimentally [20–22] that all-dielectric optical nanostructures can support strong electric and magnetic dipolar and multipolar resonances. Furthermore, those resonances can occur in overlapping frequency ranges, producing interference and resulting in interesting scattering phenomena [23–28]. One of the most critical outcomes of this interference is the simultaneous excitation of electric dipole mode (ED) and magnetic dipole mode (MD) with balanced strengths which leads to the Kerker condition of zero backward scattering [29–34]. This condition is important in many applications such as nanoantennas [35–37], optical sensing [38], and photovoltaics [39]. Recently, it has been shown that Kerker condition can occur even in a simple homogeneous dielectric nanorod [40,41]. In an infinitely long homogeneous cylinder or in a sphere each Mie resonance mode has a distinct resonance wavelength, thus the interference effects cannot be controlled substantially. To obtain a more desirable interference effects between the ED and MD modes in long cylindrical structures one will usually try to overlap the two resonances by using metal-dielectric composite structures [42–44]. Unfortunately, Kerker condition is by no means a perfect way to achieve directional scattering since the interference of the ED and MD modes produces substantial scattering in other directions [45]. Another way to obtain a more preferable scattering pattern is through the interference of the electric quadrupole mode (EQ) and the electric dipole mode (ED) known as the generalized Kerker condition [46,47] or by interfering higher resonance modes [44,48,49].

In this paper, we show that unidirectional scattering patterns can be engineered by using a simple structure of an asymmetric hollow dielectric nanorod. Most structures proposed so far in the field of nanophotonics act only as a passive system which gives almost no flexibility for controlling the beam deflection. Lately, a system of coupled dipole and a sphere was envisaged to overcome that shortcoming [50]. It was also shown that interference of the Mie resonance modes in dielectric metalattices can exhibit the beam deflection effect [51]. Here, we outline the possibility of the beam deflection by rotating a hollow asymmetric nanorod.

2. Scattering by a nanorod

Our system consists of an infinitely long hollow nanorod with fixed outer radius Rout (in all following calculations we assume Rout = 450 nm) and refractive index ñ = 3.4 + i0.01. The nanorod is illuminated by the transverse electric (TE) plane wave (see Fig. 1) with wavelength λ. First, we discuss the scattering of a symmetric hollow nanorod [Fig. 1(a)] and its dependence on the hole radius. Next, we study the effect of asymmetric hole position in the nanorod [Fig. 1(b)]. We write the general expression for the magnetic field in all regions as follows [52,53]

z1=n[A1nJn(k1ρ1)]einϕ1,
z2=n[A2nJn(k2ρ1)+B2nHn(k2ρ1)]einϕ1,
z3=m[imJm(k3ρ2)+B3mHm(k3ρ2)]eimϕ2,
where z1, z2 and z3 are the general expressions for magnetic fields in the hole region, in the dielectric shell and in the surrounding background, respectively. Each solution consists of cylindrical wave representation described by integer order Hankel function of the first kind (Hm/n(kρj)) and Bessel function (Jm/n(kρj)) with k=ωε/c ( = 1, 2, 3). The two polar coordinate systems introduced, (ρ1, ϕ1) and (ρ2, ϕ2), are associated with the two origins located at the hole and shell axes, respectively. Both coordinate systems are related to each other through Graf’s addition theorem as
J/Hn(k2ρ1)einϕ1=mJmn(k2d)ei(mn)θJ/Hm(k2ρ2)eimϕ2,
in which (d, θ) are the offset parameters representing the relative position of the hole axis with respect to the coordinate system of the rod. The unknown field coefficients A1n, A2n, B2n and B3m can thus be determined from the boundary conditions at the two interfaces. It follows that in this system the scattering efficiency can be written as
Qsca=Re[(Esca×Hsca*)ρ^dϕ]4Iinc,
where Esca denotes the corresponding scattered electric field solutions and Iinc is the incoming wave intensity. In general, the integral in Eq. (5) can be calculated numerically for any desired angular limit. Nevertheless, in most cases the integral is calculated over an imaginary closed surface covering the scatterer, thus giving us the standard formula of scattering efficiency
Qsca=2qm=|B3m|2,
in which |B3m| is the amplitude of the scattered wave and q = k0Rout = 2π Rout/λ is the so-called size parameter. In the case of TE wave illumination, m = 0 corresponds to the MD mode, while m = ±1 and m = ±2, respectively, are the ED mode and the EQ mode [48].

 

Fig. 1 Schematics of the problem. (a) A hollow nanorod structure with outer radius Rout = 450 nm and refractive index ñ = 3.4 + i 0.01. (b) An asymmetric nanorod structure with the same outer radius and refractive index. Both structures are illuminated by TE-polarized plane wave propagating in x-direction as indicated by the colored arrows. The insets in each figure show the cross-sectional view as well as an example of angular intensity distribution for each structure.

Download Full Size | PPT Slide | PDF

2.1. Symmetric nanorod

In Fig. 2(a) we show the dependence of the scattering efficiency of a hollow nanorod on the ratio of the hole radius to outer radius, with each bright line in the figure corresponding to different resonance modes. We observe that by increasing the ratio of radii we can achieve an overlap of some of the resonances. By taking a horizontal slice of Fig. 2(a) at Rin/Rout = 0.3, we observe several resonances in the scattering cross-section. By plotting the contributions of individual multipoles to the scattering efficiency, we identify their contributions, with magnetic dipole (m = 0), electric dipole (m = ±1) and electric quadrupole mode (m = ±2) as shown in Fig. 2(b). We notice that, due to the symmetry in this case, the contributions of positive and negative m modes are identical. Each of the modes, individually, possesses various symmetries, however when we overlap the resonances, the ratio of the forward scattering (the scattered wave intensity at ϕ = 0°) to backward scattering (the scattered wave intensity at ϕ = 180°) can be controlled, as is seen in Fig. 2(c). The enhanced forward scattering is due to the constructive interference in the forward direction, and destructive interference in the backward direction of the ED and EQ modes, as predicted by the generalized Kerker condition [46]. The scattering pattern for the system parameters specified by (Rin/Rout, q) = (0.3, 2.618) (point B) and (Rin/Rout, q) = (0.52, 1.673) (point A) are shown in Fig. 2(d). It is clear that the scattering patterns are unidirectional, with enhancement in the forward direction and suppression in the backward direction.

 

Fig. 2 (a) Scattering efficiency of a symmetric hollow nanorod as a function of the ratio of the inner radius to the outer radius Rin/Rout and size parameter q = k0Rout. (b) Scattering efficiency spectra obtained by taking a horizontal cross-section of Fig. 2(a) at Rin/Rout = 0.3 along with the mode decomposition. (c) Ratio of forward scattering (the scattered wave intensity at ϕ = 0°) to backward scattering (the scattered wave intensity at ϕ = 180°). (d) Angular intensity distributions corresponding to the marked points in Fig. 2(c).

Download Full Size | PPT Slide | PDF

2.2. Beam deflection with asymmetric hollow nanorods

It was shown earlier that the expression of scattering efficiency (Qsca) for the problem of scattering by a hollow cylinder with non-coaxial inner core can still be written in the form of Eq. (6). To see the differences of scattering by a concentric and non-concentric hollow cylinder, we begin by studying the configuration with (Rin, d, θ) = (0.5Rout, 0.4Rout, 100°). Here, d is the distance between the hole axis and the nanorod axis, and θ is the angle of the core-offset direction with respect to the direction of the incoming wave [see Fig. 1(b)].

One can see from Fig. 3(a) that the scattering coefficient arising from the positive-m modes is no longer the same as that from the negative modes: |B3(−m)| ≠ |B3(+m)|. This phenomenon is clearly the result of azimuthal symmetry breaking in the system. Due to this phenomenon, it becomes possible to obtain a more diverse interference effects between the Mie resonance modes. As a demonstration, in Fig. 3(b) we show that the angle of the main scattering lobe can be engineered by simply rotating the nonconcentric hollow nanorod. On the other hand, Fig. 3(c) shows the dependence of the angle of the main lobe of scattering on the angular position of the hole. We see that by rotating the nanorod we can control direction of scattering in a wide range of angles, however we cannot cover the whole 2π range.

 

Fig. 3 (a) Scattering efficiency Qsca calculated for the asymmetric nanorod system for (Rin, d, θ) = (0.5Rout, 0.4Rout, 100°), (b) Scattering diagrams calculated at q = 2.24 for θ = 100° (solid blue), 140° (solid brown), −100° (dashed blue), −140° (dashed brown). (c) The angle of the major scattering lobe as a function of the angle θ.

Download Full Size | PPT Slide | PDF

It follows from Fig. 3 that the angular scattering intensity distribution resulted from an asymmetric nanorod structure is no longer symmetric with respect to the horizontal axis. This condition may lead to an unbalanced total power radiated in the upward direction and in the downward direction, as observed in Fig. 4. In Fig. 4(a) the scattering efficiency is calculated for upper half space, whereas in Fig. 4(b) the calculation is done for the lower half. It is clear that the total power radiated into the two directions is different. By calculating the ratio of the energy flow in the downward direction to that in the upward direction, we find the parameters for which the energy is mostly radiated in the downward direction, as shown in Fig. 4(c). For example, the angular intensity distribution for the point T in Fig. 4(c) is shown in Fig. 4(d), which suggests that the scattering occurs mostly in the downward direction. We note that such an unbalanced radiation will result in a transverse optical force, hence the asymmetric nanorod system can be utilized for controlling the optical force direction [54].

 

Fig. 4 (a) The scattering efficiency Qsca calculated only for the upper half-space (y > 0), (b) the Qsca calculated only for the lower half-space (y < 0), (c) The ratio of scattering in the lower half-space to that in upper half-space. (d) The angular intensity distribution for the parameters corresponding to the point T in figure (c). All figures are calculated for asymmetric nanorod structure with Rout = 450 nm, Rin = 0.5Rout and d = 0.4Rout.

Download Full Size | PPT Slide | PDF

3. Conclusions

We have studied the scattering properties of a hollow dielectric nanorod structure. We have observed that manipulation of the mutual position of various resonances of the structure can be controlled by changing the radius and position of the hole within the nanorod. We have shown that, in general, higher-order resonances are less sensitive to a variation of the hole size, and this can lead to a merging of resonances and their resulting interference. In particular, for the considered structures, the dominating resonances are electric dipole and electric quadrupole, which in the symmetric case produce unidirectional scattering characterized by a pattern with zero backward scattering. We have further demonstrated the possibility of the beam deflection by using a hollow nanorod structure with asymmetrically placed hole. Due to the azimuthal symmetry breaking, the scattering amplitude of the modes with positive and negative azimuthal numbers became different, resulting in unconventional scattering patterns. Unbalanced radiation power occurs for the more complex resonances interference which can be useful for tailoring the transverse optical forces.

Funding

Institut Teknologi Bandung (071/I1.B04/SPKWRRIM/III/2017).

Acknowledgments

This work was partially supported by Program Penelitian, Pengabdian Kepada Masyarakat dan Inovasi (P3MI) 2017 from Institut Teknologi Bandung (contract no. 071/I1.B04/SPK-WRRIM/III/2017). I.V.S. and Y.S.K acknowledge support from the Australian Research Council through Discovery Project and Future Fellowship schemes.

References

1. Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28, 24–31 (2017). [CrossRef]  

2. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016). [CrossRef]   [PubMed]  

3. W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23, 047806 (2014). [CrossRef]  

4. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009). [CrossRef]  

5. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016). [CrossRef]   [PubMed]  

6. K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017). [CrossRef]  

7. A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015). [CrossRef]  

8. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011). [CrossRef]   [PubMed]  

9. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19, 19015–19026 (2011). [CrossRef]   [PubMed]  

10. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19, 25729–25740 (2011). [CrossRef]  

11. A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012). [CrossRef]   [PubMed]  

12. C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015). [CrossRef]   [PubMed]  

13. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009). [CrossRef]   [PubMed]  

14. A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77, 045104 (2008). [CrossRef]  

15. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010). [CrossRef]  

16. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011). [CrossRef]  

17. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). [CrossRef]   [PubMed]  

18. J. Van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013). [CrossRef]   [PubMed]  

19. M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016). [CrossRef]   [PubMed]  

20. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef]   [PubMed]  

21. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012). [CrossRef]   [PubMed]  

22. A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014). [CrossRef]   [PubMed]  

23. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013). [CrossRef]   [PubMed]  

24. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013). [CrossRef]   [PubMed]  

25. M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011). [CrossRef]  

26. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013). [CrossRef]   [PubMed]  

27. D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017). [CrossRef]  

28. M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015). [CrossRef]   [PubMed]  

29. M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983). [CrossRef]  

30. R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015). [CrossRef]  

31. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and kerker conditions,” Opt. Lett. 38, 1857–1859 (2013). [CrossRef]   [PubMed]  

32. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012). [CrossRef]   [PubMed]  

33. S. D. Campbell and R. W. Ziolkowski, “Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering,” IEEE J. Sel. Top. Quantum Electron. 19, 4700209 (2013). [CrossRef]  

34. W. Liu and Y. S. Kivshar, “Generalized kerker effects in nanophotonics and meta-optics,” Opt. Express 26, 13085–13105 (2018). [CrossRef]   [PubMed]  

35. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). [CrossRef]  

36. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef]   [PubMed]  

37. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013). [CrossRef]   [PubMed]  

38. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009). [CrossRef]   [PubMed]  

39. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]   [PubMed]  

40. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017). [CrossRef]  

41. A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018). [CrossRef]  

42. E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014). [CrossRef]  

43. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012). [CrossRef]   [PubMed]  

44. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22, 16178–16187 (2014). [CrossRef]   [PubMed]  

45. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013). [CrossRef]   [PubMed]  

46. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40, 2645–2648 (2015). [CrossRef]   [PubMed]  

47. I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013). [CrossRef]   [PubMed]  

48. W. Liu, “Superscattering pattern shaping for radially anisotropic nanowires,” Phys. Rev. A 96, 023854 (2017). [CrossRef]  

49. R. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40, 585–588 (2015). [CrossRef]   [PubMed]  

50. A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014). [CrossRef]  

51. W. Liu and A. E. Miroshnichenko, “Beam steering with dielectric metalattices,” ACS Photonics 5, 1733–1741 (2017). [CrossRef]  

52. H. Yousif and A. Elsherbeni, “Oblique incidence scattering from two eccentric cylinders,” J. Electromagn. Waves Appl. 11, 1273–1288 (1997). [CrossRef]  

53. C. A. Valagiannopoulos, “Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other,” PIER 3, 23–34 (2008). [CrossRef]  

54. S. Wang and C. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 4307 (2014).

References

  • View by:
  • |
  • |
  • |

  1. Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28, 24–31 (2017).
    [Crossref]
  2. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
    [Crossref] [PubMed]
  3. W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23, 047806 (2014).
    [Crossref]
  4. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
    [Crossref]
  5. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref] [PubMed]
  6. K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
    [Crossref]
  7. A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
    [Crossref]
  8. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
    [Crossref] [PubMed]
  9. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19, 19015–19026 (2011).
    [Crossref] [PubMed]
  10. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19, 25729–25740 (2011).
    [Crossref]
  11. A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
    [Crossref] [PubMed]
  12. C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
    [Crossref] [PubMed]
  13. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
    [Crossref] [PubMed]
  14. A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77, 045104 (2008).
    [Crossref]
  15. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [Crossref]
  16. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
    [Crossref]
  17. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref] [PubMed]
  18. J. Van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
    [Crossref] [PubMed]
  19. M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
    [Crossref] [PubMed]
  20. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
    [Crossref] [PubMed]
  21. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref] [PubMed]
  22. A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
    [Crossref] [PubMed]
  23. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
    [Crossref] [PubMed]
  24. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref] [PubMed]
  25. M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011).
    [Crossref]
  26. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  27. D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
    [Crossref]
  28. M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
    [Crossref] [PubMed]
  29. M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
    [Crossref]
  30. R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
    [Crossref]
  31. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and kerker conditions,” Opt. Lett. 38, 1857–1859 (2013).
    [Crossref] [PubMed]
  32. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
    [Crossref] [PubMed]
  33. S. D. Campbell and R. W. Ziolkowski, “Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering,” IEEE J. Sel. Top. Quantum Electron. 19, 4700209 (2013).
    [Crossref]
  34. W. Liu and Y. S. Kivshar, “Generalized kerker effects in nanophotonics and meta-optics,” Opt. Express 26, 13085–13105 (2018).
    [Crossref] [PubMed]
  35. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [Crossref]
  36. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref] [PubMed]
  37. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
    [Crossref] [PubMed]
  38. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [Crossref] [PubMed]
  39. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  40. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
    [Crossref]
  41. A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
    [Crossref]
  42. E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
    [Crossref]
  43. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
    [Crossref] [PubMed]
  44. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22, 16178–16187 (2014).
    [Crossref] [PubMed]
  45. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
    [Crossref] [PubMed]
  46. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40, 2645–2648 (2015).
    [Crossref] [PubMed]
  47. I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
    [Crossref] [PubMed]
  48. W. Liu, “Superscattering pattern shaping for radially anisotropic nanowires,” Phys. Rev. A 96, 023854 (2017).
    [Crossref]
  49. R. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40, 585–588 (2015).
    [Crossref] [PubMed]
  50. A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
    [Crossref]
  51. W. Liu and A. E. Miroshnichenko, “Beam steering with dielectric metalattices,” ACS Photonics 5, 1733–1741 (2017).
    [Crossref]
  52. H. Yousif and A. Elsherbeni, “Oblique incidence scattering from two eccentric cylinders,” J. Electromagn. Waves Appl. 11, 1273–1288 (1997).
    [Crossref]
  53. C. A. Valagiannopoulos, “Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other,” PIER 3, 23–34 (2008).
    [Crossref]
  54. S. Wang and C. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 4307 (2014).

2018 (2)

W. Liu and Y. S. Kivshar, “Generalized kerker effects in nanophotonics and meta-optics,” Opt. Express 26, 13085–13105 (2018).
[Crossref] [PubMed]

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
[Crossref]

2017 (6)

W. Liu, “Superscattering pattern shaping for radially anisotropic nanowires,” Phys. Rev. A 96, 023854 (2017).
[Crossref]

W. Liu and A. E. Miroshnichenko, “Beam steering with dielectric metalattices,” ACS Photonics 5, 1733–1741 (2017).
[Crossref]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28, 24–31 (2017).
[Crossref]

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
[Crossref]

2016 (3)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
[Crossref] [PubMed]

2015 (6)

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref]

R. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40, 585–588 (2015).
[Crossref] [PubMed]

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40, 2645–2648 (2015).
[Crossref] [PubMed]

2014 (6)

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22, 16178–16187 (2014).
[Crossref] [PubMed]

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
[Crossref]

S. Wang and C. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 4307 (2014).

W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23, 047806 (2014).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

2013 (9)

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and kerker conditions,” Opt. Lett. 38, 1857–1859 (2013).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

J. Van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
[Crossref] [PubMed]

S. D. Campbell and R. W. Ziolkowski, “Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering,” IEEE J. Sel. Top. Quantum Electron. 19, 4700209 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
[Crossref] [PubMed]

2012 (4)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
[Crossref] [PubMed]

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

2011 (7)

2010 (3)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

2009 (3)

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

2008 (2)

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77, 045104 (2008).
[Crossref]

C. A. Valagiannopoulos, “Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other,” PIER 3, 23–34 (2008).
[Crossref]

2007 (1)

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

1997 (1)

H. Yousif and A. Elsherbeni, “Oblique incidence scattering from two eccentric cylinders,” J. Electromagn. Waves Appl. 11, 1273–1288 (1997).
[Crossref]

1983 (1)

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Ahmadi, A.

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77, 045104 (2008).
[Crossref]

Aizpurua, J.

Alaee, R.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40, 2645–2648 (2015).
[Crossref] [PubMed]

Albooyeh, M.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Atkinson, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Baron, T.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Baryshnikova, K. V.

Beermann, J.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

Belov, P. A.

A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
[Crossref]

Bhaskaran, M.

Bonod, N.

Bozhevolnyi, S. I.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Brenny, B. J.

Brongersma, M. L.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Campbell, S. D.

S. D. Campbell and R. W. Ziolkowski, “Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering,” IEEE J. Sel. Top. Quantum Electron. 19, 4700209 (2013).
[Crossref]

Cao, L.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Castro-López, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
[Crossref] [PubMed]

Chan, C.

S. Wang and C. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 4307 (2014).

Chantada, L.

Cheng, W.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

Chichkov, B. N.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Cihan, A. F.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
[Crossref]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Cuche, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Curto, A. G.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
[Crossref]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Decker, M.

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Dogariu, A.

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Eich, M.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

Elsherbeni, A.

H. Yousif and A. Elsherbeni, “Oblique incidence scattering from two eccentric cylinders,” J. Electromagn. Waves Appl. 11, 1273–1288 (1997).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

Evans, P.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Evlyukhin, A. B.

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
[Crossref]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Eyraud, C.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Fan, S.

Fernandez-Corbaton, I.

Filonov, D. S.

A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
[Crossref]

Filter, R.

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Fournel, F.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Francs, G. C. d.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Froufe-Pérez, L. S.

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Fumeaux, C.

García-Etxarri, A.

Geffrin, J.-M.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Giles, C.

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Girard, C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Gomez-Medina, R.

Gómez-Medina, R.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Grote, R. R.

Hancu, I. M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
[Crossref] [PubMed]

Hendren, W.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Hess, O.

Hu, H.

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Juan, M.

Kabashin, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Kerker, M.

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Kik, P. G.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
[Crossref]

Kivshar, Y.

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28, 24–31 (2017).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

W. Liu and Y. S. Kivshar, “Generalized kerker effects in nanophotonics and meta-optics,” Opt. Express 26, 13085–13105 (2018).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref]

W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23, 047806 (2014).
[Crossref]

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

Komjani, N.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

Krasnok, A. E.

A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Kuttge, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Larrey, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Larrieu, G.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Lederer, F.

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40, 2645–2648 (2015).
[Crossref] [PubMed]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

Lehr, D.

Lei, B.

Lenzmann, F.

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

Litman, A.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Liu, W.

W. Liu and Y. S. Kivshar, “Generalized kerker effects in nanophotonics and meta-optics,” Opt. Express 26, 13085–13105 (2018).
[Crossref] [PubMed]

W. Liu, “Superscattering pattern shaping for radially anisotropic nanowires,” Phys. Rev. A 96, 023854 (2017).
[Crossref]

W. Liu and A. E. Miroshnichenko, “Beam steering with dielectric metalattices,” ACS Photonics 5, 1733–1741 (2017).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22, 16178–16187 (2014).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23, 047806 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

López, C.

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Ma, H.

Mann, S. A.

Miroshnichenko, A.

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28, 24–31 (2017).
[Crossref]

Miroshnichenko, A. E.

W. Liu and A. E. Miroshnichenko, “Beam steering with dielectric metalattices,” ACS Photonics 5, 1733–1741 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref]

W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23, 047806 (2014).
[Crossref]

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

Mirzaei, A.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref]

Mitchell, A.

Molina-Terriza, G.

Moreno, F.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Mosallaei, H.

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77, 045104 (2008).
[Crossref]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Naraghi, R. R.

Neshev, D. N.

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Novitsky, A.

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Osgood, R. M.

Oulton, R. F.

Paillard, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Park, J.-S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Pastkovsky, S.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Petrov, A.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

Podolskiy, V.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Polman, A.

M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
[Crossref] [PubMed]

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

J. Van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Powell, D. A.

D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

Prorok, S.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Raman, A.

Raza, S.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Rockstuhl, C.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett. 40, 2645–2648 (2015).
[Crossref] [PubMed]

Rolly, B.

Rusak, E.

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

Saenz, J.

Sáenz, J. J.

Sautter, J.

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

Scheffold, F.

Schuller, J. A.

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
[Crossref] [PubMed]

S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19, 25729–25740 (2011).
[Crossref]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Shadrivov, I. V.

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref]

Shah, C. M.

Shalin, A. S.

Simovski, C.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

Simovski, C. R.

A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
[Crossref]

Sriram, S.

Staude, I.

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Stout, B.

Sukhov, S.

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Tribelsky, M. I.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

Valagiannopoulos, C. A.

C. A. Valagiannopoulos, “Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other,” PIER 3, 23–34 (2008).
[Crossref]

van de Groep, J.

van de Haar, M. A.

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

van Hulst, N. F.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

van Lare, C.

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

Vasudev, A. P.

Verschuuren, M. A.

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

Vidal, X.

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Wang, D.-S.

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Wang, S.

S. Wang and C. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 4307 (2014).

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

Wiecha, P. R.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

Withayachumnankul, W.

Wurtz, G.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Xie, W.

Yazdi, M.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

Yousif, H.

H. Yousif and A. Elsherbeni, “Oblique incidence scattering from two eccentric cylinders,” J. Electromagn. Waves Appl. 11, 1273–1288 (1997).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Yu, Z.

Zambrana-Puyalto, X.

Zayats, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

Zhang, J.

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Ziolkowski, R. W.

S. D. Campbell and R. W. Ziolkowski, “Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering,” IEEE J. Sel. Top. Quantum Electron. 19, 4700209 (2013).
[Crossref]

Zou, L.

ACS Nano (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

ACS Photonics (2)

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. d. Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4, 2036–2046 (2017).
[Crossref]

W. Liu and A. E. Miroshnichenko, “Beam steering with dielectric metalattices,” ACS Photonics 5, 1733–1741 (2017).
[Crossref]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23, 1272–1276 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. E. Krasnok, D. S. Filonov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Experimental demonstration of superdirective dielectric antenna,” Appl. Phys. Lett. 104, 133502 (2014).
[Crossref]

E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, and Y. S. Kivshar, “Hybrid nanoantennas for directional emission enhancement,” Appl. Phys. Lett. 105, 221109 (2014).
[Crossref]

Chin. Phys. B (1)

W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Control of light scattering by nanoparticles with optically-induced magnetic responses,” Chin. Phys. B 23, 047806 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Campbell and R. W. Ziolkowski, “Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering,” IEEE J. Sel. Top. Quantum Electron. 19, 4700209 (2013).
[Crossref]

J. Electromagn. Waves Appl. (1)

H. Yousif and A. Elsherbeni, “Oblique incidence scattering from two eccentric cylinders,” J. Electromagn. Waves Appl. 11, 1273–1288 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

JOSA (1)

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Nano Lett. (3)

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13, 1806–1809 (2013).
[Crossref] [PubMed]

C. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
[Crossref] [PubMed]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Wang and C. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 4307 (2014).

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Nat. Mater. (3)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon mie resonators for highly directional light emission from monolayer mos 2,” Nat. Photonics 12, 284 (2018).
[Crossref]

Opt. Express (11)

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22, 16178–16187 (2014).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

W. Liu and Y. S. Kivshar, “Generalized kerker effects in nanophotonics and meta-optics,” Opt. Express 26, 13085–13105 (2018).
[Crossref] [PubMed]

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref] [PubMed]

J. Van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21, 26285–26302 (2013).
[Crossref] [PubMed]

M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24, 2047–2064 (2016).
[Crossref] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009).
[Crossref]

A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19, 19015–19026 (2011).
[Crossref] [PubMed]

S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express 19, 25729–25740 (2011).
[Crossref]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20, A385–A394 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Photonics News (1)

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28, 24–31 (2017).
[Crossref]

Phys. Rev. A (1)

W. Liu, “Superscattering pattern shaping for radially anisotropic nanowires,” Phys. Rev. A 96, 023854 (2017).
[Crossref]

Phys. Rev. Appl. (1)

D. A. Powell, “Interference between the modes of an all-dielectric meta-atom,” Phys. Rev. Appl. 7, 034006 (2017).
[Crossref]

Phys. Rev. B (4)

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91, 115119 (2015).
[Crossref]

A. Ahmadi and H. Mosallaei, “Physical configuration and performance modeling of all-dielectric metamaterials,” Phys. Rev. B 77, 045104 (2008).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

Phys. Rev. Lett. (1)

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

PIER (1)

C. A. Valagiannopoulos, “Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other,” PIER 3, 23–34 (2008).
[Crossref]

Sci. Rep. (4)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’Yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4, 4126 (2014).
[Crossref] [PubMed]

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5, 12288 (2015).
[Crossref] [PubMed]

A. Mirzaei, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “All-dielectric multilayer cylindrical structures for invisibility cloaking,” Sci. Rep. 5, 9574 (2015).
[Crossref]

Science (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematics of the problem. (a) A hollow nanorod structure with outer radius Rout = 450 nm and refractive index ñ = 3.4 + i 0.01. (b) An asymmetric nanorod structure with the same outer radius and refractive index. Both structures are illuminated by TE-polarized plane wave propagating in x-direction as indicated by the colored arrows. The insets in each figure show the cross-sectional view as well as an example of angular intensity distribution for each structure.
Fig. 2
Fig. 2 (a) Scattering efficiency of a symmetric hollow nanorod as a function of the ratio of the inner radius to the outer radius Rin/Rout and size parameter q = k0Rout. (b) Scattering efficiency spectra obtained by taking a horizontal cross-section of Fig. 2(a) at Rin/Rout = 0.3 along with the mode decomposition. (c) Ratio of forward scattering (the scattered wave intensity at ϕ = 0°) to backward scattering (the scattered wave intensity at ϕ = 180°). (d) Angular intensity distributions corresponding to the marked points in Fig. 2(c).
Fig. 3
Fig. 3 (a) Scattering efficiency Qsca calculated for the asymmetric nanorod system for (Rin, d, θ) = (0.5Rout, 0.4Rout, 100°), (b) Scattering diagrams calculated at q = 2.24 for θ = 100° (solid blue), 140° (solid brown), −100° (dashed blue), −140° (dashed brown). (c) The angle of the major scattering lobe as a function of the angle θ.
Fig. 4
Fig. 4 (a) The scattering efficiency Qsca calculated only for the upper half-space (y > 0), (b) the Qsca calculated only for the lower half-space (y < 0), (c) The ratio of scattering in the lower half-space to that in upper half-space. (d) The angular intensity distribution for the parameters corresponding to the point T in figure (c). All figures are calculated for asymmetric nanorod structure with Rout = 450 nm, Rin = 0.5Rout and d = 0.4Rout.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z 1 = n [ A 1 n J n ( k 1 ρ 1 ) ] e i n ϕ 1 ,
z 2 = n [ A 2 n J n ( k 2 ρ 1 ) + B 2 n H n ( k 2 ρ 1 ) ] e i n ϕ 1 ,
z 3 = m [ i m J m ( k 3 ρ 2 ) + B 3 m H m ( k 3 ρ 2 ) ] e i m ϕ 2 ,
J / H n ( k 2 ρ 1 ) e i n ϕ 1 = m J m n ( k 2 d ) e i ( m n ) θ J / H m ( k 2 ρ 2 ) e i m ϕ 2 ,
Q sca = Re [ ( E sca × H sca * ) ρ ^ d ϕ ] 4 I inc ,
Q sca = 2 q m = | B 3 m | 2 ,

Metrics