Abstract

We investigate the stability of incoherently coupled two-color vector dark and grey solitons in a nonlinear self-defocusing media. We employ the variational technique to derive approximate solutions of the two-color vector dark solitons. The relations between the soliton parameters and the representation of the transverse velocities of the vector solitons are analytically obtained. We also demonstrate numerically the propagation dynamics of the two-color vector solitons, which shows that the two-color vector dark and grey solitons with different wavelengths are always unstable.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

During the past decades, solitons have been the subject of intense theoretical and experimental studies in many different fields, especially in the area of nonlinear optics [1]. Generally, solitons discussed are described by a single nonlinear Schrödinger (NLS) equation for a scalar field [2]. When these conditions are not satisfied, one must consider the interaction of several field components at different frequencies or polarizations and solve simultaneously a set of coupled NLS equations [2]. Because of its multicomponent nature, a shape-preserving solution of such coupled NLS equations is called a vector soliton [2]. In particular, an integrable vector solitons, first proposed by Manakov, consist of two orthogonally polarized components in a nonlinear Kerr media in which self-phase modulation is identical to cross-phase modulation [3]. The nonlinear action of a field component on itself equals the action of one component on the other [3]. The Manakov model can support different classes of vector soliton pairs [4–6]. Experimentally, Manakov solitons was observed in AlGaAs waveguide [7].

Spatial dark solitons, in the form of localized light intensity dip in a plane wave background with nontrivial phase profile [8], have drawn considerable attention in the past years [9,10]. In particular, the vector dark solitons was described as a bound state of mutual trapping of two dark solitons through cross-phase modulation [11,12]. Exact solutions of vector dark solitons [13–15] were sensitively investigated using the inverse scattering transform method [6] and Hirota method [4,16]. Vector dark solitons have been observed experimentally in the orthogonal axes of a highly birefringent optical fiber [17,18] and a photorefractive SBN crystal [19].

Another example of vector solitons is the two-color vector solitons which form when two beams of different colors (wavelengths or frequencies) propagate through a nonlinear media and couple to each other [20–22]. During the past years, two-color vector solitons have been extensively studied, such as two-color solitons in photonic band-gap fibers [23], bound-soliton bunch in a two-color mode-locked fiber laser [24], and two-colored temporal solitons in a segmented quasi-phase-matching structure [25]. Two-color vector solitons have drawn considerable attention in quadratic nonlinear media theoretically [26] and experimentally [27]. Quadratic nonlinear media possesses stable propagation of two-color solitons clusters [28], periodic-wave arrays [29], discrete solitons [30], surface solitons [31], vortex solitons [32], interface solitons [33], and walking Peregrine solitons [34]. In nonlocal media, two-color vector solitons have also been investigated [35,36], including two-color vector soliton interactions [37,38] and stability of vector vortex solitons [39,40]. Recent works also suggest the coexistence of two-color optical filaments at resonant frequencies [41,42] and collapse of two-color optical beams in a nonresonant regime in nonlinear self-focusing media [43].

In this paper, the stability of two-color vector dark and grey solitons in a nonresonant regime is investigated in a nonlinear self-defocusing media. The approximate solutions of the two-color vector dark and grey solitons are obtained using the variational method. The propagation dynamics of the two-color vector dark and grey solitons are numerically studied with split step Fourier transform method. Because of different wavelengths in its two components, the two-color vector dark and grey soliton are always unstable due to different diffraction coefficients.

2. Model and variational method

We consider the system of two coupled one-dimensional NLS equations describing the co-propagation of two incoherent dark beams in a Kerr medium with a self-defocusing nonlinearity. We also assume that the co-propagation of two dark beams are in a non-resonant regime [43]. Thus the envelopes of the dark beams E1(x, z) and E2(x, z) are governed by [43]

iE1z+γ22E1x21γ(|E1|2+2|E2|2)E1=0,
iE2z+122E2x2(2|E1|2+|E2|2)E2=0,
where x and z are the transverse and longitudinal coordinates, respectively. γ = ω2/ω1 is the nonresonant coefficient, which represents the ratio of the angular frequencies ω1 and ω2 of the dark beams [43]. Therefore, the corresponding propagation constants of the dark beams have the following relation k2 = γk1 [43]. In the limit of γ = 1, the coupled equations describe two incoherently coupled beams with same wavelengths (color). When γ ≠ 1, the two incoherent dark beams experience different phase velocities and diffraction naturally.

Since the system discussed above is not integrable when γ ≠ 1, it is hard to obtain the rigorously exact solutions. For the sake of simplicity and analytical tractability, in this paper, we will employ the approximately analytical Lagrangian approach [44] to analyze the coupled NLS equations. The accuracy of the Lagrangian approach depends on the functional choice of the variational solution, and in this paper we introduce a proper ansatz of the two-color dark solitons in the following form [44–48],

E1=B1tanh[D(xx1)]+iA1,
E2=B2tanh[D(xx2)]+iA2.
Parameter A1,2 and B1,2 satisfies the normalization condition A1,22+B1,22=1. Here parameter A1,2, B1,2, D and x1,2 are all supposed to be functions of the propagation variable z. The modulation depths of the solitons can be given by B1,22 [49]. When B1,22=1, it represents fully “black” solitons, whereas, it represents “grey” solitons with transverse velocities when B1,22<1 [49]. The parameter D−1 can be used to define the soliton widths and x1,2 are the soliton centers [44].

The renormalized Lagrangian densities corresponding to Eqs. (1) and (2) are given in the following forms

L˜1=i2(E1*E1zE1E1*z)(11|E1|2)γ2|E1x|212γ(|E1|2+2|E2|23)(|E1|21),
L˜2=i2(E2*E2zE2E2*z)(11|E2|2)12|E2x|212(2|E1|2+|E2|23)(|E2|21).

Substituting Eqs. (3) and (4) into the Lagrangian density Eqs. (5) and (6), then integrating over x, L1,2=L˜1,2dx, we can obtain the averaged Lagrangian:

L1=2dx1dz[A1B1+tan1(B1A1)]2γ3B12D2B12(B12+2B22)3γD,
L2=2dx2dz[A2B2+tan1(B2A2)]23B22D2B22(2B12+B22)3D.

The total averaged Lagrangian of the system is L = L1 + L2. Based on the Euler-Lagrange equations, we obtain that

D2=B12(B12+2B22)γ2B12+γB22+B22(2B12+B22)γB12+B22,
dx1dz=A13B1[γD+2(B12+B22)γD+2B22D],
dx2dz=A23B2[D+2B12γD+2(B12+B22)D].

The formulas of Eqs. (9)(11) give the analytical relations among parameters of the two-color vector dark solitons. From Eq. (9), we can obtain that the width of the two-color vector dark solitons (proportional to D−1) is related to the nonresonant coefficient γ. We show in Fig. (1) the width (∝ D−1) of the two-color vector dark solitons versus the nonresonant coefficient γ with different values of B1 and B2. From Fig. 1, it is obviously that the width of the two-color vector dark soliton is a monotonic function of the nonresonant coefficient γ. For given values of B1 and B2, the width of the two-color dark solitons will increase when γ increases. When B12=B22, i.e., the modulation depths of the two-color vector dark beams equal, the width of the vector solitons will increase when the modulation depth B12 or B22 decreases [solid and dash-dotted lines in Fig. (1)]. From Fig. (1), at γ = 1 (same color), we also find that the widths equal to a same value (point A) when the two solitons exchange their modulation depths [dashed and dotted lines in Fig. (1)].

 figure: Fig. 1

Fig. 1 Width (∝ D−1) of the two-color vector dark solitons versus the nonresonant coefficient γ with different values of B1 and B2.

Download Full Size | PPT Slide | PDF

Substituting Eq. (9) into Eqs. (10) and (11), we can obtain that the transverse velocities v1 = dx1/dz and v2 = dx2/dz of the soliton components E1 and E2 are also related to the nonresonant coefficient γ. In Fig. (2), we show the transverse velocities v1 and v2 of the two-color vector dark solitons when they have the same modulation depths B12=B22. When B1 = B2 = 1, i.e., it is obviously the transverse velocities of the vector dark solitons are v1 = v2 = 0. Although they have the same initial modulation depths when B1 = B2 = 0.8, the transverse velocities of the vector dark solitons are same (point A) only for γ = 1 (same color), otherwise they are different for γ ≠ 1. Both v1 and v2 will increase when the modulation depths of the dark solitons decrease, e.g., B1 = B2 = 0.5 (v1 = v2 at point B for γ = 1).

 figure: Fig. 2

Fig. 2 Transverse velocities of the two-color vector dark solitons versus the nonresonant coefficient γ when B1 = B2. The dashed and solid lines represent the transverse velocities v1 and v2 of two soliton components E1 and E2, respectively.

Download Full Size | PPT Slide | PDF

We also show in Fig. (3) the transverse velocities v1 and v2 of the vector dark solitons with different modulation depths B12B22. For example, when we set B1 = 0.8 and B2 = 0.5, the transverse velocities v1 and v2 are displayed as lines 5 and 2 in Fig. (3), respectively. If we keep B1 = 0.8 unchanged, and B2 decreases to B2 = 0.3, the transverse velocity v1 (line 6) will decrease, whereas, the transverse velocity v2 will increase (line 1). When we set B1 = 0.5 and B2 = 0.5, the transverse velocities v1 and v2 are displayed as lines 3 and 4 in Fig. (3), respectively. And they have the same value with γ = 1 [black point in Fig. (3)]. If we keep B2 = 0.5 unchanged, and decrease B1 from B1 = 0.8 to B1 = 0.5, the transverse velocity v1 will increase (lines 5 and 3), whereas, the transverse velocity v2 will decrease (lines 2 and 4). In summary, when the modulation depth of one of the components decrease, the transverse velocity of this component will increase, however, the transverse velocity of another component will decrease.

 figure: Fig. 3

Fig. 3 Transverse velocities of the two-color vector dark solitons versus the nonresonant coefficient γ when B1B2. The dashed and solid lines represent the transverse velocities v1 and v2 of two soliton components E1 and E2, respectively.

Download Full Size | PPT Slide | PDF

The variational approach discussed above can only give us approximate solutions of the vector dark solitons. Generally, there are some methods to study the stability of these dark solitons. For instance, the stability of dark solitons can be determined by the Vakhitov-Kolokolov criterion [50]. With some special forms of the dark beams, the stable dark solitons can be obtained by the inequality ∂P/∂v < 0, here v is the solitons velocity, and P is the renormalized momentum [51]. However, in this paper, we will seek the numerical solutions of Eqs. (1) and (2) to investigate the stability of the two-color vector dark solitons. In general, the forms of dark solitons E1 and E2 can be written as E1=u0ψ(x)exp(iu02z) and E2=v0ϕ(x)exp(iv02z) [2, 44], u02 and v02 are the constant intensity backgrounds of dark solitons E1 and E2 [2, 44], respectively. Thus the numerical solutions of Eqs. (1) and (2) can be represented as E1 = ψ(x) exp (−ikz) and E2 = ϕ(x) exp (−ikz), so that

γ22ψx2+kψ1γ(|ψ|2+2|ϕ|2)ψ=0,
122ϕx2+kϕ(2|ψ|2+|ϕ|2)ϕ=0,
with k=u02=v02=1. Equations (12) and (13) can be solved using a Newton iteration method [52]. The variation result at γ = 1 is used as the initial guess, i.e., ψ(x) = ϕ(x) = tanh(Dx) for dark solitons with D = 1.735. The numerical solutions of the two-color dark solitons are shown in Fig. (4). From Fig. 4(a), it is obvious that the numerical solutions coincide with the initial guess when γ = 1, which indicates the vector dark solitons with same color are stable. However, when γ ≠ 1, as shown in Fig. 4(b), the intensity background of ψ(x) decreases, whereas, the intensity background of ϕ(x) increases. Thus the vector dark solitons with different wavelengths are unstable. These results of the numerical solutions will be confirmed with full numerical simulations in the next section.

 figure: Fig. 4

Fig. 4 Numerical solutions ψ(x) and ϕ(x) of the two-color vector dark solitons with different nonresonant coefficients (a) γ = 1 and (b) γ = 1.02, respectively.

Download Full Size | PPT Slide | PDF

3. Dynamics of two-color vector dark solitons in nonlinear self-defocusing media

In this section, we mainly study the propagation dynamics and stability of the two-color vector dark solitons in nonlinear self-defocusing media. We employ the split-step Fourier method to integrate the NLS Eqs. (1) and (2) numerically. The analytically variational results obtained above are used as the initial input in the numerical simulations.

Firstly, we consider the case of vector dark solitons with the soliton parameters B1 = B2 = 1 (v1 = v2 = 0). In Fig. (5), we show the evolution behaviors of the vector dark solitons under the particular case γ = 1 (same color). It is clear that the width of the vector solitons [Fig. 5(a)] and its two components E1 [Fig. 5(c)] and E2 [Fig. 5(d)] nearly remain unchanged. Both the vector solitons and its two components propagate stably. This conclusion can also be obtained from Fig. 5(b), which describe the intensity profile of the vector solitons at the beginning (z = 0) and the end of the propagation distance (z = 10), respectively. It is obvious that the profile at z = 10 (dash red lines) is almost coincide with the initial profile at z = 0 (solid black lines). This result is totally agree with the numerical solutions of the two-color vector dark solitons with γ = 1 [Fig. 4(a)].

 figure: Fig. 5

Fig. 5 Dynamics of two-color vector dark solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at the beginning (z = 0) and the end (z = 10) of the propagation distance. The initial parameters are B1 = B2 = 1 and γ = 1.

Download Full Size | PPT Slide | PDF

Next, we investigate the propagation dynamics of vector dark solitons when γ ≠ 1 (two color). In Fig. (6), the evolution behaviors of the vector dark solitons are displayed with γ = 1.02. We find that that both the vector solitons [Fig. 6(a)] and its two components E1 [Fig. 6(c)] and E2 [Fig. 6(d)] can only propagate stably within a short propagation distances, and then decay into strong dispersive waves (radiation modes). This result is also shown as dashed line in Fig. 6(b), which describe the intensity profile of the vector solitons at the end of the propagation distance (z = 10). It is obviously the vector dark solitons is stable within a short propagation distance z = 4 and then it is unstable at the propagation distance z = 10. The result confirms the numerical solutions in Fig. 4(b) that the vector dark solitons are always unstable when γ ≠ 1.

 figure: Fig. 6

Fig. 6 Dynamics of two-color vector dark solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at a particular propagation distance z = 4 and the end of the propagation distance z = 10. The initial parameters are B1 = B2 = 1 and γ = 1.02.

Download Full Size | PPT Slide | PDF

We also numerically check that the instability of the two-color vector dark solitons depends on the value of |γ − 1| (not shown). Larger values of |γ − 1|, worse stability of the vector dark solitons. This instability of the two-color vector dark solitons is induced by the difference in the diffraction coefficients (wavelengths) and occurs via incoherent interaction process. When γ ≠ 1, the components of the vector solitons suffer from different degrees of diffraction. For example, when γ > 1, the larger diffraction coefficient γ/2 of the component E1 makes it initially diffract more than the component E2. Thus the width of E1 will become larger than that of E2 initially. Through the incoherent interaction, the widening of the component E1 induces the component E2 to deformation, which will inversely induce the component E1 to deformation [53].

4. Dynamics of two-color vector “grey” solitons in nonlinear self-defocusing media

Now, we will investigate the dynamics of vector grey solitons when the components E1 and E2 have the same transverse velocities [B1 = B2 < 1 (v1 = v2 ≠ 0)]. We show in Fig. (7) the evolution behaviors of the vector grey solitons with the initial parameters B1 = B2 = 0.8 and γ = 1 (same color). Similar with Fig. (5), both the vector solitons [Fig. 7(a)] and its two components E1 [Fig. 7(c)] and E2 [Fig. 7(d)] can propagate stably with their widths keep unchanged. The intensity profiles of the vector solitons at the beginning (z = 0) and the end of the propagation distance (z = 10) are also displayed in Fig. 7(b). The intensity profiles at z = 10 (dash red line) is almost same with the initial intensity profile at z = 0 (solid black lines) but with some transverse displacement of the center location of the intensity profile. This displacement depends on the modulation depths B12=B22 for that the initial transverse velocities of the vector grey solitons are related to the amplitudes of the solitons v1,2 = dx1,2/dz = A1,2 [44–48]. The displacement will become larger for that they have larger initial transverse velocities A1,2 when the modulation depths B12=B22 decrease. Compare Figs. 7(a), 7(c), and 7(d) with Figs. 5(a), 5(c), and 5(d), we also find that the width of the vector dark solitons also become larger when B12=B22 decrease, and this result agrees with the variational result [solid and dash-dotted lines in Fig. (1)].

 figure: Fig. 7

Fig. 7 Dynamics of two-color vector grey solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons at the beginning (z = 0) and the end (z = 10) of the propagation distance. The initial parameters are B1 = B2 = 0.8 and γ = 1.

Download Full Size | PPT Slide | PDF

For the case of γ ≠ 1 (two color), in Fig. (8), the evolution behaviors of the vector grey solitons with same initial modulation depths B1 = B2 = 0.8 (same initial transverse velocities) are displayed when γ = 1.02. Again, similar with Fig. (6), both the vector solitons [Fig. 8(a)] and its two components E1 [Fig. 8(c)] and E2 [Fig. 8(d)] can only propagate stably within a short propagation distances, and then decay into strong dispersive waves [also shown as dashed line in Fig. 8(b)], due to the difference in the diffraction coefficients.

 figure: Fig. 8

Fig. 8 Dynamics of two-color vector grey solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at a particular propagation distance z = 4 and the end of the propagation distance z = 10. The initial parameters are B1 = B2 = 0.8 and γ = 1.02.

Download Full Size | PPT Slide | PDF

5. Dynamics OF one-color vector grey solitons with different transverse velocities

Finally, we show in Fig. (9) the propagation dynamics of vector grey solitons with different greyness or transverse velocities (B1B2) when γ = 1 (one color). We can see that both the vector solitons [Fig. 9(a)] and its two components E1 [Fig. 9(c)] and E2 [Fig. 9(d)] can only propagate stably within a short propagation distances, and then decay into strong dispersive waves [also shown as dashed line in Fig. 9(b)], due to the difference in the transverse velocities. The instability of the one-color vector grey solitons depends on the values of |B1B2|. Larger values of |B1B2|, worse stability of the vector grey solitons (not shown).

 figure: Fig. 9

Fig. 9 Dynamics of one-color (γ = 1) vector grey solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at a particular propagation distance z = 4 and the end of the propagation distance z = 10. The initial parameters are B1 = 0.8, B2 = 0.796 and γ = 1.

Download Full Size | PPT Slide | PDF

6. Conclusion

In conclusion, we investigated the stability of two-color vector dark solitons in a nonlinear self-defocusing media. We obtained the approximate solutions of the two-color vector dark solitons using the variational method. Propagation dynamics of the two-color vector dark solitons were numerically demonstrated with split step Fourier transform method. Numerical results showed that, when γ = 1, the vector dark/grey solitons will be stable with their beam widths remain unchanged during the propagation. Otherwise, the two-color dark/grey solitons are always unstable due to different diffraction coefficients when γ ≠ 1.

Funding

National Natural Science Foundation of China (11504226).

References

1. G. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286(5444), 1518–1523 (1999). [CrossRef]   [PubMed]  

2. Yuri S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, (2003).

3. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Phys. JEPT 38, 248–253 (1974).

4. R. Radhakrishnan and M. Lakshmanan, “Bright and dark soliton solutions to coupled nonlinear Schrodinger equations,” J. Phys. A 28(9), 2683–2692 (1995). [CrossRef]  

5. A. P. Sheppard and Y. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997). [CrossRef]  

6. B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrodinger equation with non-vanishing boundary conditions,” J. Math. Phys. 47(6), 063508 (2006). [CrossRef]  

7. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996). [CrossRef]   [PubMed]  

8. G. A. Swartzlander Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991). [CrossRef]   [PubMed]  

9. Yuri S. Kivshar and Barry Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2–3), 81–197 (1998). [CrossRef]  

10. Yuri S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron 29(1), 250–264 (1993). [CrossRef]  

11. Yu. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18(5), 337–339 (1993). [CrossRef]   [PubMed]  

12. M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49(5), 4512–4518 (1994). [CrossRef]  

13. M. Haelterman and A. E Sheppard, “Extended modulational instability and new type of solitary wave in coupled nonlinear Schrodinger equations,” Phys. Lett. A 185(3), 265–272 (1994). [CrossRef]  

14. A. P. Sheppard and Yu. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997). [CrossRef]  

15. W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013). [CrossRef]  

16. R. Radhakrishnan and K. Aravinthan, “Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media,” Phys. Rev. E 75(2), 066605 (2007). [CrossRef]  

17. E. Seve, G. Millot, and S. Wabnitz, “Dark-soliton-like pulse-train generation from induced modulational polarization instability in a birefringent fiber,” Opt. Lett. 23(7), 511–513 (1998). [CrossRef]  

18. E. Seve, G. Millot, S. Wabnitz, T. Sylvestre, and H. Maillotte, “Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber,” J. Opt. Soc. Am. B 16(10), 1642–1650 (1999). [CrossRef]  

19. Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, and Y. S. Kivshar, “Coupled photorefractive spatial-soliton pairs,” J. Opt. Soc. Am. B 14(11), 3066–3077 (1997). [CrossRef]  

20. H. T. Tran and R.A. Sammut, “Instability of two-frequency dark waves in self-defocussing media,” Opt. Commun. 119(5–6), 583–586 (1995). [CrossRef]  

21. H. T. Tran, R.A. Sammut, and W. Samir, “Multi-frequency spatial solitons in kerr media,” Opt. Commun. 113(1–3), 292–304 (1994). [CrossRef]  

22. H. T. Tran and R. A. Sammut, “Families of multiwavelength spatial solitons in nonlinear Kerr media,” Phys. Rev. A 52(4), 3170–3175 (1995). [CrossRef]   [PubMed]  

23. D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004). [CrossRef]   [PubMed]  

24. W.-W. Hsiang, C.-H. Chang, C.-P. Cheng, and Y. Lai, “Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser,” Opt. Lett. 34(13), 1967–1969 (2009). [CrossRef]   [PubMed]  

25. X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure,” Opt. Express 17(19), 16877–16884 (2009). [CrossRef]   [PubMed]  

26. A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19(20), 1612–1614 (1994). [CrossRef]   [PubMed]  

27. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995). [CrossRef]   [PubMed]  

28. Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002). [CrossRef]  

29. Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004). [CrossRef]   [PubMed]  

30. H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007). [CrossRef]  

31. M. I. Molina and Y. S. Kivshar, “Two-color surface solitons in two-dimensional quadratic photonic lattices,” J. Opt. Soc. Am. B 26(8), 1545–1548 (2009). [CrossRef]  

32. Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005). [CrossRef]  

33. Z. Xu, M. I. Molina, and Y. S. Kivshar, “Interface solitons in quadratic nonlinear photonic lattices,” Phys. Rev. A 80(5), 053827 (2009). [CrossRef]  

34. F. Baronio, S. Chen, and D. Mihalache, “Two-color walking Peregrine solitary waves,” Opt. Lett. 42(18), 3514–3517 (2017). [CrossRef]   [PubMed]  

35. Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008). [CrossRef]  

36. A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006). [CrossRef]   [PubMed]  

37. B. D. Skuse and N. F. Smyth, “Two-color vector-soliton interactions in nematic liquid crystals in the local response regime,” Phys. Rev. A 77(1), 013817 (2008). [CrossRef]  

38. G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Phys. Rev. A 78(1), 013832 (2008). [CrossRef]  

39. A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009). [CrossRef]  

40. Y. Izdebskaya, G. Assanto, and W. Krolikowski, “Observation of stable-vector vortex solitons,” Opt. Lett. 40(17), 4182–4185 (2015). [CrossRef]   [PubMed]  

41. A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “On the co-existence of IR and UV optical filaments,” J. Phys. B: At. Mol. Opt. Phys. 48(9), 094021 (2015). [CrossRef]  

42. J. Doussot, P. Bejot, and O. Faucher, “Two-color resonant filamentation in gases,” Phys. Rev. A 94(1), 013805 (2016). [CrossRef]  

43. A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017). [CrossRef]  

44. Yuri S. Kivshar and W. Krolikowski, “Lagrangian approach for dark solitons,” Opt. Commun. 114(3–4), 353–362 (1995). [CrossRef]  

45. Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytical theory of dark nonlocal solitons,” Opt. Lett. 35(13), 2152–2154 (2010). [CrossRef]   [PubMed]  

46. L. Chen, Q. Wang, M. Shen, H. Zhao, Y.-Y. Lin, C.-C. Jeng, R.-K. Lee, and W. Krolikowski, “Nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 38(1), 13–15 (2013). [CrossRef]   [PubMed]  

47. Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013). [CrossRef]  

48. W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 39(7), 1764–1767 (2014). [CrossRef]   [PubMed]  

49. I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004). [CrossRef]  

50. I. V. Barashenkov, “Stability criterion for dark solitons,” Phys. Rev. Lett. 77(7), 1193–1197 (1996). [CrossRef]   [PubMed]  

51. M Facão and MI Carvalho, “Stability of dark screening solitons in photorefractive media,” Theor. Math. Phys. 160(1), 917–924 (2009). [CrossRef]  

52. J. Yang, “Newton-conjugate gradient methods for solitary wave computations,” J. Comp. Phys. 228(18), 7007–7024 (2009). [CrossRef]  

53. G. Assanto, J. Michael, L. MacNeil, and N. F. Smyth, “Diffraction-induced instability of coupled dark solitary waves,” Opt. Lett. 40(8), 1771–1774 (2015). [CrossRef]   [PubMed]  

References

  • View by:

  1. G. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286(5444), 1518–1523 (1999).
    [Crossref] [PubMed]
  2. Yuri S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, (2003).
  3. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Phys. JEPT 38, 248–253 (1974).
  4. R. Radhakrishnan and M. Lakshmanan, “Bright and dark soliton solutions to coupled nonlinear Schrodinger equations,” J. Phys. A 28(9), 2683–2692 (1995).
    [Crossref]
  5. A. P. Sheppard and Y. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
    [Crossref]
  6. B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrodinger equation with non-vanishing boundary conditions,” J. Math. Phys. 47(6), 063508 (2006).
    [Crossref]
  7. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996).
    [Crossref] [PubMed]
  8. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
    [Crossref] [PubMed]
  9. Yuri S. Kivshar and Barry Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2–3), 81–197 (1998).
    [Crossref]
  10. Yuri S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron 29(1), 250–264 (1993).
    [Crossref]
  11. Yu. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18(5), 337–339 (1993).
    [Crossref] [PubMed]
  12. M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49(5), 4512–4518 (1994).
    [Crossref]
  13. M. Haelterman and A. E Sheppard, “Extended modulational instability and new type of solitary wave in coupled nonlinear Schrodinger equations,” Phys. Lett. A 185(3), 265–272 (1994).
    [Crossref]
  14. A. P. Sheppard and Yu. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
    [Crossref]
  15. W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013).
    [Crossref]
  16. R. Radhakrishnan and K. Aravinthan, “Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media,” Phys. Rev. E 75(2), 066605 (2007).
    [Crossref]
  17. E. Seve, G. Millot, and S. Wabnitz, “Dark-soliton-like pulse-train generation from induced modulational polarization instability in a birefringent fiber,” Opt. Lett. 23(7), 511–513 (1998).
    [Crossref]
  18. E. Seve, G. Millot, S. Wabnitz, T. Sylvestre, and H. Maillotte, “Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber,” J. Opt. Soc. Am. B 16(10), 1642–1650 (1999).
    [Crossref]
  19. Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, and Y. S. Kivshar, “Coupled photorefractive spatial-soliton pairs,” J. Opt. Soc. Am. B 14(11), 3066–3077 (1997).
    [Crossref]
  20. H. T. Tran and R.A. Sammut, “Instability of two-frequency dark waves in self-defocussing media,” Opt. Commun. 119(5–6), 583–586 (1995).
    [Crossref]
  21. H. T. Tran, R.A. Sammut, and W. Samir, “Multi-frequency spatial solitons in kerr media,” Opt. Commun. 113(1–3), 292–304 (1994).
    [Crossref]
  22. H. T. Tran and R. A. Sammut, “Families of multiwavelength spatial solitons in nonlinear Kerr media,” Phys. Rev. A 52(4), 3170–3175 (1995).
    [Crossref] [PubMed]
  23. D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004).
    [Crossref] [PubMed]
  24. W.-W. Hsiang, C.-H. Chang, C.-P. Cheng, and Y. Lai, “Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser,” Opt. Lett. 34(13), 1967–1969 (2009).
    [Crossref] [PubMed]
  25. X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure,” Opt. Express 17(19), 16877–16884 (2009).
    [Crossref] [PubMed]
  26. A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19(20), 1612–1614 (1994).
    [Crossref] [PubMed]
  27. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
    [Crossref] [PubMed]
  28. Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002).
    [Crossref]
  29. Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
    [Crossref] [PubMed]
  30. H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
    [Crossref]
  31. M. I. Molina and Y. S. Kivshar, “Two-color surface solitons in two-dimensional quadratic photonic lattices,” J. Opt. Soc. Am. B 26(8), 1545–1548 (2009).
    [Crossref]
  32. Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
    [Crossref]
  33. Z. Xu, M. I. Molina, and Y. S. Kivshar, “Interface solitons in quadratic nonlinear photonic lattices,” Phys. Rev. A 80(5), 053827 (2009).
    [Crossref]
  34. F. Baronio, S. Chen, and D. Mihalache, “Two-color walking Peregrine solitary waves,” Opt. Lett. 42(18), 3514–3517 (2017).
    [Crossref] [PubMed]
  35. Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008).
    [Crossref]
  36. A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
    [Crossref] [PubMed]
  37. B. D. Skuse and N. F. Smyth, “Two-color vector-soliton interactions in nematic liquid crystals in the local response regime,” Phys. Rev. A 77(1), 013817 (2008).
    [Crossref]
  38. G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Phys. Rev. A 78(1), 013832 (2008).
    [Crossref]
  39. A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009).
    [Crossref]
  40. Y. Izdebskaya, G. Assanto, and W. Krolikowski, “Observation of stable-vector vortex solitons,” Opt. Lett. 40(17), 4182–4185 (2015).
    [Crossref] [PubMed]
  41. A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “On the co-existence of IR and UV optical filaments,” J. Phys. B: At. Mol. Opt. Phys. 48(9), 094021 (2015).
    [Crossref]
  42. J. Doussot, P. Bejot, and O. Faucher, “Two-color resonant filamentation in gases,” Phys. Rev. A 94(1), 013805 (2016).
    [Crossref]
  43. A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017).
    [Crossref]
  44. Yuri S. Kivshar and W. Krolikowski, “Lagrangian approach for dark solitons,” Opt. Commun. 114(3–4), 353–362 (1995).
    [Crossref]
  45. Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytical theory of dark nonlocal solitons,” Opt. Lett. 35(13), 2152–2154 (2010).
    [Crossref] [PubMed]
  46. L. Chen, Q. Wang, M. Shen, H. Zhao, Y.-Y. Lin, C.-C. Jeng, R.-K. Lee, and W. Krolikowski, “Nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 38(1), 13–15 (2013).
    [Crossref] [PubMed]
  47. Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013).
    [Crossref]
  48. W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 39(7), 1764–1767 (2014).
    [Crossref] [PubMed]
  49. I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
    [Crossref]
  50. I. V. Barashenkov, “Stability criterion for dark solitons,” Phys. Rev. Lett. 77(7), 1193–1197 (1996).
    [Crossref] [PubMed]
  51. M Facão and MI Carvalho, “Stability of dark screening solitons in photorefractive media,” Theor. Math. Phys. 160(1), 917–924 (2009).
    [Crossref]
  52. J. Yang, “Newton-conjugate gradient methods for solitary wave computations,” J. Comp. Phys. 228(18), 7007–7024 (2009).
    [Crossref]
  53. G. Assanto, J. Michael, L. MacNeil, and N. F. Smyth, “Diffraction-induced instability of coupled dark solitary waves,” Opt. Lett. 40(8), 1771–1774 (2015).
    [Crossref] [PubMed]

2017 (2)

F. Baronio, S. Chen, and D. Mihalache, “Two-color walking Peregrine solitary waves,” Opt. Lett. 42(18), 3514–3517 (2017).
[Crossref] [PubMed]

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017).
[Crossref]

2016 (1)

J. Doussot, P. Bejot, and O. Faucher, “Two-color resonant filamentation in gases,” Phys. Rev. A 94(1), 013805 (2016).
[Crossref]

2015 (3)

2014 (1)

2013 (3)

L. Chen, Q. Wang, M. Shen, H. Zhao, Y.-Y. Lin, C.-C. Jeng, R.-K. Lee, and W. Krolikowski, “Nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 38(1), 13–15 (2013).
[Crossref] [PubMed]

Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013).
[Crossref]

W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013).
[Crossref]

2010 (1)

2009 (7)

M Facão and MI Carvalho, “Stability of dark screening solitons in photorefractive media,” Theor. Math. Phys. 160(1), 917–924 (2009).
[Crossref]

J. Yang, “Newton-conjugate gradient methods for solitary wave computations,” J. Comp. Phys. 228(18), 7007–7024 (2009).
[Crossref]

A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009).
[Crossref]

M. I. Molina and Y. S. Kivshar, “Two-color surface solitons in two-dimensional quadratic photonic lattices,” J. Opt. Soc. Am. B 26(8), 1545–1548 (2009).
[Crossref]

Z. Xu, M. I. Molina, and Y. S. Kivshar, “Interface solitons in quadratic nonlinear photonic lattices,” Phys. Rev. A 80(5), 053827 (2009).
[Crossref]

W.-W. Hsiang, C.-H. Chang, C.-P. Cheng, and Y. Lai, “Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser,” Opt. Lett. 34(13), 1967–1969 (2009).
[Crossref] [PubMed]

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure,” Opt. Express 17(19), 16877–16884 (2009).
[Crossref] [PubMed]

2008 (3)

Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008).
[Crossref]

B. D. Skuse and N. F. Smyth, “Two-color vector-soliton interactions in nematic liquid crystals in the local response regime,” Phys. Rev. A 77(1), 013817 (2008).
[Crossref]

G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Phys. Rev. A 78(1), 013832 (2008).
[Crossref]

2007 (2)

H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
[Crossref]

R. Radhakrishnan and K. Aravinthan, “Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media,” Phys. Rev. E 75(2), 066605 (2007).
[Crossref]

2006 (2)

B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrodinger equation with non-vanishing boundary conditions,” J. Math. Phys. 47(6), 063508 (2006).
[Crossref]

A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
[Crossref] [PubMed]

2005 (1)

Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
[Crossref]

2004 (3)

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004).
[Crossref] [PubMed]

Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
[Crossref] [PubMed]

I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
[Crossref]

2002 (1)

Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002).
[Crossref]

1999 (2)

1998 (2)

1997 (3)

A. P. Sheppard and Y. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, and Y. S. Kivshar, “Coupled photorefractive spatial-soliton pairs,” J. Opt. Soc. Am. B 14(11), 3066–3077 (1997).
[Crossref]

A. P. Sheppard and Yu. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

1996 (2)

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996).
[Crossref] [PubMed]

I. V. Barashenkov, “Stability criterion for dark solitons,” Phys. Rev. Lett. 77(7), 1193–1197 (1996).
[Crossref] [PubMed]

1995 (5)

Yuri S. Kivshar and W. Krolikowski, “Lagrangian approach for dark solitons,” Opt. Commun. 114(3–4), 353–362 (1995).
[Crossref]

R. Radhakrishnan and M. Lakshmanan, “Bright and dark soliton solutions to coupled nonlinear Schrodinger equations,” J. Phys. A 28(9), 2683–2692 (1995).
[Crossref]

H. T. Tran and R.A. Sammut, “Instability of two-frequency dark waves in self-defocussing media,” Opt. Commun. 119(5–6), 583–586 (1995).
[Crossref]

H. T. Tran and R. A. Sammut, “Families of multiwavelength spatial solitons in nonlinear Kerr media,” Phys. Rev. A 52(4), 3170–3175 (1995).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

1994 (4)

A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19(20), 1612–1614 (1994).
[Crossref] [PubMed]

H. T. Tran, R.A. Sammut, and W. Samir, “Multi-frequency spatial solitons in kerr media,” Opt. Commun. 113(1–3), 292–304 (1994).
[Crossref]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49(5), 4512–4518 (1994).
[Crossref]

M. Haelterman and A. E Sheppard, “Extended modulational instability and new type of solitary wave in coupled nonlinear Schrodinger equations,” Phys. Lett. A 185(3), 265–272 (1994).
[Crossref]

1993 (2)

Yuri S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron 29(1), 250–264 (1993).
[Crossref]

Yu. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18(5), 337–339 (1993).
[Crossref] [PubMed]

1991 (1)

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

1974 (1)

S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Phys. JEPT 38, 248–253 (1974).

Ablowitz, M. J.

B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrodinger equation with non-vanishing boundary conditions,” J. Math. Phys. 47(6), 063508 (2006).
[Crossref]

Aceves, A. B.

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017).
[Crossref]

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “On the co-existence of IR and UV optical filaments,” J. Phys. B: At. Mol. Opt. Phys. 48(9), 094021 (2015).
[Crossref]

Agrawal, G. P.

Yuri S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, (2003).

Aitchison, J. S.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996).
[Crossref] [PubMed]

Akhmediev, N. N.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996).
[Crossref] [PubMed]

Alberucci, A.

A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
[Crossref] [PubMed]

Andersen, D. R.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Aravinthan, K.

R. Radhakrishnan and K. Aravinthan, “Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media,” Phys. Rev. E 75(2), 066605 (2007).
[Crossref]

Arissian, L.

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017).
[Crossref]

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “On the co-existence of IR and UV optical filaments,” J. Phys. B: At. Mol. Opt. Phys. 48(9), 094021 (2015).
[Crossref]

Ashihara, S.

Assanto, G.

Y. Izdebskaya, G. Assanto, and W. Krolikowski, “Observation of stable-vector vortex solitons,” Opt. Lett. 40(17), 4182–4185 (2015).
[Crossref] [PubMed]

G. Assanto, J. Michael, L. MacNeil, and N. F. Smyth, “Diffraction-induced instability of coupled dark solitary waves,” Opt. Lett. 40(8), 1771–1774 (2015).
[Crossref] [PubMed]

G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Phys. Rev. A 78(1), 013832 (2008).
[Crossref]

A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
[Crossref] [PubMed]

Bang, O.

Barashenkov, I. V.

I. V. Barashenkov, “Stability criterion for dark solitons,” Phys. Rev. Lett. 77(7), 1193–1197 (1996).
[Crossref] [PubMed]

Baronio, F.

Bejot, P.

J. Doussot, P. Bejot, and O. Faucher, “Two-color resonant filamentation in gases,” Phys. Rev. A 94(1), 013805 (2016).
[Crossref]

Benabid, F.

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004).
[Crossref] [PubMed]

Biancalana, F.

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004).
[Crossref] [PubMed]

Biondini, G.

B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrodinger equation with non-vanishing boundary conditions,” J. Math. Phys. 47(6), 063508 (2006).
[Crossref]

Bird, D. M.

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004).
[Crossref] [PubMed]

Buryak, A. V.

Carretero-Gonzalez, R.

H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
[Crossref]

Carvalho, MI

M Facão and MI Carvalho, “Stability of dark screening solitons in photorefractive media,” Theor. Math. Phys. 160(1), 917–924 (2009).
[Crossref]

Cha, M.

Chang, C.-H.

Chen, L.

Chen, S.

Chen, W.

W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 39(7), 1764–1767 (2014).
[Crossref] [PubMed]

W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013).
[Crossref]

Chen, Y.

Chen, Z.

Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013).
[Crossref]

Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, and Y. S. Kivshar, “Coupled photorefractive spatial-soliton pairs,” J. Opt. Soc. Am. B 14(11), 3066–3077 (1997).
[Crossref]

Cheng, C.-P.

Christodoulides, D. N.

Coskun, T. H.

Crasovan, L.-C.

Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
[Crossref]

Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002).
[Crossref]

Diels, J.-C.

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017).
[Crossref]

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “On the co-existence of IR and UV optical filaments,” J. Phys. B: At. Mol. Opt. Phys. 48(9), 094021 (2015).
[Crossref]

Doussot, J.

J. Doussot, P. Bejot, and O. Faucher, “Two-color resonant filamentation in gases,” Phys. Rev. A 94(1), 013805 (2016).
[Crossref]

Dyadyusha, A.

A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
[Crossref] [PubMed]

Egorov, A. A.

Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
[Crossref] [PubMed]

Facão, M

M Facão and MI Carvalho, “Stability of dark screening solitons in photorefractive media,” Theor. Math. Phys. 160(1), 917–924 (2009).
[Crossref]

Faucher, O.

J. Doussot, P. Bejot, and O. Faucher, “Two-color resonant filamentation in gases,” Phys. Rev. A 94(1), 013805 (2016).
[Crossref]

Frantzeskakis, D. J.

H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
[Crossref]

I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
[Crossref]

Haelterman, M.

M. Haelterman and A. E Sheppard, “Extended modulational instability and new type of solitary wave in coupled nonlinear Schrodinger equations,” Phys. Lett. A 185(3), 265–272 (1994).
[Crossref]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49(5), 4512–4518 (1994).
[Crossref]

Hagan, D. J.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Hsiang, W.-W.

Izdebskaya, Y.

Jeng, C.-C.

Kaczmarek, M.

A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
[Crossref] [PubMed]

Kang, J. U.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996).
[Crossref] [PubMed]

Kaplan, A. E.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Kartashov, Y. V.

Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
[Crossref]

Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
[Crossref] [PubMed]

Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002).
[Crossref]

Kevrekidis, P. G.

H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
[Crossref]

I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
[Crossref]

Kivshar, Y. S.

M. I. Molina and Y. S. Kivshar, “Two-color surface solitons in two-dimensional quadratic photonic lattices,” J. Opt. Soc. Am. B 26(8), 1545–1548 (2009).
[Crossref]

Z. Xu, M. I. Molina, and Y. S. Kivshar, “Interface solitons in quadratic nonlinear photonic lattices,” Phys. Rev. A 80(5), 053827 (2009).
[Crossref]

A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009).
[Crossref]

A. P. Sheppard and Y. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, and Y. S. Kivshar, “Coupled photorefractive spatial-soliton pairs,” J. Opt. Soc. Am. B 14(11), 3066–3077 (1997).
[Crossref]

A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19(20), 1612–1614 (1994).
[Crossref] [PubMed]

Kivshar, Yu. S.

A. P. Sheppard and Yu. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

Yu. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18(5), 337–339 (1993).
[Crossref] [PubMed]

Kivshar, Yuri S.

Yuri S. Kivshar and Barry Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2–3), 81–197 (1998).
[Crossref]

Yuri S. Kivshar and W. Krolikowski, “Lagrangian approach for dark solitons,” Opt. Commun. 114(3–4), 353–362 (1995).
[Crossref]

Yuri S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron 29(1), 250–264 (1993).
[Crossref]

Yuri S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, (2003).

Kong, Q.

W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 39(7), 1764–1767 (2014).
[Crossref] [PubMed]

Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013).
[Crossref]

W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013).
[Crossref]

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytical theory of dark nonlocal solitons,” Opt. Lett. 35(13), 2152–2154 (2010).
[Crossref] [PubMed]

Kong, Qian

Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008).
[Crossref]

Krolikowski, W.

Lai, Y.

Lakshmanan, M.

R. Radhakrishnan and M. Lakshmanan, “Bright and dark soliton solutions to coupled nonlinear Schrodinger equations,” J. Phys. A 28(9), 2683–2692 (1995).
[Crossref]

Lee, R.-K.

Lee, Ray-Kuang

Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013).
[Crossref]

Lin, Y.-Y.

Luther-Davies, Barry

Yuri S. Kivshar and Barry Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2–3), 81–197 (1998).
[Crossref]

MacNeil, L.

Maillotte, H.

Malomed, B. A.

H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
[Crossref]

I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
[Crossref]

Manakov, S. V.

S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Phys. JEPT 38, 248–253 (1974).

Menyuk, C. R.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Michael, J.

Mihalache, D.

F. Baronio, S. Chen, and D. Mihalache, “Two-color walking Peregrine solitary waves,” Opt. Lett. 42(18), 3514–3517 (2017).
[Crossref] [PubMed]

Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
[Crossref]

Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002).
[Crossref]

Millot, G.

Minzoni, A. A.

A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009).
[Crossref]

Molina, M. I.

Z. Xu, M. I. Molina, and Y. S. Kivshar, “Interface solitons in quadratic nonlinear photonic lattices,” Phys. Rev. A 80(5), 053827 (2009).
[Crossref]

M. I. Molina and Y. S. Kivshar, “Two-color surface solitons in two-dimensional quadratic photonic lattices,” J. Opt. Soc. Am. B 26(8), 1545–1548 (2009).
[Crossref]

Nistazakis, H. E.

I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
[Crossref]

Papacharalampous, I. E.

I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
[Crossref]

Peccianti, M.

A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
[Crossref] [PubMed]

Prinari, B.

B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrodinger equation with non-vanishing boundary conditions,” J. Math. Phys. 47(6), 063508 (2006).
[Crossref]

Radhakrishnan, R.

R. Radhakrishnan and K. Aravinthan, “Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media,” Phys. Rev. E 75(2), 066605 (2007).
[Crossref]

R. Radhakrishnan and M. Lakshmanan, “Bright and dark soliton solutions to coupled nonlinear Schrodinger equations,” J. Phys. A 28(9), 2683–2692 (1995).
[Crossref]

Regan, J. J.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Samir, W.

H. T. Tran, R.A. Sammut, and W. Samir, “Multi-frequency spatial solitons in kerr media,” Opt. Commun. 113(1–3), 292–304 (1994).
[Crossref]

Sammut, R. A.

H. T. Tran and R. A. Sammut, “Families of multiwavelength spatial solitons in nonlinear Kerr media,” Phys. Rev. A 52(4), 3170–3175 (1995).
[Crossref] [PubMed]

Sammut, R.A.

H. T. Tran and R.A. Sammut, “Instability of two-frequency dark waves in self-defocussing media,” Opt. Commun. 119(5–6), 583–586 (1995).
[Crossref]

H. T. Tran, R.A. Sammut, and W. Samir, “Multi-frequency spatial solitons in kerr media,” Opt. Commun. 113(1–3), 292–304 (1994).
[Crossref]

Segev, M.

G. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286(5444), 1518–1523 (1999).
[Crossref] [PubMed]

Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, and Y. S. Kivshar, “Coupled photorefractive spatial-soliton pairs,” J. Opt. Soc. Am. B 14(11), 3066–3077 (1997).
[Crossref]

Seve, E.

Shen, M.

W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 39(7), 1764–1767 (2014).
[Crossref] [PubMed]

Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013).
[Crossref]

L. Chen, Q. Wang, M. Shen, H. Zhao, Y.-Y. Lin, C.-C. Jeng, R.-K. Lee, and W. Krolikowski, “Nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 38(1), 13–15 (2013).
[Crossref] [PubMed]

W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013).
[Crossref]

Shen, Ming

Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008).
[Crossref]

Sheppard, A. E

M. Haelterman and A. E Sheppard, “Extended modulational instability and new type of solitary wave in coupled nonlinear Schrodinger equations,” Phys. Lett. A 185(3), 265–272 (1994).
[Crossref]

Sheppard, A. P.

A. P. Sheppard and Yu. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

A. P. Sheppard and Y. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49(5), 4512–4518 (1994).
[Crossref]

Shi, J.

W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 39(7), 1764–1767 (2014).
[Crossref] [PubMed]

W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013).
[Crossref]

Shi, Jielong

Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008).
[Crossref]

Skryabin, D. V.

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004).
[Crossref] [PubMed]

Skuse, B. D.

B. D. Skuse and N. F. Smyth, “Two-color vector-soliton interactions in nematic liquid crystals in the local response regime,” Phys. Rev. A 77(1), 013817 (2008).
[Crossref]

Smyth, N. F.

G. Assanto, J. Michael, L. MacNeil, and N. F. Smyth, “Diffraction-induced instability of coupled dark solitary waves,” Opt. Lett. 40(8), 1771–1774 (2015).
[Crossref] [PubMed]

A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009).
[Crossref]

B. D. Skuse and N. F. Smyth, “Two-color vector-soliton interactions in nematic liquid crystals in the local response regime,” Phys. Rev. A 77(1), 013817 (2008).
[Crossref]

G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Phys. Rev. A 78(1), 013832 (2008).
[Crossref]

Stegeman, G.

G. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286(5444), 1518–1523 (1999).
[Crossref] [PubMed]

Stegeman, G. I.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Sukhinin, A.

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017).
[Crossref]

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “On the co-existence of IR and UV optical filaments,” J. Phys. B: At. Mol. Opt. Phys. 48(9), 094021 (2015).
[Crossref]

Susanto, H.

H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
[Crossref]

Swartzlander, G. A.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Sylvestre, T.

Torner, L.

Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
[Crossref]

Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
[Crossref] [PubMed]

Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002).
[Crossref]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Torruellas, W. E.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Tran, H. T.

H. T. Tran and R.A. Sammut, “Instability of two-frequency dark waves in self-defocussing media,” Opt. Commun. 119(5–6), 583–586 (1995).
[Crossref]

H. T. Tran and R. A. Sammut, “Families of multiwavelength spatial solitons in nonlinear Kerr media,” Phys. Rev. A 52(4), 3170–3175 (1995).
[Crossref] [PubMed]

H. T. Tran, R.A. Sammut, and W. Samir, “Multi-frequency spatial solitons in kerr media,” Opt. Commun. 113(1–3), 292–304 (1994).
[Crossref]

Turitsyn, S. K.

VanStryland, E. W.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Vysloukh, V. A.

Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
[Crossref] [PubMed]

Wabnitz, S.

Wang, Q.

Wang, Qi

Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008).
[Crossref]

Wang, T.

Wang, Z.

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure,” Opt. Express 17(19), 16877–16884 (2009).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Worthy, A. L.

G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Phys. Rev. A 78(1), 013832 (2008).
[Crossref]

Xu, Z.

A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009).
[Crossref]

Z. Xu, M. I. Molina, and Y. S. Kivshar, “Interface solitons in quadratic nonlinear photonic lattices,” Phys. Rev. A 80(5), 053827 (2009).
[Crossref]

Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
[Crossref]

Yang, J.

J. Yang, “Newton-conjugate gradient methods for solitary wave computations,” J. Comp. Phys. 228(18), 7007–7024 (2009).
[Crossref]

Yin, H.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

Zelenina, A. S.

Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
[Crossref] [PubMed]

Zeng, X.

Zhao, H.

IEEE J. Quantum Electron (1)

Yuri S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron 29(1), 250–264 (1993).
[Crossref]

J. Comp. Phys. (1)

J. Yang, “Newton-conjugate gradient methods for solitary wave computations,” J. Comp. Phys. 228(18), 7007–7024 (2009).
[Crossref]

J. Math. Phys. (1)

B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Schrodinger equation with non-vanishing boundary conditions,” J. Math. Phys. 47(6), 063508 (2006).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. A (1)

R. Radhakrishnan and M. Lakshmanan, “Bright and dark soliton solutions to coupled nonlinear Schrodinger equations,” J. Phys. A 28(9), 2683–2692 (1995).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “On the co-existence of IR and UV optical filaments,” J. Phys. B: At. Mol. Opt. Phys. 48(9), 094021 (2015).
[Crossref]

Opt. Commun. (3)

Yuri S. Kivshar and W. Krolikowski, “Lagrangian approach for dark solitons,” Opt. Commun. 114(3–4), 353–362 (1995).
[Crossref]

H. T. Tran and R.A. Sammut, “Instability of two-frequency dark waves in self-defocussing media,” Opt. Commun. 119(5–6), 583–586 (1995).
[Crossref]

H. T. Tran, R.A. Sammut, and W. Samir, “Multi-frequency spatial solitons in kerr media,” Opt. Commun. 113(1–3), 292–304 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (10)

A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19(20), 1612–1614 (1994).
[Crossref] [PubMed]

E. Seve, G. Millot, and S. Wabnitz, “Dark-soliton-like pulse-train generation from induced modulational polarization instability in a birefringent fiber,” Opt. Lett. 23(7), 511–513 (1998).
[Crossref]

W.-W. Hsiang, C.-H. Chang, C.-P. Cheng, and Y. Lai, “Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser,” Opt. Lett. 34(13), 1967–1969 (2009).
[Crossref] [PubMed]

F. Baronio, S. Chen, and D. Mihalache, “Two-color walking Peregrine solitary waves,” Opt. Lett. 42(18), 3514–3517 (2017).
[Crossref] [PubMed]

Y. Izdebskaya, G. Assanto, and W. Krolikowski, “Observation of stable-vector vortex solitons,” Opt. Lett. 40(17), 4182–4185 (2015).
[Crossref] [PubMed]

Yu. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18(5), 337–339 (1993).
[Crossref] [PubMed]

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytical theory of dark nonlocal solitons,” Opt. Lett. 35(13), 2152–2154 (2010).
[Crossref] [PubMed]

L. Chen, Q. Wang, M. Shen, H. Zhao, Y.-Y. Lin, C.-C. Jeng, R.-K. Lee, and W. Krolikowski, “Nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 38(1), 13–15 (2013).
[Crossref] [PubMed]

W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, and W. Krolikowski, “Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities,” Opt. Lett. 39(7), 1764–1767 (2014).
[Crossref] [PubMed]

G. Assanto, J. Michael, L. MacNeil, and N. F. Smyth, “Diffraction-induced instability of coupled dark solitary waves,” Opt. Lett. 40(8), 1771–1774 (2015).
[Crossref] [PubMed]

Phys. JEPT (1)

S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Phys. JEPT 38, 248–253 (1974).

Phys. Lett. A (1)

M. Haelterman and A. E Sheppard, “Extended modulational instability and new type of solitary wave in coupled nonlinear Schrodinger equations,” Phys. Lett. A 185(3), 265–272 (1994).
[Crossref]

Phys. Rep. (1)

Yuri S. Kivshar and Barry Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2–3), 81–197 (1998).
[Crossref]

Phys. Rev. A (10)

H. T. Tran and R. A. Sammut, “Families of multiwavelength spatial solitons in nonlinear Kerr media,” Phys. Rev. A 52(4), 3170–3175 (1995).
[Crossref] [PubMed]

Z. Xu, M. I. Molina, and Y. S. Kivshar, “Interface solitons in quadratic nonlinear photonic lattices,” Phys. Rev. A 80(5), 053827 (2009).
[Crossref]

B. D. Skuse and N. F. Smyth, “Two-color vector-soliton interactions in nematic liquid crystals in the local response regime,” Phys. Rev. A 77(1), 013817 (2008).
[Crossref]

G. Assanto, N. F. Smyth, and A. L. Worthy, “Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals,” Phys. Rev. A 78(1), 013832 (2008).
[Crossref]

A. A. Minzoni, N. F. Smyth, Z. Xu, and Y. S. Kivshar, “Stabilization of vortex-soliton beams in nematic liquid crystals,” Phys. Rev. A 79(6), 063808 (2009).
[Crossref]

Ming Shen, Qian Kong, Jielong Shi, and Qi Wang, “Incoherently coupled two-color Manakov vector solitons in nonlocal media,” Phys. Rev. A 77(1), 015811 (2008).
[Crossref]

W. Chen, Q. Kong, M. Shen, Q. Wang, and J. Shi, “Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media,” Phys. Rev. A 87(1), 013809 (2013).
[Crossref]

J. Doussot, P. Bejot, and O. Faucher, “Two-color resonant filamentation in gases,” Phys. Rev. A 94(1), 013805 (2016).
[Crossref]

A. Sukhinin, A. B. Aceves, J.-C. Diels, and L. Arissian, “Collapse events of two-color optical beams,” Phys. Rev. A 95(3), 031801(R) (2017).
[Crossref]

Q. Kong, M. Shen, Z. Chen, Q. Wang, Ray-Kuang Lee, and W. Krolikowski, “Dark solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 87(6), 063832 (2013).
[Crossref]

Phys. Rev. E (5)

R. Radhakrishnan and K. Aravinthan, “Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media,” Phys. Rev. E 75(2), 066605 (2007).
[Crossref]

Z. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Multicolor vortex solitons in two-dimensional photonic lattices,” Phys. Rev. E 71(1), 016616 (2005).
[Crossref]

A. P. Sheppard and Yu. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E 49(5), 4512–4518 (1994).
[Crossref]

A. P. Sheppard and Y. S. Kivshar, “Polarized dark solitons in isotropic Kerr media,” Phys. Rev. E 55(4), 4773–4782 (1997).
[Crossref]

Phys. Rev. Lett. (9)

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76(20), 3699–3702 (1996).
[Crossref] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66(12), 1583–1586 (1991).
[Crossref] [PubMed]

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93(14), 143907 (2004).
[Crossref] [PubMed]

A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Two-color vector solitons in nonlocal media,” Phys. Rev. Lett. 97(15), 153903 (2006).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74(25), 5036–5039 (1995).
[Crossref] [PubMed]

Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities,” Phys. Rev. Lett. 89(27), 273902 (2002).
[Crossref]

Y. V. Kartashov, A. A. Egorov, A. S. Zelenina, V. A. Vysloukh, and L. Torner, “Stable multicolor periodic-wave arrays,” Phys. Rev. Lett. 92(3), 033901 (2004).
[Crossref] [PubMed]

H. Susanto, P. G. Kevrekidis, R. Carretero-Gonzalez, B. A. Malomed, and D. J. Frantzeskakis, “Mobility of discrete solitons in quadratically nonlinear media,” Phys. Rev. Lett. 99(21), 214103 (2007).
[Crossref]

I. V. Barashenkov, “Stability criterion for dark solitons,” Phys. Rev. Lett. 77(7), 1193–1197 (1996).
[Crossref] [PubMed]

Phys. Scr. (1)

I. E. Papacharalampous, P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Elliptic dark solitons,” Phys. Scr. 69(1), 7–14 (2004).
[Crossref]

Science (1)

G. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286(5444), 1518–1523 (1999).
[Crossref] [PubMed]

Theor. Math. Phys. (1)

M Facão and MI Carvalho, “Stability of dark screening solitons in photorefractive media,” Theor. Math. Phys. 160(1), 917–924 (2009).
[Crossref]

Other (1)

Yuri S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, (2003).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Width (∝ D−1) of the two-color vector dark solitons versus the nonresonant coefficient γ with different values of B1 and B2.
Fig. 2
Fig. 2 Transverse velocities of the two-color vector dark solitons versus the nonresonant coefficient γ when B1 = B2. The dashed and solid lines represent the transverse velocities v1 and v2 of two soliton components E1 and E2, respectively.
Fig. 3
Fig. 3 Transverse velocities of the two-color vector dark solitons versus the nonresonant coefficient γ when B1B2. The dashed and solid lines represent the transverse velocities v1 and v2 of two soliton components E1 and E2, respectively.
Fig. 4
Fig. 4 Numerical solutions ψ(x) and ϕ(x) of the two-color vector dark solitons with different nonresonant coefficients (a) γ = 1 and (b) γ = 1.02, respectively.
Fig. 5
Fig. 5 Dynamics of two-color vector dark solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at the beginning (z = 0) and the end (z = 10) of the propagation distance. The initial parameters are B1 = B2 = 1 and γ = 1.
Fig. 6
Fig. 6 Dynamics of two-color vector dark solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at a particular propagation distance z = 4 and the end of the propagation distance z = 10. The initial parameters are B1 = B2 = 1 and γ = 1.02.
Fig. 7
Fig. 7 Dynamics of two-color vector grey solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons at the beginning (z = 0) and the end (z = 10) of the propagation distance. The initial parameters are B1 = B2 = 0.8 and γ = 1.
Fig. 8
Fig. 8 Dynamics of two-color vector grey solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at a particular propagation distance z = 4 and the end of the propagation distance z = 10. The initial parameters are B1 = B2 = 0.8 and γ = 1.02.
Fig. 9
Fig. 9 Dynamics of one-color (γ = 1) vector grey solitons (a) and its two components E1 (c), E2 (d) in nonlinear media. The intensity profiles of the vector solitons (b) at a particular propagation distance z = 4 and the end of the propagation distance z = 10. The initial parameters are B1 = 0.8, B2 = 0.796 and γ = 1.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

i E 1 z + γ 2 2 E 1 x 2 1 γ ( | E 1 | 2 + 2 | E 2 | 2 ) E 1 = 0 ,
i E 2 z + 1 2 2 E 2 x 2 ( 2 | E 1 | 2 + | E 2 | 2 ) E 2 = 0 ,
E 1 = B 1 tanh [ D ( x x 1 ) ] + i A 1 ,
E 2 = B 2 tanh [ D ( x x 2 ) ] + i A 2 .
L ˜ 1 = i 2 ( E 1 * E 1 z E 1 E 1 * z ) ( 1 1 | E 1 | 2 ) γ 2 | E 1 x | 2 1 2 γ ( | E 1 | 2 + 2 | E 2 | 2 3 ) ( | E 1 | 2 1 ) ,
L ˜ 2 = i 2 ( E 2 * E 2 z E 2 E 2 * z ) ( 1 1 | E 2 | 2 ) 1 2 | E 2 x | 2 1 2 ( 2 | E 1 | 2 + | E 2 | 2 3 ) ( | E 2 | 2 1 ) .
L 1 = 2 d x 1 d z [ A 1 B 1 + tan 1 ( B 1 A 1 ) ] 2 γ 3 B 1 2 D 2 B 1 2 ( B 1 2 + 2 B 2 2 ) 3 γ D ,
L 2 = 2 d x 2 d z [ A 2 B 2 + tan 1 ( B 2 A 2 ) ] 2 3 B 2 2 D 2 B 2 2 ( 2 B 1 2 + B 2 2 ) 3 D .
D 2 = B 1 2 ( B 1 2 + 2 B 2 2 ) γ 2 B 1 2 + γ B 2 2 + B 2 2 ( 2 B 1 2 + B 2 2 ) γ B 1 2 + B 2 2 ,
d x 1 d z = A 1 3 B 1 [ γ D + 2 ( B 1 2 + B 2 2 ) γ D + 2 B 2 2 D ] ,
d x 2 d z = A 2 3 B 2 [ D + 2 B 1 2 γ D + 2 ( B 1 2 + B 2 2 ) D ] .
γ 2 2 ψ x 2 + k ψ 1 γ ( | ψ | 2 + 2 | ϕ | 2 ) ψ = 0 ,
1 2 2 ϕ x 2 + k ϕ ( 2 | ψ | 2 + | ϕ | 2 ) ϕ = 0 ,

Metrics