Abstract

A dual-band polarization-independent coherent perfect absorber(CPA) based on metal-graphene nanostructure is proposed, which is composed of golden nanorings with different sizes on graphene monolayer. Based on the finite-difference time-domain (FDTD) solutions, coherent perfect absorptions of the metal-graphene CPA are achieved at frequencies of 50.54 THz and 43.60 THz, which are resulted from the excited surface plasmon resonance induced by different size nanorings. Through varying the relative phase of two incident countering-propagating beams, the absorption peaks are all-optically tuned from 98.3 % and 98.4 % to nearly 0, respectively. By changing the gate-controlled Fermi energy of the graphene layer, the resonance frequencies of the CPA are tuned simultaneously without changing the geometrical parameters. And polarization independence of the metal-graphene CPA is revealed due to the center symmetry of nanoring structure. The electrical tunability of resonance frequency and polarization independence enable the proposed CPA to be widely applied in optoelectronic and engineering technology areas for tunable active multiple-band regulation and control.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Perfect absorber, which based on metamaterial system working from single band to multi-band, has attracted much attention due to the excellent prospect for applications in thermal imaging, optoelectronics, photonics, and materials detection [1–3]. Recently, graphene has been introduced to design perfect absorbers because of its excellent properties such as electronical tunability and relatively low plasmonic losses [4–9]. Hybrid graphene-metal perfect absorbers with broadband [10] and dual-band operation [11,12] have been studied, which have outstanding features of widely frequency tunability, relatively high modulation depth and fast modulation speed [10, 13]. Importantly, coherent perfect absorber (CPA) has become a main concern of research due to the characteristic of all-optical modulation [14–16]. The theoretical analysis of the coherent perfect absorption was investigated with the scattering matrix by Stone’s group [17]. Afterwards the first coherent perfect absorber was realized in a silicon slab cavity by Wan’s group [18]. Then many kinds of coherent perfect absorbers with different nanostructures have been investigated [19–24], such as a free-standing corrugated metal film by suppressesing specular order and converting the incident energy into the SPs (surface plasmons) [25], transversely isotropic CPA of circular polarization beams in the chiral metamaterial slab to perform polarization control with constant output intensity [26] and so on. CPA with graphene of electrical tunability has also been explored. By employing a graphene film patterned with a periodical array of holes, tunable coherent perfect absorption in the mid-infrared range has been studied by Zhang’s group [27]. Using a graphene film patterned with periodical split ring, a high-speed gate-tunable CPA is demonstrated in the terahertz regime with the response time of ∼ 36 ps by Hu’s group [28]. By exploiting a suspending monolayer graphene, coherent perfect absorber is realized in a nonresonant manner by Fan’s group [29]. Electronically tunable CPA with graphene brings practical cababilities to optical detection and signal processing.

In this paper, the polarization-independent metal-graphene absorber, which contains golden nanorings of two different sizes on the graphene-covered SiO2 substrate, is proposed to realize dual-band coherent perfect absorption in mid-infrared region. The principle of coherent absorption is demonstrated by the scattering matrix and the properties of the metal-graphene CPA are analyzed by the finite-difference time-domain (FDTD) solutions. Due to the interaction of excited surface plasmon induced by golden nanorings with different sizes, the absorption peaks of the dual-band metal-graphene CPA are achieved at frequencies of 43.51 THz and 50.54 THz, which have been both enhanced compared with that of single size golden nanoring only structure. And the center symmetric nanoring structures lead to polarization independence of the metal-graphene CPA. Through changing the relative phase of two countering propagating incident beams, the coherent absorptions are all-optically modulated. By tuning the Fermi energy of graphene from 0.15 eV to 0.75 eV, the coherent absorption peaks of the dual-band metal-graphene CPA induced by big nanoring and small nanorings are modulated sensitively in a relative wide frequency band from 42.64 THz to 45.09 THz and 49.31 THz to 52.01 THz, respectively, which provides a very promising technology with convenience and sensitivity for applications such as tunable multi-band modulators, switches and detectors.

2. Structure design and theoretical backgrounds

The schematic of the tunable polarization-independent metal-graphene dual-band coherent perfect absorber is shown in Fig. 1, which contains two different sizes golden nanorings separated with the dielectric substrate SiO2 by a monolayer of graphene. The geometric parameters of unit cell of the CPA are shown in Fig. 1(b). The graphene layer is located at z = 0 on the SiO2 substrate and then the golden nanorings are put on the graphene layer. The thickness of golden nanoring is 80 nm. The smaller golden nanoring has the inner semi-diameter of Rsin = 550 nm and the outer semi-diameter of Rsout = 650 nm; the bigger golden nanoring has the inner semi-diameter of Rbin = 750 nm and the outer semi-diameter of Rbout = 950 nm. The center of small nanorings are put at the focus of the crossed diagonals made by four big nanorings and vice versa. The centers of neighbouring golden nanorings of identical size are all fixed at P = 5000 nm. The refractive index of SiO2 is taken to be 1.45. In order to apply voltage on graphene, the top gating method is used [30–33], of which the detailed electrode structure is shown in Fig. 1(a). The double-sided conductive tapes on the graphene layer are used as electrical contacts. Ion gel layer is set on the metal-graphene CPA. The double-sided top Au electrodes with upper SiO2 substrate are on the ion gel layer. The top gating scheme with high capacitance ion gel enables high magnitudes of electric fields to be formed near graphene, resulting in a shift in Fermi level from the Dirac point [31,33]. The top Au electrodes can be formed by photolithography [32] and the golden nanorings can be fabricated by electron beam evaporation [34]. Two coherent incident laser beams, I1 and I2, are illuminated on the CPA from opposite sides in the negative and positive z-axis direction, respectively. The relationship between I1 and I2 is I2 = αI1exp ( + ikz), where φ is the phase difference between I1 and I2, z indicates the phase reference point of I1 and I2, α is the relative amplitude of I2 compared with I1. O1 and O2 are the output beams scattering to the lower and upper side of the CPA.

 

Fig. 1 (a) Schematic of the dual-band metal-graphene CPA. The black dashed box represents a unit cell. (b) Top view of the unit cell.

Download Full Size | PPT Slide | PDF

When only one incident beam I1 is illuminated on the metal-graphene structure in the z-axis direction, the incoherent absorption A is derived as [27]:

A=2η22η.
where η is the special self-consistent amplitude related to the materials parameters and metal-graphene nanostructure. In the symmetry environment which the refractive indices are the same in upper and lower sides of the CPA, the combined reflection and transmission coeffcients of CPA are derived as r = η and t = 1 + η, respectively. When η = −0.5, r = −0.5, t = 0.5, the incoherent absorption reaches its maximum Amax = 0.5, which is called incoherent absorption limit.

When two coherent incident beams I1 and I2 impact on the CPA from opposite sides, which is defined as coherent illumination, the relationship between the input beams I1 and I2 and output beams O1 and O2 is described by scattering matrix:

(O2O1)=(r1,1t1,2t2,1r2,2)(I1I2)
The output beam O1 is the interference result between the transmitted light of I1 and the reflected light of I2, and so does O2. When the incoherent absorption limit is satisfied, r1,1 = r2,2 = −0.5, t1,2 = t2,1 = 0.5. And utilizing the relationship I2 = αI1exp ( + ikz) with z = 0, the coherent absorption Aco of the CPA is derived as [27] :
Aco=11+α22αcos(φ)1+α2
Aco can be tuned by changing α and φ. Especially, when α = 1, the coherent absorption Aco can be varied from the maximum Acomax = 1 to the minimum Aco−min = 0 when φ changes from 2 to (2N + 1)π.

3. Simulation results

The FDTD solutions (Lumerical Solutions, Inc.) are employed to numerically study the properties of the tunable polarization-independent metal-graphene dual-band CPA. In the FDTD simulation, an ideal model of the metal-graphene CPA with the semi-infinite SiO2 substrate has been utilized in which the ion gel layer has not been included. The simulation unit is a region of x span of 5000 nm, y span of 5000 nm and z span of 40 μm with periodical boundary condition. Two coherent incident beams I1 and I2 are illuminated on the ideal CPA model from opposite sides in the negative and positive z-axis direction, and the coherent beam I2 is set in the SiO2 substrate located at z = − 3.5 μm. The mesh accuracy in the simulation is set as 2. Additional precise meshes are set as 50 nm in x and y directions, and 5 nm in the z direction covering the range of the golden nanorings and graphene layer, which include the SiO2 substrate with thickness of 20 nm. The complex permittivity of Au is invoked from “Au (Gold) - Palik” material data [35] included in the FDTD database, and the surface conductivity of graphene σ is invoked from “C (graphene) - broadband” material model, which is computed from the Kubo formula:

σ(ω)=ie2(ω+2iΓ)π2[1(ω+2iΓ)20(fd()fd())d0fd()fd()(ω+2iΓ)24(/)2d]
where, fd() = (e(EF)/(kBT) + 1)−1, EF is the Fermi energy of graphene, ω is the angular frequency, Γ = 0.00099 eV is the scattering rate. The temperature is T = 300 K.

The spectrum characteristics of big-size golden nanoring only and small-size golden nanoring only structures on graphene layer are simulated by the FDTD solutions with Fermi energy EF = 0.35 eV. The unit cells of individual size golden nanoring only structures are shown in Fig. 2(e). The simulated transmission (T), reflection (R) and absorption (A = 1 − R − T) spectra of the big-size golden nanoring only structure are presented as the black, red and blue curves in Figs. 2(a) and 2(b), respectively. The absorption under incoherent illumination climbs to the maximum of Abigmax = 44.9 % at frequency of 43.51 THz shown as the blue curve in Fig. 2(a). The absorption peak is achieved due to the excited surface plasmon resonance induced by big nanorings at frequency of 43.51 THz where the incoherent absorption limit is satisfied with η = −0.5. Under coherent illumination with two countering propagating incident beams I1 and I2 with φ = 0 and α = 1, the absorption climbs to the maximum Acobigmax = 91.8 % at frequency of 43.51 THz where the frequency is the same as that of incoherent illumination shown as the blue curve. Meanwhile, the transmission and reflection spectra both decrease to near 0 at 43.51 THz shown as the black and red curves in Fig. 2(b). As I1 and I2 illuminate from opposite sides, the surface plasmon resonances are excited by the golden nanorings and interact with each other, leading to the coherent absorption peak. The simulated transmission (T), reflection (R) and absorption (A) spectra of the small-size golden nanoring only structure under incoherent illumination and coherent illumination are shown in Fig. 2(c) and 2(d), respectively. Similarly, coherent absorption climbs to the maximum with Acosmallmax = 94.8 % at frequency of 50.10 THz where incoherent absorption limit is satisfied.

 

Fig. 2 The simulated absorption (A), reflection (R) and transmission (T) spectra with Fermi energy EF = 0.35 eV under (a) incoherent illumination of big-size golden nanorings only structure, (b) coherent illumination of big-size golden nanorings only structure, (c) incoherent illumination of small-size golden nanorings only structure, (d) coherent illumination of small-size golden nanorings only structure. And (e) are the unit cell of the big-size golden nanoring only structure and small-size golden nanoring only structure.

Download Full Size | PPT Slide | PDF

The absorption spectra of metal-graphene dual-band CPA are simulated by the FDTD solutions with Fermi energy EF = 0.35 eV. Under coherent illumination of p polarized incident beams with φ = 0 and α = 1, two absorption peaks are achieved at resonance frequencies of 50.54 THz and 43.60 THz in the absorption spectrum, which are shown as the red curve in Fig. 3(a). The resonance frequencies at the double coherent absorption peaks are the same as that of incoherent illumination shown as the black curve in Fig. 3(a), where the incoherent absorption limits are both realized with η = −0.5. The excited surface plasmon resonances induced by small nanorings and big nanorings lead to the double absorption peaks of metal-graphene CPA. Compared with big-size golden nanorings only and small-size golden nanoring only structures, the resonance frequencies both blue shift while the absorption peaks rise up to Acosmallmax = 98.3 % and Acobigmax = 98.4 %, respectively. As the excited surface plasmon resonance induced by different sizes of nanorings interact with each other, coherent perfect absorption are realized at the resonance frequencies. The simulated absorption spectrum of coherent illumination of s polarized incident beams is also shown by the purple dash curve in Fig. 3(a), which nearly coincide with that of p polarized incident beams. The electrical field distributions of CPA in the xy-plane at resonance frequencies of 50.54 THz and 43.60 THz with p and s polarized incident beams are shown in Figs. 3(b) and 3(c), respectively. The electrical field distributions present as a face-to-face quarter moons shape, of which the direction changes from left-and-right to up-and-down as the polarization of incident beams vary from s to p for both big and small nanorings. Although the electric field distributions vary with different polarization of incident beams, the absorption spectrum remains the same due to the symmetry of the nanoring structure. Therefore the metal-graphene dual-band CPA is a polarization-independent device.

 

Fig. 3 (a) The simulated absorption spectra of the dual-band metal-graphene CPA under incoherent illumination with p polarization (black curve) and under coherent illumination with p polarization (red curve) and s polarization (purple dash curve). (b) The electric filed distribution at resonance frequencies under s polarization. (c) The electric filed distribution at resonance frequencies under p polarization.

Download Full Size | PPT Slide | PDF

The modulation of coherent absorption of the metal-graphene dual-band CPA with various phase differences φ between two countering propagating coherent beams is simulated by the FDTD solutions with Fermi energy EF = 0.35eV and the relative amplitude α of the incident beams is set to 1. The absorption spectra of the CPA with the change of phase difference φ from 0 to 2π are shown as the multicolor solid curves in Fig. 4, and the maximum coherent absorption Acosmallmax at resonance frequency of 50.54 THz induced by small nanorings and Acobigmax induced by big nanorings at resonance frequency of 43.60 THz with various phase difference φ are presented as the black and red dash-dotted curves, respectively. As φ increases from 0 to π, the maximum coherent absorption Acosmallmax and Acobigmax decline continuously from 98.3 % and 98.4 % to nearly 0, respectively; as φ increases from π to 2π gradually, Acosmallmax and Acobigmax both go up to nearly 98.0 % again from 0. The maximum coherent absorption at two resonance frequencies give a modulation contrast of 42.94 dB and 43.50 dB with φ, respectively. Especially, when φ = 2, the coherent perfect absorption are achieved at resonance frequencies of 50.54 THz and 43.60 THz. The maximum coherent absorption at two resonance frequencies both present as a function of cosine with phase difference φ, which is in accord with conclusions derived from Eq. (3). Altering the phase difference φ between two coherent beams leads to all-optical modulation of the dual-band metal-graphene CPA at the doublle resonance frequencies.

 

Fig. 4 The simulated absorption spectra of CPA with various phase difference φ. The black dash-dotted line is the maximum coherent absorption Acobigmax induced by small nanorings at frequency of 50.54 THz with various φ. The red dash-dotted line is the maximum coherent absorption Acosmallmax induced by big nanorings at frequency of 43.60 THz with various φ.

Download Full Size | PPT Slide | PDF

The absorption spectra of the metal-graphene dual-band CPA with various inner and outer semi-diameter of the golden nanoring are simulated by the FDTD simulations with Fermi energy EF = 0.35 eV. The absorption spectra with the change of semi-diameter of small nanoring are shown in Figs. 5(a) and 5(b), while the dimensions of the big golden nanoring remain unchanged. As the inner semi-diameter of small nanoring Rsin increases from 510 nm to 570 nm with fixed outer semi-diameter Rsout = 650 nm, the resonance frequency induced by the small golden nanoring red shifts from 54.04 THz to 49.51 THz and the coherent perfect absorption peak increases from 90.6 % to 99.0 %, which is shown in Fig. 5(a). As the outer semi-diameter of small nanoring Rsout decreases from 690 nm to 630 nm with fixed inner semi-diameter Rsin = 550 nm, the resonance frequency induced by the small golden nanoring red shifts from 52.93 THz to 49.94 THz and the coherent perfect absorption peak increases from 86.7 % to 99.2 %, which is shown in Fig. 5(b). When shortening the width of small nanoring Rs from 140 nm to 80 nm, the coupling of surface plasmon resonance between the inner and outer small nanoring wall enhances [36], the amplitude of the absorption peak increases and the resonance frequency induced by small nanoring red shifts and gets close to that of big nanoring, heightening the interaction of excited surface plasmon resonance between different sizes of nanorings. Therefore, the coherent perfect absorption peak induced by small nanorings increases, and that induced by big nanorings also varies, but not significantly. The absorption spectra with the change of semi-diameter of big nanoring are shown in Figs. 5(c) and 5(d), while the dimensions of the small golden nanoring remain unchanged. Similarly, as the inner semi-diameter of big nanoring Rbin increases from 720 nm to 810 nm with fixed Rbout = 950 nm, the resonance frequency induced by the big golden nanoring red shifts from 44.70 THz to 41.36 THz; as the outer semi-diameter of big nanoring Rbout decreases from 980 nm to 890 nm with fixed Rbin = 750 nm, the resonance frequency induced by the big golden nanoring red shifts from 45.03 THz to 42.17 THz. When widening the width of big nanoring Rb from 140 nm to 230 nm, the coupling of surface plasmon resonance between the inner and outer big nanoring wall weakens [36], the amplitude of the absorption peak decreases and the resonance frequency induced by big nanoring blue shifts and gets close to that of small nanoring, heightening the interaction of excited surface plasmon resonance between different sizes of nanorings. Due to the overall minor size of the small nanoring, the surface plasmon resonance induced by small nanoring is weak and easy to be influenced by the interaction of excited surface plasmon resonance between golden nanorings, resulting that the energy of excited surface plasmon resonance of small nanoring transfer to that of big nanoring. Therefore, the coheret perfect absorption peak induced by big nanorings keeps almost constant and that induced by small nanoring decreases a little, as shown in Figs. 5(c) and 5(d). The change of geometrical parameters of golden nanorings result in the variation of resonance frequency and coherent abosorption, leading to the spectrum positions for η = −0.5 shifted to maintain the coherent perfect absorption.

 

Fig. 5 The absorption spectra with (a) different inner semi-diameter of small nanoring, (b) different outer semi-diameter of small nanoring, (c) different inner semi-diameter of big nanoring, (d) different outer semi-diameter of big nanoring.

Download Full Size | PPT Slide | PDF

The absorption spectra of the metal-graphene dual-band CPA with various Fermi energies of the graphene layer are simulated by the FDTD solutions. As the Fermi energy increases from 0.15 eV to 0.75 eV, the resonance frequencies induced by the small nanorings and big nanorings in the simulated absorption spectra simultaneously blue shift in a relative wide frequency band from 49.31 THz to 52.01 THz and 42.64 THz to 45.09 THz, respectively, as shown in Fig. 6(a). The absorption spectra of the golden nanorings only structure and graphene layer only structure are presented as the red dashed curve and black dashed curve in Fig. 6(b), respectively. The absorption spectrum of the golden nanorings only structure has the similar shape as that in Fig. 6(a) but with different resonance frequencies. The absorption of graphene layer only structure is nearly zero as a function of frequency due to its characteristic of transparency and low absorption of light. In order to further analyze the effect of the introduced graphene layer, the electric field distributions of small and big nanorings along the diameters on the vertical section in the yz-plane which is shown in Fig. 1(a) without graphene layer and with graphene layer of various Fermi energies are simulated at frequencies of 50.00 THz and 43.17 THz, which is shown in Figs. 6(c)–6(h). Without graphene layer, the electric fields of surface plasmon resonance are concentrated around golden nanorings, as shown in Fig. 6(c) and 6(d). As the graphene layer is introduced, the electric fields of surface plasmon resonance enhance both in the graphene layer and around the golden nanorings. When the Fermi energy of graphene increases, the coupling of excited surface plasmon between the graphene layer and golden nanorings are changed, resulting in the further enhancement of electric fields in the graphene layer, as shown in Figs. 6(e)–6(h). Therefore, the resonance frequencies of the dual-band metal-graphene CPA are modulated. By increasing the Fermi energy of graphene layer, the coherent absorptions are tuned effectively in resonance frequency with a wide band without changing in amplitude. The spectrum positions for η = −0.5 at double absorption peaks are shifted simutaneously to preserve coherent perfect absorption, which leads to the active electrical tunability of the metal-graphene CPA [7–9].

 

Fig. 6 (a) The simulated absorption spectra of the metal-graphene CPA with different Fermi energies. (b) The simulated absorption spectra of the golden nanorings only structure and graphene layer only structure. The electrical field distributions (c–d) without graphene layer, (e–f) with Fermi energy EF = 0.35 eV, (g–h) with Fermi energy EF = 0.75 eV on the vertical section along the diameter of the big golden nanoring at 43.17 THz and small golden nanoring at 50.00 THz.

Download Full Size | PPT Slide | PDF

In our simulations, coherent perfect absorption are achieved at two frequency domains in the mid-infrared region due to the interference of surface plasmon resonance induced by nanorings with two different sizes. By employing golden nanorings with more than two different sizes, coherent perfect absorption at multiple frequency domains will be realized. Meanwhile, by introducing the graphene layer, coherent perfect absorption at double frequency domains is electronically controlled with the Fermi energy, which will be useful and benefical for tunable multi-band optical devices such as sensors, filters and switches.

4. Summary

In summary, a dynamically tunable polarization-independent dual-band metal-graphene CPA is proposed in the mid-infrared region by integrating golden nanorings with different sizes on the graphene layer. Based on FDTD solutions, the coherent perfect absorption are achieved at two different frequency domains, which are resulted from the interaction of surface plasmon resonance excited by golden nanorings with different sizses. The coherent absorptions are all-optically modulated through changing the phase difference between coherent beams. By introducing the graphene layer into the nanostructures, electronical tunability of the double resonance frequencies is realized instead of geometrical adjustment, which makes the proposed CPA efficient and convenient in applications for tunable active multiple-band optical modulators, switches and detectors.

Funding

National Natural Science Foundation of China (NSFC) (61675131, 61378067).

References and links

1. S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–11078 (2007). [CrossRef]  

2. B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017). [CrossRef]  

3. B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017). [CrossRef]   [PubMed]  

4. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008). [CrossRef]  

5. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014). [CrossRef]  

6. Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38, 5410–5413 (2013). [CrossRef]   [PubMed]  

7. S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40, 5239–5242 (2015). [CrossRef]   [PubMed]  

8. S. Abdollahramezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40, 5383–5386 (2015). [CrossRef]   [PubMed]  

9. K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 393–398 (2017). [CrossRef]  

10. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014). [CrossRef]  

11. Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

12. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015). [CrossRef]   [PubMed]  

13. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014). [CrossRef]  

14. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).

15. J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41, 2537–2540 (2016). [CrossRef]   [PubMed]  

16. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012). [CrossRef]   [PubMed]  

17. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010). [CrossRef]   [PubMed]  

18. W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011). [CrossRef]   [PubMed]  

19. G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014). [CrossRef]  

20. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011). [CrossRef]   [PubMed]  

21. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012). [CrossRef]   [PubMed]  

22. J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015). [CrossRef]   [PubMed]  

23. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015). [CrossRef]  

24. T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016). [CrossRef]  

25. S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012). [CrossRef]   [PubMed]  

26. Y. Ye, D. Hay, and Z. Shi, “Coherent perfect absorption in chiral metamaterials,” Opt. Lett. 41, 3359–3362 (2016). [CrossRef]   [PubMed]  

27. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014). [CrossRef]   [PubMed]  

28. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40, 5538–5541 (2015). [CrossRef]   [PubMed]  

29. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014). [CrossRef]   [PubMed]  

30. A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016). [CrossRef]  

31. O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016). [CrossRef]  

32. M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018). [CrossRef]  

33. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010). [CrossRef]   [PubMed]  

34. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013). [CrossRef]   [PubMed]  

35. E. D. Palik, Handbook of Optical Constants of Solids (Academic University, 1985).

36. Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–11078 (2007).
    [Crossref]
  2. B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
    [Crossref]
  3. B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
    [Crossref] [PubMed]
  4. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
    [Crossref]
  5. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
    [Crossref]
  6. Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38, 5410–5413 (2013).
    [Crossref] [PubMed]
  7. S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40, 5239–5242 (2015).
    [Crossref] [PubMed]
  8. S. Abdollahramezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40, 5383–5386 (2015).
    [Crossref] [PubMed]
  9. K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 393–398 (2017).
    [Crossref]
  10. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
    [Crossref]
  11. Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).
  12. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
    [Crossref] [PubMed]
  13. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
    [Crossref]
  14. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).
  15. J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41, 2537–2540 (2016).
    [Crossref] [PubMed]
  16. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012).
    [Crossref] [PubMed]
  17. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  18. W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [Crossref] [PubMed]
  19. G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
    [Crossref]
  20. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
    [Crossref] [PubMed]
  21. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
    [Crossref] [PubMed]
  22. J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
    [Crossref] [PubMed]
  23. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
    [Crossref]
  24. T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
    [Crossref]
  25. S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
    [Crossref] [PubMed]
  26. Y. Ye, D. Hay, and Z. Shi, “Coherent perfect absorption in chiral metamaterials,” Opt. Lett. 41, 3359–3362 (2016).
    [Crossref] [PubMed]
  27. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
    [Crossref] [PubMed]
  28. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40, 5538–5541 (2015).
    [Crossref] [PubMed]
  29. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
    [Crossref] [PubMed]
  30. A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
    [Crossref]
  31. O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
    [Crossref]
  32. M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
    [Crossref]
  33. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
    [Crossref] [PubMed]
  34. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
    [Crossref] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic University, 1985).
  36. Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
    [Crossref]

2018 (1)

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

2017 (3)

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 393–398 (2017).
[Crossref]

2016 (6)

J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41, 2537–2540 (2016).
[Crossref] [PubMed]

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

Y. Ye, D. Hay, and Z. Shi, “Coherent perfect absorption in chiral metamaterials,” Opt. Lett. 41, 3359–3362 (2016).
[Crossref] [PubMed]

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

2015 (7)

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40, 5538–5541 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40, 5239–5242 (2015).
[Crossref] [PubMed]

S. Abdollahramezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40, 5383–5386 (2015).
[Crossref] [PubMed]

2014 (6)

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref] [PubMed]

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22, 12524–12532 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38, 5410–5413 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).

2010 (2)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

2007 (1)

Abdollahramezani, S.

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Ackert, J. J.

Agarwal, G. S.

Ahn, J. H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Anwar, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Arik, K.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Ayga, A. M.

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Aygar, A. M.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Badsha, Md. A.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Balci, O.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Bechtel, HA.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Beere, H. E.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Bergman, K.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Bruck, R.

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).

Caglayan, H.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Cakmakyapan, S.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Capasso, F.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Chen, C. P.

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Chen, J.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Cho, J. H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Dadap, J. I.

Degl’Innocenti, R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Deshmukh, R.

Duan, T.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Dutta-Gupta, S.

Fan, Y.

Farajollahi, S.

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Gopal, A. V.

Grote, R. R.

Guo, C.

Gupta, S. D.

Habib, M.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

Hang, Z. H.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Hay, D.

Hofmann, S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Hong, B. H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Hou, B.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Hu, C.

Hu, X.

Huang, C.

Huang, X.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Hwangbo, C. K.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Jang, H.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Jessop, D. S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Jun, Y. C.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

Jun, Y.C.

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Kavehvash, Z.

Khavasi, A.

Khuye, B. X.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Kidambi, P. R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Kim, B. J.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Kim, K. W.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Kim, T. Y.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Kim, Y. Ju

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Knights, A. P.

Kocabas, C.

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Lai, Y.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Lam, V. D.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Lee, S. K.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Lee, S. Y.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

Lee, Y.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Li, H.

Li, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Li, T.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

li Kang, X.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Liu, K.

Liu, X.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Lu, W.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Luo, J.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Luo, X.

Lv, H.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Ma, X.

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Martin, O. J. F.

Muskens, O. L.

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 8, 27652–27661 (2011).

Nie, G.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Niu, G.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Osgood, R. M.

Ozbay, E.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Ozdemir, O.

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic University, 1985).

Pu, M.

Qin, S.

Rashed, A. R.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

Ritchie, D. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Rothenberg, J. M.

Sang, T.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Shah, Y. D.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Shen, M.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Shen, YR.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Shi, J.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Shi, Q.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Shi, Z.

Sibik, J.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Stone, A. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Stone, AD.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Tang, Y.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Tun, B. S.

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Wang, B. X.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Wang, C.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Wang, G. Z.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Wang, J.

Wang, L. L.

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Wang, M.

Wei, Z.

Wu, P.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Xu, S.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Ye, W.

Ye, X.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Ye, Y.

Yi, Y.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Yi, Z.

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Yoon, J.

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Yuan, X.

Zeitler, J. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Zhang, F.

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Zhang, J.

Zhang, X.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

Zhang, Z.

Zhao, Q.

Zhao, Z.

Zhou, M.

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Zhu, Z.

ACS Nano (1)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene,” ACS Nano 8, 2548–2554 (2014).
[Crossref]

ACS Photonics (1)

A. M. Aygar, O. Balci, S. Cakmakyapan, C. Kocabas, H. Caglayan, and E. Ozbay, “Comparison of back and top gating schemes with tunable graphene fractal metasurfaces,” ACS Photonics 3, 2303–2307 (2016).
[Crossref]

Appl. Phys. Lett. (1)

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105, 201909 (2014).
[Crossref]

Carbon (1)

O. Ozdemir, A. M. Ayga, O. Balci, C. Kocabas, H. Caglayan, and E. Ozbay, “Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene,” Carbon 108, 515–520 (2016).
[Crossref]

Chin. Phys. Lett. (1)

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32, 169–172 (2015).

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Nano Lett. (3)

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett. 10, 3464–3466 (2010).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6256–6532 (2014).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517(2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, HA. Bechtel, X. Liang, A. Zettl, YR. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40, 5538–5541 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref] [PubMed]

S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
[Crossref] [PubMed]

Y. Ye, D. Hay, and Z. Shi, “Coherent perfect absorption in chiral metamaterials,” Opt. Lett. 41, 3359–3362 (2016).
[Crossref] [PubMed]

J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41, 2537–2540 (2016).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38, 5410–5413 (2013).
[Crossref] [PubMed]

S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalines,” Opt. Lett. 40, 5239–5242 (2015).
[Crossref] [PubMed]

S. Abdollahramezani, K. Arik, S. Farajollahi, A. Khavasi, and Z. Kavehvash, “Beam manipulating by gate-tunable graphene-based metasurfaces,” Opt. Lett. 40, 5383–5386 (2015).
[Crossref] [PubMed]

S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–11078 (2007).
[Crossref]

Opt. Material Express (1)

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Material Express 8, 1069–1074 (2018).
[Crossref]

Phys. Rev. B (1)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91, 220301(R) (2015).
[Crossref]

Phys. Rev. Lett. (1)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Plasmonics (2)

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 393–398 (2017).
[Crossref]

Z. Yi, G. Niu, J. Chen, J. Luo, X. Liu, Y. Yi, T. Duan, X. li Kang, X. Ye, P. Wu, and Y. Tang, “Dipole, auadrupole, and octupole plasmon resonance modes in ag nanoring structure: local field enhancement in the visible and near infrared regions,” Plasmonics 11, 37–44 (2016).
[Crossref]

Sci. Rep. (5)

T. Y. Kim, Md. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-zear zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[Crossref]

B. S. Tun, B. X. Khuye, Y. Ju Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep. 7, 11507 (2017).
[Crossref]

B. X. Wang, G. Z. Wang, T. Sang, and L. L. Wang, “Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure,” Sci. Rep. 7, 41373 (2017).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[Crossref] [PubMed]

J. Yoon, M. Zhou, Md. A. Badsha, T. Y. Kim, Y.C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, AD. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic University, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the dual-band metal-graphene CPA. The black dashed box represents a unit cell. (b) Top view of the unit cell.
Fig. 2
Fig. 2 The simulated absorption (A), reflection (R) and transmission (T) spectra with Fermi energy EF = 0.35 eV under (a) incoherent illumination of big-size golden nanorings only structure, (b) coherent illumination of big-size golden nanorings only structure, (c) incoherent illumination of small-size golden nanorings only structure, (d) coherent illumination of small-size golden nanorings only structure. And (e) are the unit cell of the big-size golden nanoring only structure and small-size golden nanoring only structure.
Fig. 3
Fig. 3 (a) The simulated absorption spectra of the dual-band metal-graphene CPA under incoherent illumination with p polarization (black curve) and under coherent illumination with p polarization (red curve) and s polarization (purple dash curve). (b) The electric filed distribution at resonance frequencies under s polarization. (c) The electric filed distribution at resonance frequencies under p polarization.
Fig. 4
Fig. 4 The simulated absorption spectra of CPA with various phase difference φ. The black dash-dotted line is the maximum coherent absorption Acobigmax induced by small nanorings at frequency of 50.54 THz with various φ. The red dash-dotted line is the maximum coherent absorption Acosmallmax induced by big nanorings at frequency of 43.60 THz with various φ.
Fig. 5
Fig. 5 The absorption spectra with (a) different inner semi-diameter of small nanoring, (b) different outer semi-diameter of small nanoring, (c) different inner semi-diameter of big nanoring, (d) different outer semi-diameter of big nanoring.
Fig. 6
Fig. 6 (a) The simulated absorption spectra of the metal-graphene CPA with different Fermi energies. (b) The simulated absorption spectra of the golden nanorings only structure and graphene layer only structure. The electrical field distributions (c–d) without graphene layer, (e–f) with Fermi energy EF = 0.35 eV, (g–h) with Fermi energy EF = 0.75 eV on the vertical section along the diameter of the big golden nanoring at 43.17 THz and small golden nanoring at 50.00 THz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = 2 η 2 2 η .
( O 2 O 1 ) = ( r 1 , 1 t 1 , 2 t 2 , 1 r 2 , 2 ) ( I 1 I 2 )
A c o = 1 1 + α 2 2 α cos ( φ ) 1 + α 2
σ ( ω ) = i e 2 ( ω + 2 i Γ ) π 2 [ 1 ( ω + 2 i Γ ) 2 0 ( f d ( ) f d ( ) ) d 0 f d ( ) f d ( ) ( ω + 2 i Γ ) 2 4 ( / ) 2 d ]

Metrics