Abstract

Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) have recently become attractive materials for several optoelectronic applications, such as photodetection, light harvesting, phototransistors, light-emitting diodes, and lasers. Their bandgap lies in the visible and near-IR range, and they possess strong excitonic resonances, high oscillator strengths, and valley-selective response. Coupling these materials to optical nanocavities enhances the quantum yield of exciton emission, enabling advanced quantum optics and nanophotonics devices. Here, we review the state-of-the-art advances of hybrid exciton-polariton structures based on monolayer TMDCs coupled to plasmonic and dielectric nanocavities. We discuss the optical properties of 2D WS2, WSe2, MoS2 and MoSe2 materials, paying special attention to their energy bands, photoluminescence/absorption spectra, excitonic fine structure, and to the dynamics of exciton formation and valley depolarization. We also discuss light-matter interactions in such hybrid exciton-polariton structures. Finally, we focus on weak and strong coupling regimes in monolayer TMDCs-based exciton-polariton systems, envisioning research directions and future opportunities for this material platform.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, researchers and scientists have made important steps towards the development of new materials with unique optical and electronic properties. One prominent example consists of atomically thin single layered (1L) transition metal dichalcogenides (TMDCs) [1–9]. Monolayer TMDCs are formed by a hexagonal network of transition metal atoms (Mo, W) hosted between two hexagonal lattices of chalcogenide atoms (S, Se). The resulting materials have the common formula MX2 (where M is Mo or W and X is S or Se). Electronically, these 1L-TMDCs behave as two-dimensional semiconductors, with bandgaps lying in the visible and near-IR range. This property profitably distinguishes them from other 2D materials, like graphene and hBN, whose bandgaps occur at longer wavelengths. In the monolayer limit, the bandgaps of these materials are direct, enabling enhanced interactions of dipole transitions with light. Reduced dielectric screening and strong Coulomb interactions between charged particles (electrons and holes) result in strong excitonic resonances in the visible and near-IR range with large binding energies. Strong Coulomb interactions in these materials lead to the formation of strongly bound excitons (binding energies of 0.2 to 0.8 eV) [10–14], charged excitons (trions) [15–17], and excitonic molecules (biexcitons) [19–23]. Localized and dark excitonic states in 1L-TMDCs have also been demonstrated [19,24,25]. Inversion symmetry breaking and strong spin-orbital coupling in 1L-TMDCs lead to direct bandgap transitions occurring at energy-degenerate K (K’) points at the edges of the 2D hexagonal Brillouin zone, enabling valley-selective circular dichroism [25–31]. This effect has become of great importance in the emerging field of valleytronics, which exploits valley pseudo-spin manipulation to transmit information [7].

Due to the monolayer nature of 1L-TMDCs, their large oscillator strength and the potential for tuning, these materials have become a unique class of 2D materials for optoelectronic applications, such as photodetection and light harvesting [32–35], phototransistors and modulation [36,37], light-emitting diodes [38–40], and lasers [41–44] (we note, however, that some conclusions from these works are still subject to debate). For example, the electroluminescence from light-emitting diodes (LEDs) based on MoS2 [45,46], WSe2 [47], and WS2 [48] has been recently demonstrated. Operation of 1L-TMDCs in single photon emission regime has also been reported [49–52]. The quantum yield of emission (see Section 2) of these materials depend on many factors, including fabrication techniques (mechanical exfoliation or chemical vapor deposition), type of substrate, defects and so on. Typically, as-prepared 1L-TMDCs have a relatively low quantum yield of ~0.1-10% [53]. These low values can be significantly improved (up to ~95%) by chemical treatment by organic superacids [54,55].

Another way to improve 1L-TMDC emission properties consists in coupling them with specifically tailored single resonant optical nanocavities and arrays of them, in the form of metasurfaces [24,56–70]. A variety of new optical effects stemming from the interaction of 1L-TMDCs with plasmonic (i.e., made of noble metals) and high-index dielectric (Si, Ge or GaP) nanocavities has been demonstrated. Examples include the observation of strong plasmon-exciton coupling [57,64,71,72], pronounced Fano resonances [66] and plasmon-induced resonance energy transfer [73], which are very attractive for various quantum optics and nanophotonic applications. These effects benefit from the localization of light within plasmonic and dielectric resonators, enabled by their small mode volumes and the strong dipole moment of excitons in 1L-TMDCs. Resonant nanophotonic structures can also alter 1L-TMDCs emission properties, for example brighten the so-called dark excitons [24,58], which poorly radiate without this essential coupling with optical resonators. In addition, nanophotonic structures may improve other inherently weak properties of 1L-TMDCs, such as exciton energy transfer, which is typically limited to a short range of ~1 μm. Recently, it has been demonstrated that the exciton energy transfer range can be extended to tens of microns in hybrid structures mediated by an exciton-surface plasmon polariton-exciton conversion mechanism [74].

In the following, we provide an overview of the state-of-the-art advances of hybrid exciton-polariton structures based on 1L-TMDCs coupled to plasmonic and dielectric nanocavities. In Section 2, we discuss the optical properties of 2D WS2, WSe2, MoS2 and MoSe2 materials, with special attention to their energy spectra, photoluminescence and absorption spectra, excitonic fine structure, and dynamics of exciton formation and valley depolarization. Then in Section 3, we describe suitable optical resonances of plasmonic and dielectric nanoantennas that may be employed to enhance TMDCs. In Section 4, we provide a theoretical background to describe light-matter interactions in hybrid exciton-polariton structures, focusing on weak and strong coupling regimes of light-meter interaction. Finally, in Section 5, we discuss these regimes in 1L-TMDCs based exciton-polariton systems, emphasizing various practical realizations.

2. Optical properties of 1L-TMDCs

Single layered Mo and W-based TMDCs (MoS2, MoSe2, WS2, WSe2) transition metal dichalcogenides behave as two-dimensional semiconductors with their bandgaps lying in visible and near-IR ranges [2]. This property distinguishes 1L-TMDCs from other known 2D materials like graphene (semimetal, no bandgap) and hBN (insulator, the bandgap is ~6 eV). In the monolayer limit, TMDCs are particularly interesting because their bandgaps become direct, thus enabling enhanced interactions of dipole transitions with light [75]. We note that this conclusion is still subject to debate for some material platforms. For example, it has been shown that 1L-WSe2 fabricated by chemical vapor deposition (CVD) may have an indirect gap with the conduction band minimum located at the Q-point (instead of the K) [76,77]. The transition to a direct bandgap semiconductor makes it easier for photons with an energy equal to the bandgap to be absorbed or emitted, whereas indirect bandgap materials require additional phonon absorption or emission to compensate for the difference in momentum, making absorption less efficient. Additionally, the reduced dielectric screening and strong Coulomb interactions result in formation of strongly bounded excitons [10–14], charged excitons (trions) [15–17,78], excitonic molecules (biexcitons) [18–22,78,79], localized excitons [18] and dark excitons [24] with large binding energies. For example, the binding energies of XA excitons in 1L-MoS2 [10], MoSe2 [14], WSe2 and WS2 [12,13,80] were measured to be in the range of 0.2 to 0.8 eV. At the same time, the binding energy, as well as the dipole moment of excitons, is strongly affected by the proximity of metals or of high-index dielectrics, and it can be significantly reduced due to electric screening of the Coulomb interaction between electrons and holes [81,82]. The absorption coefficients of 1L-TMDCs can reach up to 1.0 × 106 cm−1, comparable to dense J-aggregates (0.5 × 106 cm−1) [83]. The typical thickness of 1L-TMDCs is ~0.7 nm [2,8] is only ~3 times larger than the thickness of graphene.

Direct band gap transitions in 1L-TMDCs occur at the energy-degenerate K (K’) points, at the edges of the 2D hexagonal Brillouin zone. Due to inversion symmetry breaking and strong spin-orbital coupling in 1L-TMDCs, the electronic states of the two valleys have different chirality, which leads to valley-selective circular dichroism [25–30]. This effect is key for valleytronics applications, which focus on the manipulation of valley pseudo-spins to encode signals and information [7]. Despite a tremendous interest in this area, valleytronics faces the obstacle of short valley depolarization times, only ~5 ps for 1L-TMDCs at cryogenic temperatures and sub-picosecond at room temperatures. Inversion symmetry breaking and strong spin-orbital coupling also lead to so-called spin-forbidden dark excitons polarized along the out-of-plane direction, which can be brightened by strong static magnetic fields [84] or tip-enhanced Purcell effect [24].

Below we review the optical properties of 1L-TMDCs with focus on WS2 and WSe2, which are very often used for LED and laser technologies. The majority of papers on hybrid exciton-polariton structures based on monolayer TMDCs coupled to plasmonic and dielectric nanocavities has been devoted to WS2 and WSe2 materials (see Table 1). Almost all conclusions drawn in the following is also applicable to other 1L-TMDC materials, because of their similar nature. However, we stress that there is a fundamental difference between W and Mo containing TMDCs, which manifests itself in different PL spectra and in their different behavior as a function of temperature. Indeed, band structure calculations indicate that MoSe2 and MoTe2 monolayers can be bright, whereas WSe2 and WS2 monolayers are likely darkish [9,85,86]. In turn, this causes an unconventional rise of PL intensity with temperature growing, which has been observed in 1L-WSe2 [87]. We also stress that the optical properties of 1L-TMDCs (PL spectra, Raman spectra, transmission/absorption spectra) may slightly vary as a function of several factors, including fabrication techniques (mechanical exfoliation or chemical vapor deposition), type of substrate, defects and others.

Tables Icon

Table 1. Quantitative comparison of different structures supporting the strong coupling regime.

2.1 Optical properties of 2D WS2: photoluminescence tuning and excitonic fine structure

1L-tungsten disulfide (WS2) is one of the most studied 2D transition-metal dichalcogenide semiconductors [19,22,71,88–93]. 1L-WS2 has been attracting growing interest due to its unique properties, such as large spin-orbit coupling, high emission quantum yield [94], large exciton/trion binding energies [13,95], and demonstrated nonblinking photon emission [80]. Additionally, this material is attractive because it enables strong-coupling with excitons [64,71,90,96] and trions [17], as discussed in more detail in Section 5 in the context of tuning PL spectra and excitonic fine structure (trions, biexcitons).

1L-WS2 contains a single layer of W atoms with 6-fold coordination symmetry, hexagonally packed between two trigonal atomic layers of S atoms. The energy band diagram (energy versus wavevector k) of 1L-WS2, as well as its absorption spectra (orange curve) and photoluminescence (blue curve), are shown in Figs. 1(a) and 1(b). The direct bandgap of 1L-WS2 is ~2.1 eV [48,98]. Inversion symmetry breaking of the crystal lattice combined with strong spin-orbit coupling results in a large valence band splitting (~427 meV) at the K (K’) points in the first Brillouin zone, Fig. 1(a). This phenomenon gives rise to two different valley excitons (XA and XB excitons), which are associated with optical transitions from the upper and the lower valence band to the bottom of the conduction band, respectively. The XA exciton binding energy was demonstrated to be equal ~0.71 eV [95]. Note that the exciton binding energy may strongly depend on TMDC fabrication technique, as well as the defect and exciton concentrations [99]. It causes an appearance of two resonances in the absorption spectrum, Fig. 1(b). The PL spectrum also consists of two resonances corresponding to XA and XB excitons, but the PL emission from XB exciton is very weak [right inset in Fig. 1(b)].

 figure: Fig. 1

Fig. 1 Optical properties of 1L-WS2. (a) Energy structure of 1L-WS2, blue and red curves demonstrate the valence and conduction bands. (b) Absorption spectra (orange curve) and photoluminescence (blue curve) of 1L-WS2 at room temperature. (c) Photoluminescence spectra at the back-gate voltages between −40 and + 40 V at room temperature. (d) Log-log plots of integrated intensities of four emission components versus excitation power at 4.2K. Solid lines are linear fit curves, and the corresponding α values in the legend are the slopes. Adapted with permission from: (a),(b) – [97], (c),(d) – [18].

Download Full Size | PPT Slide | PDF

It has been demonstrated that the WS2 PL spectrum can be tuned in various ways, including chemical doping [89], mechanical strain [100,101], type of substrate [102], surrounding dielectric environment [103], electrical doping [18,88], laser intensity [18,99,104], and interaction with optical cavities [17,105,106]. For example, in [18] tunable emission in 1L-WS2 was demonstrated by controlling the electrical doping strength. Figure 1(c) shows the PL spectra of 1L-WS2 at room temperature for different gate voltages, ranging from −40 to 40 V, continuously modulating the charge carrier density. These results demonstrate that the exciton peak has two components, the neutral exciton XA and the charged exciton XA- (trion), located at lower energy. At cryogenic temperatures, trions can contribute significantly to the PL emission spectra [17]. Note that the doping by free charge carriers can occur because of WS2 interaction with the dielectric environment (for example, the substrate) [93].

At low temperatures, other electron-hole states can be observed. Figure 1(d) presents the integrated PL emission intensities of XA(excitons), XA- (negatively charged trions), XAXA (biexcitons), and LS (localized excitons) from 1L-WS2 as a function of the excitation power at 4.2K [18]. At low excitation intensities, LS, XA, and XA- give the main contribution to PL emission. The emission from exciton and trion states increases linearly (α1.0) with the excitation power, whereas the emission from LS shows a sublinear dependence (α0.6). On the contrary, the integrated intensity of biexcitons XAXA grows quadratically with the excitation power (α1.9), as expected. Similar results for biexciton emission from edges of triangular 1L-WS2 have been demonstrated in [22]. Thus, biexciton PL emission dominates for high-power excitation, and it has been observed only at cryogenic temperatures (~4K). We note that the trion state can also have a finite structure with triplet and singlet trions, which can be observed in PL spectra at a temperature of 4K [107].

2.2 Optical properties of 2D WSe2: dynamics of exciton formation and valley depolarization

The second 1L-TMDCs material we discuss is WSe2, which has also been very well studied [11,108–111]. As applications of this material, in the following we will describe dynamics of exciton formation and valley depolarization. This material is also attractive for enabling strong-coupling regimes of light-matter interaction [57,112]. Also in this case, the conclusions about this material can be applied to other 1L-TMDC materials, except specific aspects of exciton-phonon interactions [91].

Figures 2(a) and 2(b) show the energy structure of 1L-WSe2 [Fig. 2(a)] and the corresponding absorption spectra (orange curve) and photoluminescence (blue curve) [Fig. 2(b)]. The direct bandgap is ~1.6 eV. As in the case of 1L-WS2, this material supports XA and XB excitons, which are associated with optical transitions from the upper and the lower valence band to the bottom of the conduction band. Accordingly, the absorption spectrum has two resonances corresponding to XA and XB excitons. Charged excitons and biexcitons in 1L-WSe2 have also been observed [113,114]. It has been demonstrated that the PL spectra of 1L-WSe2 can be tuned by the surrounding dielectric environment [115], electrical doping [116], magnetic field [117], laser intensity [108], and interaction with optical cavities [57].

 figure: Fig. 2

Fig. 2 Optical properties of 1L-WSe2. (a) Energy structure; blue and red curves demonstrate the valence and conduction bands. (b) Spectra of absorption (orange curve) and photoluminescence (blue curve) of 1L-WSe2 at room temperature. (c) Absolute electron-hole pair densities for 1s excitons (black spheres), unbound electron−hole pairs (red spheres), and total density of the two contributions (blue diamonds) as a function of the delay time after nonresonant excitation (3.04 eV). (d) The valley polarization degree as a function of delay time for several temperatures. The theory lines are compared with experiments from [122] (dots). The shadow gray region represents the pump pulse. Adapted with permission from: (a) – [108], (b) – [75], (c) – [108], (d) – [123].

Download Full Size | PPT Slide | PDF

For the full description of the temporal behavior of 1L-TMDCs like WSe2, it is important to know their exciton and coherence lifetimes [118]. The exciton lifetime describes the average time during which an exciton exists, and it usually defines the excitonic spectral linewidth. The coherence time defines the time during which an exciton remembers the state of the excitation field (for example, polarization). In 1L-TMDCs the coherence time is usually less than the exciton lifetime and it is key for valleytronics and quantum optics applications [119].

In [108], the dynamics of photoexcited electron−hole pairs in 1L-WSe2 has been directly traced, Fig. 2(c). After highly nonresonant interband excitation (3.04 eV) by the femtosecond laser pulse, the concentration of free carriers increases, reaching its maximum after 0.5 ps. This excitation is followed by a rapid carrier relaxation towards the respective band minima. More than half of the carriers are bound into excitons already 0.4 ps after the excitation (Fig. 2(c), grey curve). The ratio between excitons and unbound electron−hole pairs increases up to 0.5 ps (Fig. 2(c), blue curve). Interestingly, the exciton concentration grows even after 0.5-0.6 ps, when the free carrier concentration starts to decay, and continues up to 1 ps. Then, both concentrations decay on a time scale of a few picoseconds, while a significant fraction of free carriers is still observed after 5 ps. These experiments have been performed at room temperature and ambient conditions.

Note that these relatively short characteristic times (τloss) of exciton dynamics in 1L-TMDCs (1-5 ps) are caused by nonradiative processes, like exciton dissociation by defects, as well as possible four-body interactions [120], whereas the radiative exciton recombination is characterized by much longer times (τrad~0.11 ns) [121]. The mismatch between these times causes a low quantum yield in emission, which can be defined as η0=γex0,rad/(γex0,rad+γex0,loss), where γex0,rad=1/τrad and γex0,loss=1/τloss are radiative and nonradiative decay rates, respectively. For 1L-TMDCs the values of quantum yield have been estimated to be ~0.1-10%, which can be increased by chemical treatment [46,47] and strong Purcell effect via coupling to specially designed optical nanocavities (Section 4) [48–61].

The exciton valley dynamics of 1L-WSe2 by pump-probe Kerr rotation technique has been experimentally studied in [122]. It has been demonstrated that the exciton valley depolarization time decreases significantly from ~6 ps up to ~1.5 ps when the lattice temperature increases from 4 K up to 125 K, which is in a good agreement with theoretical estimations [124]. In [123] these results have been obtained from ab initio calculations, which took into account all possible mechanisms of valley depolarization. The results are summarized in Fig. 2(d), where the valley polarization degree is shown as a function of the delay time for several temperatures. The results of theoretical calculations (lines) are compared with experimental results (dots) from [104]. The Kerr dynamics and its temperature dependence can be explained in terms of electron−phonon mediated processes that induce spin-flip intervalley transitions. Similar results have been demonstrated in [23].

2.3 Optical properties of 2D MoS2 and MoSe2

For the sake of completeness, we also summarize the fundamental optical properties of 1L-MoS2 and MoSe2 materials. Figures 3(a)–3(c) show energy structure of 1L-MoS2 and 1L-MoSe2, respectively. Figures 3(b)–3(d) show the absorption spectra (orange curve) and photoluminescence spectra (blue curve) of 1L-MoS2 and 1L-MoSe2, respectively. These materials also have XA and XB exciton resonances in their absorption spectra.

 figure: Fig. 3

Fig. 3 Optical properties of 1L-MoS2 and 1L-MoSe2 (a), (c) Energy structure of 1L-MoS2 and 1L-MoSe2; blue and red curves demonstrate the valence and conduction bands. (b), (d) Spectra of absorption (orange curve) and photoluminescence (blue curve) of 1L-MoS2 and 1L-MoSe2. Adapted with permission from: (a) – [125], (b) – [60], (c) – [126], (d) – [59].

Download Full Size | PPT Slide | PDF

1L MoS2 is a direct-gap semiconductor with a bandgap of ~1.8 eV [125,127]. The band-edge (XA) exciton dominates the PL emission spectrum around 1.88 eV, Fig. 3(b). The binding energies of excitons and trions in 1L-MoS2 were extracted to be around 900 and 40 meV, respectively. Notably, the trion/exciton PL peaks in 1L-MoS2 materials can be tuned by different dielectric environments, with blue shifts of up to 40 meV and significant enhancement in PL emission intensities [128]. Relatively high exciton decay times of ~100 ps can be significantly reduced (up to ~10ps) by strong excitation [120].

1L MoSe2 is a direct-gap semiconductor with a bandgap of ~1.65 eV [129]. Figure 3(d) shows that the band-edge (XA) exciton in the PL emission spectrum appearing at ~1.6 eV. At cryogenic temperatures, two features at ~1.65 and ~1.62 eV in this spectrum are attributed to the exciton and negative trion [21,130,131]. Trions and biexcitons in 1L MoSe2 (at cryogenic temperatures) with large binding energies of 30meV (trions) and 50−70 meV (biexcitons) can be also resolved [16,132]. The population dynamics of MoSe2 has been studied in details in [133] using four-wave mixing microscopy.

In addition to various LED and laser applications [38,45,134,135], 1L-MoS2 and 1L-MoSe2 have been used for thermal light emission [136], ultrasensitive photodetectors [32], exciton Hall effect [30], in electrically tunable exciton-plasmon polariton systems [137] and as a constitutive element in van der Waals heterostructures [138,139].

3. Optical resonances of plasmonic and dielectric nanocavities

Plasmonic nanocavities (NCs) made of noble metals (e.g., Au and Ag) provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale [140–147]. Especially designed plasmonic nanocavities, such as single nanoparticles and arrays of them, can squeeze light in subwavelength dimensions, resulting in giant enhancement of interaction with quantum emitters, including 1L-TMDCs, quantum dots, defect centers in crystals, and molecules. Many interesting phenomena can be enabled by such interactions, including luminescence enhancement, ultrafast emission in the picosecond range, strong coupling, and surface-enhanced Raman scattering (SERS), all observed and applied in recent years to various real-life applications.

Dielectric nanocavities, made of high refractive index dielectrics such as Si, Ge or GaP, have also become interest for similar functionalities. Their resonant response stems from polarization charges, and thus it is less impacted by Ohmic losses compared to plasmonic phenomena [148–155]. In addition to low dissipative losses, dielectric NCs and nanostructures can provide resonant electric and magnetic optical responses, moderate light localization at the nanoscale, and strong Raman scattering, which are not typical for their plasmonic counterparts [154,155]. Because of their distinct properties, dielectric NCs have been proposed for high-harmonic generation [156–158], photonic topological insulators [159], and to boost the luminescence of various quantum emitters [160]. Fano resonances [161], Purcell effect [160,162,163] and strong coupling with J-aggregates [164] have been also demonstrated in dielectric NCs.

The optical response of spherical metallic and dielectric nanoparticles of radius R, as a basic example of efficient nanocavity, can be calculated based on Mie theory [165]. Normalized scattering Ssct, extinction Sext and absorption Sabs cross-sections for nonmagnetic particles with dielectric permittivity ε=n2 can be written as a sum of partial spherical waves with electric al and magnetic bl scattering amplitudes

Ssct=2(kR)2l=1(2l+1)(|al|2+|bl|2),Sext=2(kR)2l=1(2l+1)Re(al+bl),Sabs=SextSsct,
where l defines the order of partial wave, k is the wavenumber (k=2πnh/λ), λ is the wavelength in vacuum and εh=nh2 is the dielectric permittivity of the surrounding medium. The electric and magnetic scattering amplitudes can be written as al=Rl(a)Rl(a)+iTl(a),bl=Rl(b)Rl(b)+iTl(b), where Rl and Tl are expressed through Bessel Jl+1/2(x) and Neumann Nl+1/2(x)functions [165,166].

The equations Rl(a)+iTl(a)=0 and Rl(b)+iTl(b)=0 define the complex resonant frequencies ωl of the electric and magnetic eigenmodes of the particle, respectively. Different resonant modes enumerated by l are possible: electric (ED) and magnetic (MD) dipoles for l=1 [corresponding to solutions of the a and b dispersion relation], electric (EQ) and magnetic (MQ) quadrupoles with l=2, and so on. These eigenmodes manifest themselves at real frequencies as resonant enhancement of scattering and extinction cross-section spectra. In the general case, these expressions are satisfied at complex frequenciesωl=Re[ωl]+iIm[ωl]. Because the energy leaks out of the particle and is dissipated into absorption, the modes possess a finite lifetime γcav=Im[ωl]1, usually known as cavity decay rate, which determines the half-width of resonance line at half maximum [167]. In general, the cavity decay rate includes both radiative and absorptive parts, γcav=γcavrad+γcavloss. The resonance is usually described by its quality factor, which is defined as Q=ω/γcav. A relevant figure of merit for resonant NCs is their scattering efficiency, which can be defined as ηsct=Ssct/Sext, and measures the portion of decay associated with radiation and scattering, which is desirable, over the one associated with absorption.

Figure 4 shows as example the optical features of typically sized plasmonic and dielectric NCs. The resonant behavior of a dielectric NC strongly depends on its size, which may be used to tune its resonance to the response of an excitonic subsystem. For example, Figs. 4(a) and 4(b) demonstrate the optical properties of two spherical dielectric NCs (c-Si) with radius of 80 nm and 100 nm, respectively. These NCs have an MD resonance (blue solid curve) tuned to the PL maximum of, respectively, 1L-WS2 and WSe2. The scattering efficiency (ηsct) reaches 90% for an 80 nm-particle and increases up to 95% for the 100 nm-particle.

 figure: Fig. 4

Fig. 4 Optical properties of dielectric (c-Si) and metallic (Ag) spherical nanoparticles. (a) Normalized total scattering cross-section (black curve) with partial contributions of ED (red solid curve), MD (blue solid curve), EQ (brawn dashed curve) and MQ (blue dashed curve) of a Si nanoparticle of R = 80 nm in air εh=1. Red dashed curve shows scattering efficiency. Inset: electric field distribution at MD resonance. (b) The same but for R = 100 nm. (c) Normalized total scattering cross-section of the Ag nanoparticle of R = 10 nm (black solid curve) and R = 30 nm (black dashed curve) in air. Red curves show scattering efficiency. (d) Normalized total scattering cross-section of the Ag nanoparticle of R = 30 nm (black solid curve) with partial contributions of ED (red solid curve) and EQ (brawn dashed curve) hosted in a dielectric media with εh=1.73. Red dashed curve shows scattering efficiency.

Download Full Size | PPT Slide | PDF

On the contrary, the plasmonic resonance (ED) of a plasmonic (Ag) NC weakly depends on the particle size, as it is mostly affected by the interface between metal and the surrounding material, and its curvature. Figure 4(c) shows that an increase in particle radius from 10 nm to 30 nm redshifts the resonance only by ~10 nm, with associated decrease in its Q-factor from ~30 to ~10. The size increase turns the particle from mainly-absorptive (scattering efficiency ~5%) to mainly-scattering (scattering efficiency ~60%). The plasmonic resonance depends strongly on the permittivity of the dielectric environment, Fig. 4(d). For instance, an increase of εh from 1 to 4 leads to a large redshift in the resonance peak from 370 nm (air) to 500 nm (εh=4), with an increase of efficiency (up to 90%) for the R = 30 nm particle, and a corresponding reduction in Q-factor to ~5.

The shape and arrangements of NCs are other convenient ways to tune their resonant properties. It has been demonstrated that the plasmonic resonance frequency can be engineered on demand by controlling these design parameters [168–170]. This mechanism for tunability is particularly important for 1L-TMDCs, since their absorption and PL peaks are usually significantly divided. In this case, the shape tunability of plasmonic NCs allows to adjust two (or even more) resonances to the absorption peak (for high excitation rate) and to the PL peak (high emission rate), simultaneously [60]. In the case of dielectric NCs, the shape tunability paves a way to control the total emission intensity through destructive interference in farfield of the radiation of two (or more) neighboring modes of different nature, with the realization of an almost nonradiative field configuration [171–173], leading to a large increase of Q factor and enhanced light-matter interactions.

4. Weak and strong coupling regimes

Coupling of an excitonic subsystem, such as 1L-TMDCs, with a NC can be described in the Jaynes-Cummings formalism [174] by the following matrix element of the coupling Hamiltonian: Hij=dEv(r0)=g, with d=ej|r^|i being the transition dipole moment of a two-level exciton subsystem, e and being the elementary charge and reduced Planck constant, and r^ being the radius-vector operator. The quantity Ev(r0) is the vacuum electric field (the field per one photon) of the resonator mode at an exciton position. Thus, the coupling strength of the exciton and NC is described by the coupling constant (g), which defines two characteristic regimes of interaction and, hence, spontaneous emission. If the condition Ω<(γcav+γex)/2, where Ω=2g indicates the Rabi frequency, the system is in the so-called weak-coupling regime. This formula stems from the diagonalization of the Jaynes-Cummings Hamiltonian in the rotating wave approximation (RWA) under the assumption of zero frequency detuning [71,175,176]. The expression in brackets is the total decay rate γ=γcav+γex (γex is decay rate of the exciton). In this regime, there is no coherent energy exchange between the molecule and nanocavity, and the variation of spontaneous emission can be described by the Purcell factor (see below). If the opposite condition is satisfied, Ω>(γcav+γex)/2, the system instead is strongly coupled. In this regime, the system is characterized by energy exchange between exciton and cavity (Rabi oscillations), resulting in a more complex behavior of spontaneous emission and splitting of the scattering spectrum (Rabi splitting) [72,177]. To describe the coherent scattering spectra of the system, the coupled harmonic oscillator model can be used [57,66,178]. This model considers a cavity driven by an external field, which is coupled to the exciton resonance with a coupling constant g. In this model each component (NC and exciton) of the coupled system is described as a harmonic oscillator with its own resonance frequency and damping. The coupling between the NC and excitations is mediated via inductive terms proportional to the oscillator velocities or coordinates [57,160,176,179,180].

To increase g and achieve strong coupling, we can increase the dipole moment of the exciton subsystem and/or reduce the effective mode volume Veff, since the coupling constant is defined by g=ωd2/2Veffε0ε [181,182]. As we discussed above, 1L-TMDCs have very strong dipole moment of excitons (see, for instance, Table 2 in Ref [175].) because of their direct bandgap and 2D nature. The effective mode volume can be defined in the low loss limit as [160,181,183]

Veff=ε(r)|E(r)|2dVmax(ε(r)|E(r)|2),
where E(r) is the electric field of mode, ε(r) is the permittivity distribution, and integration runs over the entire space including the NC and surrounding space. The effective mode volume describes the volume that would be occupied by an electromagnetic field containing the same energy as the cavity mode, but with a uniform energy density distribution equal to the energy density at an antinode of the mode field. As a consequence, the effective mode volume is usually less than the physical volume of the resonant cavity and it strongly depends on its nature (plasmonic or dielectric). Plasmonic NCs can have effective mode volumes up to ~λ3/104 [60,167]. The mode volume of dielectric NCs are diffraction-limited: Veff(λ/2n)3 and it can be shrunk by the increasing n. For c-Si nanoparticles with n4 in the visible range Veffλ3/512. The drastically reduced mode volume is the main advantage of plasmonic and high-index dielectric NCs over ring resonators, Bragg mirrors and photonic crystals, which are also widely used to realize hybrid exciton-polariton structures [62,184–187]

In the strong coupling regime, scattering and absorption spectra manifest a typical doublet feature. However, it is important to stress that the Fano resonance phenomenon, supported by the interference of bright and dark modes, can induce similar spectra. Scattering or absorption spectra of any system can be fitted with coupled mode theory or with a Fano resonance lineshape, but these two approaches provide, in general, different values for the resonant frequencies: the CMT approach provides the non-perturbed (bare) frequencies, whereas the Fano gives the perturbed (dressed) values, which can be quite different in the strong coupling regime. Comparison of these frequencies may be used as an additional criterium to realize whether strong coupling is achieved.

Excitons in 1L-TMDCs have radiative γexrad and absorptive γexloss decay rates: γex=γexrad+γexloss. In the weak-coupling regime, the decay rate γex can be enhanced via Purcell effect, which is quantitatively characterized by Purcell factor (Fp),expressed through the coupling constant g or the quality factor Q [181,188,189]:

Fpγexγex0=g2γcavγex0=34π2(λn)3QVeff,
with γex0=nd2ω33πε0c3 being the radiative decay rate in free space. Thus, the Purcell effect results in a modification of the spontaneous decay rate γex of an exciton induced by its interaction with the NC. This modification is significant if the NC is adjusted with the PL intensity maximum.

In general, the Purcell effect gives rise to enhancement of emission and dissipation rates [162,190], thus the Purcell factor can be divided into radiative (Fprad=γexrad/γex0) and dissipative (Fploss=γexloss/γex0). To characterize the fraction of energy emitted into photons, we also define the quantum yield (or quantum efficiency), defined as η=γexrad/(γexrad+γexloss). By introducing the vacuum quantum yield η0 (see Section 2), the resulting emission quantum yield η of an exciton coupled to a NC can be expressed through the Purcell factor: η=η0Fpradη0Fp+(1η0). This equation says that the quantum yield can be enhanced by Purcell factor, which is important for 1L-TMDCs, because of their low radiation efficiency and decay times mismatch (γexradγexloss).

5. 1L-TMDCs-based nanostructures in the weak and strong coupling regimes

5.1 Weak coupling regime

Weak coupling regime in 1L-TMDCs based nanostructures manifests itself in increasing of the PL intensity without noticeable change in the spectrum. This increase relies on Purcell effect, which leads to quantum yield enhancement. The Purcell effect is caused by the mode volume (2) shrinking, and it depends on the NC Q-factor through its geometry and arrangement, as in Eq. (3). The so-called gap plasmonic modes, arising between nearby plasmonic particles, are of special interest because of their small mode volumes. In [61], monomer and dimer (supporting gap modes) Au NCs of four different sizes were examined for PL intensity enhancement from CVD-synthesized WS2 flakes, Fig. 5(a). The figure shows that relatively small dimer NC formed by closely placed Au particles (75 nm) cause the largest enhancement of PL emission, whereas larger dimers have effects comparable to a single monomer.

 figure: Fig. 5

Fig. 5 1L-TMDCs-based nanostructures in the weak coupling regime. PL intensity of CVD-grown 1L-WS2 before and after fabrication of four different optical antennae. Insets are SEM images of each type of optical cavity; the scale bar is 400 nm. (b) PL spectra from a 1L-MoS2 on a SiO2/Si substrate (blue) and in the nanocavity (red) obtained using a diffraction-limited excitation spot. The intensity is measured per unit of excitation power and per unit of integration time. (c) PL spectra of the 1L-MoS2 with and without spiral structures, under the excitation of different circular polarized light at 633 nm. Laser power was controlled at 2.1 mW. Inset: schematic of spiral ring structure on SiO2/Au/SiO2/Si substrate with circularly polarized light excitation. (d) Probing radiative emission of dark excitons of 1L-WSe2 through polarization dependence of tip-enhanced photoluminescence. Excitation polarization dependent TEPL spectra of 1L-WSe2 on an Au substrate at ~1 nm tip-sample distance with tip selective XD emission (orange curve). Inset: Finite-difference time domain (FDTD) simulation of the in-plane (right) and out-of-plane (left) optical field intensity and confinement. Adapted with permission from: (a) – [61], (b) – [60], (c) – [65], (d) – [24].

Download Full Size | PPT Slide | PDF

Another exciting way to enhance PL emission intensity is based on NCs designed to support two resonant (gap) modes at both 1L-TMDC PL emission and absorption maxima. In [60], a NC consisting of a silver (Ag) nanocube (~75 nm edge length) located over a gold film divided by a dielectric nanoscale spacer (<10 nm) has been studied [see the inset in Fig. 5(b)]. The dielectric spacer was filled by 1L-MoS2. The NC supports two split modes at wavelengths 420 nm and 660 nm, with ultrasmall effective mode volumes of ~λ3/103. The modes resonant wavelengths have a fine overlap with the 1L-MoS2 PL emission and absorption peaks. This spectral tuning and ultrasmall effective mode volumes of the NC resulted in 2000-fold enhancement in the PL intensity (normalized by unit area and emission of 1L-MoS2 on SiO2 substrate), Fig. 5(b).

As we discussed in Section 2, 1L-TMDCs are of special interest because of their valley-selective circular dichroism, caused by lattice inversion symmetry breaking and strong spin-orbital coupling. Thus, the coupling of excitons belonging to different valleys in chiral NC, which interact differently with left (σ) and right (σ+) circularly polarized light is of major interest for practical applications. An interesting geometry is a spiral ring resonant structure (Au) on SiO2/Au/SiO2/Si substrate, as presented in Fig. 5(c), inset. The 1L-MoS2 is placed between spiral rings and the first SiO2 spacer. The structure demonstrates strong dependence of PL intensity on the circular polarization handedness of the laser excitation. For example, for a left-handed 2-turn spiral rings the structure demonstrates 10-fold enhancement in PL intensity for σ excitation at 633 nm wavelength, whereas the σ+ excitation causes only a slight enhancement, Fig. 5(c).

In addition to conventional bright excitonic states, as discussed in Section 2, 1L-TMDCs possess spin-prohibited dark excitons with polarization in the out-of-plane direction, characterized by ultrahigh radiative lifetimes because of their low radiation loss. It has been demonstrated that in 1L-TMDCs dark excitons can be excited through two-photon excitation spectroscopy [13] and in-plane magnetic field [84]. Additionally, emission from dark excitons can be detected if a 1L-TMDC is excited by a field with vanishing in-plane component, as it has been realized with SPP waves [191]. In [24], it was shown that ultrahigh Purcell effect can be used for dark exciton spectroscopy even at room temperature. Figure 5(d) shows results from tip-enhanced PL spectroscopy of 1L-WSe2 arranged on Au substrate. In-plane side excitation (field distribution is shown in the right inset) demonstrates enhancement in PL intensity (blue curve) over emission for high tip distances (black curve) with peak at the right exciton (X0). More interestingly, out-plane side excitation (field distribution shown in the left inset) results in strong optical field confinement in the gap between the tip and the Au substrate. In this case, the PL peak is shifted to the dark exciton emission (XD), with PL intensity enhancement ~6×105-fold and a large Purcell factor 2×103.

5.2 Strong coupling regime

Although structures supporting gap plasmons possess small effective mode volumes, they suffer from high dissipative losses, hindering the achievement of strong coupling regimes. Thus, for this purpose more carefully designed structures with low mode volumes and lower dissipative losses must be used [17,57,64,90,192]. Figure 6(a) shows a possible layout, consisting of an individual gold nanorod placed on 1L-WS2 (substrate is SiO2/Si). Figure 6(b) shows dark-field scattering spectra from different individual gold nanorods coupled to the same 1L-WS2 flake for different nanorod aspect ratios, which allow to estimate the Rabi splitting energy for various frequency detunings. The resulting colored normalized scattering spectra from the hybrid structure with different detunings between plasmon resonances and the exciton is shown in Fig. 6(c). Splitting of high-energy and low-energy branches, with Rabi splitting energy of 106 meV, which satisfies the strong coupling condition, can be observed. Active control over strong coupling via temperature has also been observed.

 figure: Fig. 6

Fig. 6 1L-TMDCs-based nanostructures in the strong coupling regime. (a) Schematic showing the heterostructure composed of an individual Au nanorod coupled to the WS2. (b) Dark-field scattering spectra from different individual gold nanorods coupled to the same 1L-WS2 flake (different curves correspond to various aspect ratios of the gold nanorods). (c) Colored coded normalized scattering spectra from the heterostructures with different detunings between the plasmon resonances and exciton. The two white lines represent the fittings using the coupled harmonic oscillator model. The dashed white line indicates the exciton transition energy. The Rabi splitting energy is determined as 106 meV. (d) Artist view of the hybrid system: high density of photonic states (hot-spots) is shown at the corners of the Ag nanoprism, which overlaps with the 1L-WS2 for efficient plasmon-exciton interaction. Inset shows the SEM image of such particle (scale bar 100 nm) and a magnified view of the dark-field image. (e) Dark field spectra for an individual Ag nanoprism – 1L-WS2 hybrid as a function of temperature. Semi-transparent red curves show coupled oscillator model fits of the data. (f) Temperature dependence of the coupling constants for exciton and trion extracted via coupled oscillator model. Adapted with permission from: (a) – [64], (b) – [17].

Download Full Size | PPT Slide | PDF

As we discussed in Section 2, charged excitons (trions) can also be observed in 1L-TMDCs PL spectra at cryogenic temperatures or under 1L-TMDCs doping. The strong coupling with trions is of special interest because they form charged exciton-polaritons, which can be actively controlled by an external electrical bias. Charged exciton polaritons have been demonstrated in Ref [17]. at low temperatures. The structure is composed of Ag nanoprisms placed on 1L-WS2 (substrate is SiO2/Si). In this case, the electrical doping from the substrate was insignificant, hence only neutral (X0) have been observed in PL spectra at room temperature, whereas the trion (X+) has manifested itself at low temperatures, Fig. 6(e). The enhancement of trion-NC coupling strength up to ~50 meV (the Rabi splitting is ~100 meV) at 77 K has been observed, Fig. 6(f). The observed reduction in exciton coupling strength with temperature increase can be explained by trion dissociation to excitons and free carriers.

6. Outlook and conclusion

We have reviewed state-of-the-art advances of hybrid exciton-polariton structures based on 1L-TMDCs coupled to plasmonic and dielectric nanocavities. First, we have discussed the optical properties of 1L-WS2, WSe2, MoS2 and MoSe2 materials, with special emphasis on their energy spectra, photoluminescence and absorption spectra, excitonic fine structure, and dynamics of exciton formation and valley depolarization. Then, we have provided a theoretical background to describe light-matter interaction in such hybrid exciton-polariton structures, and we have applied it to discuss weak and strong coupling regimes in 1L-TMDCs-based exciton-polariton systems. In Table 1 we provide a quantitative comparison of different hybrid structures, recently presented in the literature, supporting the strong coupling regime.

This research area is very young, yet full of exciting promises and opportunities. Several more studies and experiments are needed to fully understand the nature of this new material platform, and its potential for new technology. We envision several future research directions in this context. First, although all-dielectric NCs [153] possess attractive properties, like low dissipative losses and strong optical magnetic response (Section 3), there are only preliminary results in the area of their interaction with 1L-TMDCs [90]. Interaction of 1L-TMDCs with anopole-like [173] field configurations and non-radiating resonant eigenstates and bound states in the continuum [197,198] can offer exciting opportunities. Second, various applications require light emitting systems containing 1L-TMDCs to have highly directive (and even steerable) spontaneous emission patterns, for instance, for the emission collection enhancement. This issue is addressed in only a few recent papers [68,199] and it requires additional studies. In this context, suitably designed resonant nanostructures or metasurfaces can spatially separate valley polarized excitons, which may bring valleytronics to real-life applications [200].

Funding

Air Force Office of Scientific Research (FA9550-17-1-0002).

Acknowledgments

The authors are thankful to Mr. Mingsong Wang, Dr. Oleg Kotov, and Dr. Denis Baranov for useful discussions.

References and links

1. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013). [CrossRef]   [PubMed]  

2. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014). [CrossRef]  

3. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016). [CrossRef]  

4. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015). [CrossRef]   [PubMed]  

5. S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, “Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids,” Annu. Rev. Mater. Res. 45(1), 1–27 (2015). [CrossRef]  

6. G. Grosso, “2D materials: Valley polaritons,” Nat. Photonics 11(8), 455–456 (2017). [CrossRef]  

7. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1(11), 16055 (2016). [CrossRef]  

8. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017). [CrossRef]  

9. M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, “Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles,” Nanophotonics 6(6), 1–20 (2017). [CrossRef]  

10. C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending,” Nano Lett. 14(5), 2443–2447 (2014). [CrossRef]   [PubMed]  

11. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113(2), 26803 (2014). [CrossRef]  

12. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014). [CrossRef]   [PubMed]  

13. Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014). [CrossRef]   [PubMed]  

14. M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014). [CrossRef]   [PubMed]  

15. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013). [CrossRef]   [PubMed]  

16. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013). [CrossRef]   [PubMed]  

17. J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2 – plasmonic nanoantenna system,” arXiv 1703.07873 (2017).

18. J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, “Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor,” ACS Nano 9(1), 647–655 (2015). [CrossRef]   [PubMed]  

19. E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, “Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2,” Nano Lett. 16(12), 7421–7426 (2016). [CrossRef]   [PubMed]  

20. Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, “Observation of biexcitons in monolayer WSe 2,” Nat. Phys. 11(6), 477–481 (2015). [CrossRef]  

21. K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017). [CrossRef]   [PubMed]  

22. M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016). [CrossRef]   [PubMed]  

23. G. Plechinger, T. Korn, and J. M. Lupton, “Valley-Polarized Exciton Dynamics in Exfoliated Monolayer WSe 2,” J. Phys. Chem. C 121(11), 6409–6413 (2017). [CrossRef]  

24. K.-D. Park, T. Jiang, G. Clark, X. Xu, and M. B. Raschke, “Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect,” Nat. Nanotechnol. 13, 1–7 (2017). [PubMed]  

25. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887 (2012). [CrossRef]   [PubMed]  

26. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013). [CrossRef]   [PubMed]  

27. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014). [CrossRef]   [PubMed]  

28. D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014). [CrossRef]   [PubMed]  

29. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012). [CrossRef]   [PubMed]  

30. M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, “Exciton Hall effect in monolayer MoS2,” Nat. Mater. 16(12), 1193–1197 (2017). [CrossRef]   [PubMed]  

31. Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017). [CrossRef]  

32. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8(7), 497–501 (2013). [CrossRef]   [PubMed]  

33. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013). [CrossRef]   [PubMed]  

34. N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013). [CrossRef]  

35. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014). [CrossRef]   [PubMed]  

36. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012). [CrossRef]   [PubMed]  

37. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016). [CrossRef]  

38. O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014). [CrossRef]   [PubMed]  

39. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015). [CrossRef]   [PubMed]  

40. C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017). [CrossRef]   [PubMed]  

41. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015). [CrossRef]  

42. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015). [CrossRef]   [PubMed]  

43. Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12(10), 987–992 (2017). [CrossRef]   [PubMed]  

44. O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature,” Nano Lett. 15(8), 5302–5306 (2015). [CrossRef]   [PubMed]  

45. Y. Ye, Z. Ye, M. Gharghi, H. Zhu, M. Zhao, Y. Wang, X. Yin, and X. Zhang, “Exciton-dominant electroluminescence from a diode of monolayer MoS 2,” Appl. Phys. Lett. 104(19), 193508 (2014). [CrossRef]  

46. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013). [CrossRef]   [PubMed]  

47. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014). [CrossRef]   [PubMed]  

48. S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett. 14(4), 2019–2025 (2014). [CrossRef]   [PubMed]  

49. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015). [CrossRef]   [PubMed]  

50. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2(4), 347 (2015). [CrossRef]  

51. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015). [CrossRef]   [PubMed]  

52. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10(6), 507–511 (2015). [CrossRef]   [PubMed]  

53. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012). [CrossRef]   [PubMed]  

54. M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager 3rd, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015). [CrossRef]   [PubMed]  

55. M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager 3rd, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016). [CrossRef]   [PubMed]  

56. A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, “Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures,” Nano Lett. 17(7), 4317–4322 (2017). [CrossRef]   [PubMed]  

57. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017). [CrossRef]   [PubMed]  

58. J. Huang, G. M. Akselrod, T. Ming, J. Kong, and M. H. Mikkelsen, “Tailored Emission Spectrum of 2D Semiconductors Using Plasmonic Nanocavities,” ACS Photonics acsphotonics.7b01085 (2017).

59. G. Eda and S. A. Maier, “Two-dimensional crystals: Managing light for optoelectronics,” ACS Nano 7(7), 5660–5665 (2013). [CrossRef]   [PubMed]  

60. G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015). [CrossRef]   [PubMed]  

61. M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017). [CrossRef]  

62. Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, “Photonic Crystals for Enhanced Light Extraction from 2D Materials,” ACS Photonics 3(12), 2515–2520 (2016). [CrossRef]  

63. T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016). [CrossRef]   [PubMed]  

64. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017). [CrossRef]   [PubMed]  

65. Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017). [CrossRef]   [PubMed]  

66. I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017). [CrossRef]  

67. D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015). [CrossRef]   [PubMed]  

68. X. Zhang, S. Choi, D. Wang, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances,” Nano Lett. 17(11), 6715–6720 (2017). [CrossRef]   [PubMed]  

69. M.-G. Lee, S. Yoo, T. Kim, and Q.-H. Park, “Large-area plasmon enhanced two-dimensional MoS2,” Nanoscale 9(42), 16244–16248 (2017). [CrossRef]   [PubMed]  

70. P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97(4), 41402 (2018). [CrossRef]  

71. S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016). [CrossRef]   [PubMed]  

72. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics 5(1), 24–42 (2018). [CrossRef]  

73. M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, “Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2,” Nanoscale 9(37), 13947–13955 (2017). [CrossRef]   [PubMed]  

74. J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017). [CrossRef]   [PubMed]  

75. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2,” ACS Nano 7(1), 791–797 (2013). [CrossRef]   [PubMed]  

76. W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017). [CrossRef]   [PubMed]  

77. C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015). [CrossRef]   [PubMed]  

78. M. Szyniszewski, E. Mostaani, N. D. Drummond, and V. I. Fal’ko, “Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations,” Phys. Rev. B 95(8), 081301 (2017). [CrossRef]  

79. E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017). [CrossRef]  

80. N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: Monolayer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013). [CrossRef]   [PubMed]  

81. S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018). [CrossRef]  

82. A. Steinhoff, M. Florian, M. Rösner, G. Schönhoff, T. O. Wehling, and F. Jahnke, “Exciton fission in monolayer transition metal dichalcogenide semiconductors,” Nat. Commun. 8(1), 1166 (2017). [CrossRef]   [PubMed]  

83. S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014). [CrossRef]   [PubMed]  

84. X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017). [CrossRef]   [PubMed]  

85. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015). [CrossRef]  

86. M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017). [CrossRef]  

87. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale 7(23), 10421–10429 (2015). [CrossRef]   [PubMed]  

88. A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A. Velauthapillai, J. Hone, and T. F. Heinz, “Electrical Tuning of Exciton Binding Energies in Monolayer WS2,” Phys. Rev. Lett. 115(12), 126802 (2015). [CrossRef]   [PubMed]  

89. N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, and T. Yu, “Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2,” ACS Nano 8(11), 11320–11329 (2014). [CrossRef]   [PubMed]  

90. S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alú, “Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS2 Structures,” ArXiv e-prints 1710.09949, (2017).

91. E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016). [CrossRef]   [PubMed]  

92. F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, “Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire-WS2-Film Composites,” ACS Photonics 4(6), 1421–1430 (2017). [CrossRef]  

93. G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schüller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015). [CrossRef]  

94. L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7(16), 7402–7408 (2015). [CrossRef]   [PubMed]  

95. B. Zhu, X. Chen, and X. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015). [CrossRef]   [PubMed]  

96. L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, “Room-temperature exciton-polaritons with two-dimensional WS2,” Sci. Rep. 6(1), 33134 (2016). [CrossRef]   [PubMed]  

97. H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013). [CrossRef]   [PubMed]  

98. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013). [CrossRef]   [PubMed]  

99. P. D. Cunningham, A. T. Hanbicki, K. M. McCreary, and B. T. Jonker, “Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS 2,” ACS Nano acsnano.7b06885 (2017).

100. Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Res. 8(8), 2562–2572 (2015). [CrossRef]  

101. I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018). [CrossRef]   [PubMed]  

102. Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015). [CrossRef]   [PubMed]  

103. A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017). [CrossRef]   [PubMed]  

104. X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017). [CrossRef]   [PubMed]  

105. X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide,” Phys. Rev. Lett. 119(2), 027403 (2017). [CrossRef]   [PubMed]  

106. A. J. Moilanen, T. K. Hakala, and P. Törmä, “Active Control of Surface Plasmon–Emitter Strong Coupling,” ACS Photonics acsphotonics.7b00655 (2017).

107. G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016). [CrossRef]   [PubMed]  

108. P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017). [CrossRef]   [PubMed]  

109. C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014). [CrossRef]   [PubMed]  

110. T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016). [CrossRef]  

111. U. De Giovannini, H. Hübener, and A. Rubio, “Monitoring Electron-Photon Dressing in WSe2,” Nano Lett. 16(12), 7993–7998 (2016). [CrossRef]   [PubMed]  

112. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016). [CrossRef]   [PubMed]  

113. E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017). [CrossRef]  

114. Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016). [CrossRef]   [PubMed]  

115. A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, “Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields,” Nano Lett. 16(11), 7054–7060 (2016). [CrossRef]   [PubMed]  

116. Z. Wang, Y. Chiu, K. Honz, K. F. Mak, and J. Shan, “Electrical tuning of interlayer exciton gases in WSe2 bilayers,” (2017).

117. T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016). [CrossRef]  

118. M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016). [CrossRef]   [PubMed]  

119. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016). [CrossRef]  

120. D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14(10), 5625–5629 (2014). [CrossRef]   [PubMed]  

121. M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15(5), 2794–2800 (2015). [CrossRef]   [PubMed]  

122. C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014). [CrossRef]  

123. A. Molina-Sánchez, D. Sangalli, L. Wirtz, and A. Marini, “Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2,” Nano Lett. 17(8), 4549–4555 (2017). [CrossRef]   [PubMed]  

124. M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014). [CrossRef]  

125. Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011). [CrossRef]  

126. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012). [CrossRef]   [PubMed]  

127. H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010). [CrossRef]   [PubMed]  

128. Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014). [CrossRef]   [PubMed]  

129. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013). [CrossRef]   [PubMed]  

130. K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016). [CrossRef]   [PubMed]  

131. M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016). [CrossRef]  

132. J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, “Excited State Biexcitons in Atomically Thin MoSe2,” ACS Nano 11(7), 7468–7475 (2017). [CrossRef]   [PubMed]  

133. T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016). [CrossRef]   [PubMed]  

134. M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016). [CrossRef]   [PubMed]  

135. H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016). [CrossRef]   [PubMed]  

136. L. Dobusch, S. Schuler, V. Perebeinos, and T. Mueller, “Thermal Light Emission from Monolayer MoS2,” Adv. Mater. 29(31), 1–7 (2017). [CrossRef]   [PubMed]  

137. B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017). [CrossRef]   [PubMed]  

138. M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017). [CrossRef]   [PubMed]  

139. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015). [CrossRef]   [PubMed]  

140. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438 (2009). [CrossRef]  

141. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). [CrossRef]  

142. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013). [CrossRef]  

143. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013). [CrossRef]   [PubMed]  

144. F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014). [CrossRef]  

145. A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015). [CrossRef]   [PubMed]  

146. F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017). [CrossRef]   [PubMed]  

147. A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017). [CrossRef]   [PubMed]  

148. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012). [CrossRef]   [PubMed]  

149. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012). [CrossRef]   [PubMed]  

150. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014). [CrossRef]   [PubMed]  

151. A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014). [CrossRef]   [PubMed]  

152. A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015). [CrossRef]  

153. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016). [CrossRef]   [PubMed]  

154. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017). [CrossRef]  

155. D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica 4(7), 814 (2017). [CrossRef]  

156. M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015). [CrossRef]  

157. S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016). [CrossRef]   [PubMed]  

158. A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018). [CrossRef]  

159. A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2016). [CrossRef]  

160. A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018). [CrossRef]  

161. D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014). [CrossRef]  

162. A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015). [CrossRef]   [PubMed]  

163. A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016). [CrossRef]  

164. H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016). [CrossRef]   [PubMed]  

165. D. R. Bohren and F. Craig, Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1998).

166. A. Al and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005). [CrossRef]  

167. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013). [CrossRef]   [PubMed]  

168. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett. 11(6), 2329–2333 (2011). [CrossRef]   [PubMed]  

169. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012). [CrossRef]   [PubMed]  

170. J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward Multispectral Imaging with Colloidal Metasurface Pixels,” Adv. Mater. 29(6), 1602971 (2017). [CrossRef]   [PubMed]  

171. S.-D. Liu, Z.-X. Wang, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays,” Opt. Express 25(19), 22375–22387 (2017). [CrossRef]   [PubMed]  

172. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient Third Harmonic Generation and Nonlinear Subwavelength Imaging at a Higher-Order Anapole Mode in a Single Germanium Nanodisk,” ACS Nano 11(1), 953–960 (2017). [CrossRef]   [PubMed]  

173. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015). [CrossRef]   [PubMed]  

174. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015). [CrossRef]  

175. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics acsphotonics.7b00674 (2017).

176. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015). [CrossRef]   [PubMed]  

177. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015). [CrossRef]   [PubMed]  

178. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010). [CrossRef]   [PubMed]  

179. F. Stete, W. Koopman, and M. Bargheer, “Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment,” ACS Photonics 4(7), 1669–1676 (2017). [CrossRef]  

180. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling,” ACS Photonics 1(5), 454–463 (2014). [CrossRef]  

181. F. Marquier, C. Sauvan, and J. J. Greffet, “Revisiting quantum optics with surface plasmons and plasmonic resonators,” ACS Photonics 4(9), 2091–2101 (2017). [CrossRef]  

182. F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong Plasmon-Exciton Coupling by Dynamic Molecular Aggregation,” ACS Photonics acsphotonics.7b00554 (2017).

183. H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017). [CrossRef]   [PubMed]  

184. G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS 2,” Appl. Phys. Lett. 107(9), 091112 (2015). [CrossRef]  

185. L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-Crystal Exciton-Polaritons in Monolayer Semiconductors,” 1–19 (2017).

186. L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8, 14097 (2017). [CrossRef]   [PubMed]  

187. Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017). [CrossRef]  

188. M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photonics acsphotonics.7b00717 (2017).

189. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

190. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017). [CrossRef]  

191. Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017). [CrossRef]   [PubMed]  

192. W. Liu, Y. Wang, C. H. Naylor, B. Lee, B. Zheng, G. Liu, A. T. C. Johnson, A. Pan, and R. Agarwal, “Understanding the Different Exciton–Plasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach,” ACS Photonics acsphotonics.7b00672 (2017).

193. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015). [CrossRef]  

194. T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017). [CrossRef]  

195. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017). [CrossRef]   [PubMed]  

196. M. Wang, A. Krasnok, T. Zhang, L. Scarabelli, H. Liu, Z. Wu, L. M. Liz-Marzán, M. Terrones, A. Alù, and Y. Zheng, “Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature,” Adv. Mater.e1705779 in press (2018).

197. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017). [CrossRef]   [PubMed]  

198. F. Monticone and A. Alù, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014). [CrossRef]  

199. H. Chen, S. Nanz, A. Abass, J. Yan, T. Gao, D.-Y. Choi, Y. S. Kivshar, C. Rockstuhl, and D. N. Neshev, “Enhanced Directional Emission from Monolayer WSe 2 Integrated onto a Multiresonant Silicon-Based Photonic Structure,” ACS Photonics acsphotonics.7b00550 (2017).

200. S. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” 1–25 (2017).

References

  • View by:
  • |
  • |
  • |

  1. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
    [Crossref] [PubMed]
  2. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  3. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
    [Crossref]
  4. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
    [Crossref] [PubMed]
  5. S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, “Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids,” Annu. Rev. Mater. Res. 45(1), 1–27 (2015).
    [Crossref]
  6. G. Grosso, “2D materials: Valley polaritons,” Nat. Photonics 11(8), 455–456 (2017).
    [Crossref]
  7. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1(11), 16055 (2016).
    [Crossref]
  8. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
    [Crossref]
  9. M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, “Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles,” Nanophotonics 6(6), 1–20 (2017).
    [Crossref]
  10. C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending,” Nano Lett. 14(5), 2443–2447 (2014).
    [Crossref] [PubMed]
  11. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113(2), 26803 (2014).
    [Crossref]
  12. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
    [Crossref] [PubMed]
  13. Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
    [Crossref] [PubMed]
  14. M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
    [Crossref] [PubMed]
  15. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
    [Crossref] [PubMed]
  16. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
    [Crossref] [PubMed]
  17. J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2 – plasmonic nanoantenna system,” arXiv 1703.07873 (2017).
  18. J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, “Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor,” ACS Nano 9(1), 647–655 (2015).
    [Crossref] [PubMed]
  19. E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, “Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2,” Nano Lett. 16(12), 7421–7426 (2016).
    [Crossref] [PubMed]
  20. Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, “Observation of biexcitons in monolayer WSe 2,” Nat. Phys. 11(6), 477–481 (2015).
    [Crossref]
  21. K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
    [Crossref] [PubMed]
  22. M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
    [Crossref] [PubMed]
  23. G. Plechinger, T. Korn, and J. M. Lupton, “Valley-Polarized Exciton Dynamics in Exfoliated Monolayer WSe 2,” J. Phys. Chem. C 121(11), 6409–6413 (2017).
    [Crossref]
  24. K.-D. Park, T. Jiang, G. Clark, X. Xu, and M. B. Raschke, “Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect,” Nat. Nanotechnol. 13, 1–7 (2017).
    [PubMed]
  25. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887 (2012).
    [Crossref] [PubMed]
  26. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
    [Crossref] [PubMed]
  27. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
    [Crossref] [PubMed]
  28. D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014).
    [Crossref] [PubMed]
  29. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
    [Crossref] [PubMed]
  30. M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, “Exciton Hall effect in monolayer MoS2,” Nat. Mater. 16(12), 1193–1197 (2017).
    [Crossref] [PubMed]
  31. Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
    [Crossref]
  32. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  33. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
    [Crossref] [PubMed]
  34. N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
    [Crossref]
  35. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  36. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
    [Crossref] [PubMed]
  37. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
    [Crossref]
  38. O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014).
    [Crossref] [PubMed]
  39. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
    [Crossref] [PubMed]
  40. C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017).
    [Crossref] [PubMed]
  41. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
    [Crossref]
  42. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
    [Crossref] [PubMed]
  43. Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12(10), 987–992 (2017).
    [Crossref] [PubMed]
  44. O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature,” Nano Lett. 15(8), 5302–5306 (2015).
    [Crossref] [PubMed]
  45. Y. Ye, Z. Ye, M. Gharghi, H. Zhu, M. Zhao, Y. Wang, X. Yin, and X. Zhang, “Exciton-dominant electroluminescence from a diode of monolayer MoS 2,” Appl. Phys. Lett. 104(19), 193508 (2014).
    [Crossref]
  46. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013).
    [Crossref] [PubMed]
  47. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
    [Crossref] [PubMed]
  48. S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett. 14(4), 2019–2025 (2014).
    [Crossref] [PubMed]
  49. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
    [Crossref] [PubMed]
  50. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2(4), 347 (2015).
    [Crossref]
  51. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
    [Crossref] [PubMed]
  52. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10(6), 507–511 (2015).
    [Crossref] [PubMed]
  53. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  54. M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
    [Crossref] [PubMed]
  55. M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
    [Crossref] [PubMed]
  56. A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, “Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures,” Nano Lett. 17(7), 4317–4322 (2017).
    [Crossref] [PubMed]
  57. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
    [Crossref] [PubMed]
  58. J. Huang, G. M. Akselrod, T. Ming, J. Kong, and M. H. Mikkelsen, “Tailored Emission Spectrum of 2D Semiconductors Using Plasmonic Nanocavities,” ACS Photonics acsphotonics.7b01085 (2017).
  59. G. Eda and S. A. Maier, “Two-dimensional crystals: Managing light for optoelectronics,” ACS Nano 7(7), 5660–5665 (2013).
    [Crossref] [PubMed]
  60. G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
    [Crossref] [PubMed]
  61. M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
    [Crossref]
  62. Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, “Photonic Crystals for Enhanced Light Extraction from 2D Materials,” ACS Photonics 3(12), 2515–2520 (2016).
    [Crossref]
  63. T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
    [Crossref] [PubMed]
  64. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
    [Crossref] [PubMed]
  65. Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017).
    [Crossref] [PubMed]
  66. I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
    [Crossref]
  67. D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
    [Crossref] [PubMed]
  68. X. Zhang, S. Choi, D. Wang, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances,” Nano Lett. 17(11), 6715–6720 (2017).
    [Crossref] [PubMed]
  69. M.-G. Lee, S. Yoo, T. Kim, and Q.-H. Park, “Large-area plasmon enhanced two-dimensional MoS2,” Nanoscale 9(42), 16244–16248 (2017).
    [Crossref] [PubMed]
  70. P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97(4), 41402 (2018).
    [Crossref]
  71. S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
    [Crossref] [PubMed]
  72. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
    [Crossref]
  73. M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, “Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2,” Nanoscale 9(37), 13947–13955 (2017).
    [Crossref] [PubMed]
  74. J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
    [Crossref] [PubMed]
  75. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2,” ACS Nano 7(1), 791–797 (2013).
    [Crossref] [PubMed]
  76. W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
    [Crossref] [PubMed]
  77. C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
    [Crossref] [PubMed]
  78. M. Szyniszewski, E. Mostaani, N. D. Drummond, and V. I. Fal’ko, “Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations,” Phys. Rev. B 95(8), 081301 (2017).
    [Crossref]
  79. E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
    [Crossref]
  80. N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: Monolayer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
    [Crossref] [PubMed]
  81. S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
    [Crossref]
  82. A. Steinhoff, M. Florian, M. Rösner, G. Schönhoff, T. O. Wehling, and F. Jahnke, “Exciton fission in monolayer transition metal dichalcogenide semiconductors,” Nat. Commun. 8(1), 1166 (2017).
    [Crossref] [PubMed]
  83. S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014).
    [Crossref] [PubMed]
  84. X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
    [Crossref] [PubMed]
  85. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
    [Crossref]
  86. M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
    [Crossref]
  87. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale 7(23), 10421–10429 (2015).
    [Crossref] [PubMed]
  88. A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A. Velauthapillai, J. Hone, and T. F. Heinz, “Electrical Tuning of Exciton Binding Energies in Monolayer WS2,” Phys. Rev. Lett. 115(12), 126802 (2015).
    [Crossref] [PubMed]
  89. N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, and T. Yu, “Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2,” ACS Nano 8(11), 11320–11329 (2014).
    [Crossref] [PubMed]
  90. S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alú, “Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS2 Structures,” ArXiv e-prints 1710.09949, (2017).
  91. E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
    [Crossref] [PubMed]
  92. F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, “Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire-WS2-Film Composites,” ACS Photonics 4(6), 1421–1430 (2017).
    [Crossref]
  93. G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schüller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015).
    [Crossref]
  94. L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7(16), 7402–7408 (2015).
    [Crossref] [PubMed]
  95. B. Zhu, X. Chen, and X. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
    [Crossref] [PubMed]
  96. L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, “Room-temperature exciton-polaritons with two-dimensional WS2,” Sci. Rep. 6(1), 33134 (2016).
    [Crossref] [PubMed]
  97. H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013).
    [Crossref] [PubMed]
  98. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
    [Crossref] [PubMed]
  99. P. D. Cunningham, A. T. Hanbicki, K. M. McCreary, and B. T. Jonker, “Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS 2,” ACS Nano acsnano.7b06885 (2017).
  100. Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Res. 8(8), 2562–2572 (2015).
    [Crossref]
  101. I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
    [Crossref] [PubMed]
  102. Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
    [Crossref] [PubMed]
  103. A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
    [Crossref] [PubMed]
  104. X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
    [Crossref] [PubMed]
  105. X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide,” Phys. Rev. Lett. 119(2), 027403 (2017).
    [Crossref] [PubMed]
  106. A. J. Moilanen, T. K. Hakala, and P. Törmä, “Active Control of Surface Plasmon–Emitter Strong Coupling,” ACS Photonics acsphotonics.7b00655 (2017).
  107. G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
    [Crossref] [PubMed]
  108. P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
    [Crossref] [PubMed]
  109. C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
    [Crossref] [PubMed]
  110. T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
    [Crossref]
  111. U. De Giovannini, H. Hübener, and A. Rubio, “Monitoring Electron-Photon Dressing in WSe2,” Nano Lett. 16(12), 7993–7998 (2016).
    [Crossref] [PubMed]
  112. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
    [Crossref] [PubMed]
  113. E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
    [Crossref]
  114. Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
    [Crossref] [PubMed]
  115. A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, “Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields,” Nano Lett. 16(11), 7054–7060 (2016).
    [Crossref] [PubMed]
  116. Z. Wang, Y. Chiu, K. Honz, K. F. Mak, and J. Shan, “Electrical tuning of interlayer exciton gases in WSe2 bilayers,” (2017).
  117. T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
    [Crossref]
  118. M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
    [Crossref] [PubMed]
  119. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
    [Crossref]
  120. D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14(10), 5625–5629 (2014).
    [Crossref] [PubMed]
  121. M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15(5), 2794–2800 (2015).
    [Crossref] [PubMed]
  122. C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014).
    [Crossref]
  123. A. Molina-Sánchez, D. Sangalli, L. Wirtz, and A. Marini, “Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2,” Nano Lett. 17(8), 4549–4555 (2017).
    [Crossref] [PubMed]
  124. M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014).
    [Crossref]
  125. Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
    [Crossref]
  126. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012).
    [Crossref] [PubMed]
  127. H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
    [Crossref] [PubMed]
  128. Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
    [Crossref] [PubMed]
  129. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
    [Crossref] [PubMed]
  130. K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016).
    [Crossref] [PubMed]
  131. M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
    [Crossref]
  132. J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, “Excited State Biexcitons in Atomically Thin MoSe2,” ACS Nano 11(7), 7468–7475 (2017).
    [Crossref] [PubMed]
  133. T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
    [Crossref] [PubMed]
  134. M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
    [Crossref] [PubMed]
  135. H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016).
    [Crossref] [PubMed]
  136. L. Dobusch, S. Schuler, V. Perebeinos, and T. Mueller, “Thermal Light Emission from Monolayer MoS2,” Adv. Mater. 29(31), 1–7 (2017).
    [Crossref] [PubMed]
  137. B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
    [Crossref] [PubMed]
  138. M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
    [Crossref] [PubMed]
  139. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
    [Crossref] [PubMed]
  140. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
    [Crossref]
  141. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  142. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
    [Crossref]
  143. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
    [Crossref] [PubMed]
  144. F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
    [Crossref]
  145. A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
    [Crossref] [PubMed]
  146. F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
    [Crossref] [PubMed]
  147. A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
    [Crossref] [PubMed]
  148. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  149. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
    [Crossref] [PubMed]
  150. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref] [PubMed]
  151. A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
    [Crossref] [PubMed]
  152. A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
    [Crossref]
  153. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  154. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
    [Crossref]
  155. D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica 4(7), 814 (2017).
    [Crossref]
  156. M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
    [Crossref]
  157. S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
    [Crossref] [PubMed]
  158. A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
    [Crossref]
  159. A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2016).
    [Crossref]
  160. A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
    [Crossref]
  161. D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
    [Crossref]
  162. A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
    [Crossref] [PubMed]
  163. A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
    [Crossref]
  164. H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
    [Crossref] [PubMed]
  165. D. R. Bohren and F. Craig, Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 1998).
  166. A. Al and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
    [Crossref]
  167. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
    [Crossref] [PubMed]
  168. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett. 11(6), 2329–2333 (2011).
    [Crossref] [PubMed]
  169. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
    [Crossref] [PubMed]
  170. J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward Multispectral Imaging with Colloidal Metasurface Pixels,” Adv. Mater. 29(6), 1602971 (2017).
    [Crossref] [PubMed]
  171. S.-D. Liu, Z.-X. Wang, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays,” Opt. Express 25(19), 22375–22387 (2017).
    [Crossref] [PubMed]
  172. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient Third Harmonic Generation and Nonlinear Subwavelength Imaging at a Higher-Order Anapole Mode in a Single Germanium Nanodisk,” ACS Nano 11(1), 953–960 (2017).
    [Crossref] [PubMed]
  173. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
    [Crossref] [PubMed]
  174. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  175. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics acsphotonics.7b00674 (2017).
  176. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  177. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  178. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
    [Crossref] [PubMed]
  179. F. Stete, W. Koopman, and M. Bargheer, “Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment,” ACS Photonics 4(7), 1669–1676 (2017).
    [Crossref]
  180. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling,” ACS Photonics 1(5), 454–463 (2014).
    [Crossref]
  181. F. Marquier, C. Sauvan, and J. J. Greffet, “Revisiting quantum optics with surface plasmons and plasmonic resonators,” ACS Photonics 4(9), 2091–2101 (2017).
    [Crossref]
  182. F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong Plasmon-Exciton Coupling by Dynamic Molecular Aggregation,” ACS Photonics acsphotonics.7b00554 (2017).
  183. H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
    [Crossref] [PubMed]
  184. G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS 2,” Appl. Phys. Lett. 107(9), 091112 (2015).
    [Crossref]
  185. L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-Crystal Exciton-Polaritons in Monolayer Semiconductors,” 1–19 (2017).
  186. L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8, 14097 (2017).
    [Crossref] [PubMed]
  187. Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
    [Crossref]
  188. M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photonics acsphotonics.7b00717 (2017).
  189. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).
  190. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
    [Crossref]
  191. Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
    [Crossref] [PubMed]
  192. W. Liu, Y. Wang, C. H. Naylor, B. Lee, B. Zheng, G. Liu, A. T. C. Johnson, A. Pan, and R. Agarwal, “Understanding the Different Exciton–Plasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach,” ACS Photonics acsphotonics.7b00672 (2017).
  193. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
    [Crossref]
  194. T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
    [Crossref]
  195. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
    [Crossref] [PubMed]
  196. M. Wang, A. Krasnok, T. Zhang, L. Scarabelli, H. Liu, Z. Wu, L. M. Liz-Marzán, M. Terrones, A. Alù, and Y. Zheng, “Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature,” Adv. Mater.e1705779 in press (2018).
  197. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
    [Crossref] [PubMed]
  198. F. Monticone and A. Alù, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
    [Crossref]
  199. H. Chen, S. Nanz, A. Abass, J. Yan, T. Gao, D.-Y. Choi, Y. S. Kivshar, C. Rockstuhl, and D. N. Neshev, “Enhanced Directional Emission from Monolayer WSe 2 Integrated onto a Multiresonant Silicon-Based Photonic Structure,” ACS Photonics acsphotonics.7b00550 (2017).
  200. S. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” 1–25 (2017).

2018 (6)

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97(4), 41402 (2018).
[Crossref]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

2017 (54)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica 4(7), 814 (2017).
[Crossref]

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward Multispectral Imaging with Colloidal Metasurface Pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

S.-D. Liu, Z.-X. Wang, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays,” Opt. Express 25(19), 22375–22387 (2017).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient Third Harmonic Generation and Nonlinear Subwavelength Imaging at a Higher-Order Anapole Mode in a Single Germanium Nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

F. Stete, W. Koopman, and M. Bargheer, “Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment,” ACS Photonics 4(7), 1669–1676 (2017).
[Crossref]

F. Marquier, C. Sauvan, and J. J. Greffet, “Revisiting quantum optics with surface plasmons and plasmonic resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8, 14097 (2017).
[Crossref] [PubMed]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide,” Phys. Rev. Lett. 119(2), 027403 (2017).
[Crossref] [PubMed]

A. Steinhoff, M. Florian, M. Rösner, G. Schönhoff, T. O. Wehling, and F. Jahnke, “Exciton fission in monolayer transition metal dichalcogenide semiconductors,” Nat. Commun. 8(1), 1166 (2017).
[Crossref] [PubMed]

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

M. Szyniszewski, E. Mostaani, N. D. Drummond, and V. I. Fal’ko, “Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations,” Phys. Rev. B 95(8), 081301 (2017).
[Crossref]

E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
[Crossref]

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, “Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire-WS2-Film Composites,” ACS Photonics 4(6), 1421–1430 (2017).
[Crossref]

A. Molina-Sánchez, D. Sangalli, L. Wirtz, and A. Marini, “Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2,” Nano Lett. 17(8), 4549–4555 (2017).
[Crossref] [PubMed]

J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, “Excited State Biexcitons in Atomically Thin MoSe2,” ACS Nano 11(7), 7468–7475 (2017).
[Crossref] [PubMed]

L. Dobusch, S. Schuler, V. Perebeinos, and T. Mueller, “Thermal Light Emission from Monolayer MoS2,” Adv. Mater. 29(31), 1–7 (2017).
[Crossref] [PubMed]

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
[Crossref] [PubMed]

A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, “Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2,” Nanoscale 9(37), 13947–13955 (2017).
[Crossref] [PubMed]

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

X. Zhang, S. Choi, D. Wang, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances,” Nano Lett. 17(11), 6715–6720 (2017).
[Crossref] [PubMed]

M.-G. Lee, S. Yoo, T. Kim, and Q.-H. Park, “Large-area plasmon enhanced two-dimensional MoS2,” Nanoscale 9(42), 16244–16248 (2017).
[Crossref] [PubMed]

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017).
[Crossref] [PubMed]

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12(10), 987–992 (2017).
[Crossref] [PubMed]

C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017).
[Crossref] [PubMed]

A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, “Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures,” Nano Lett. 17(7), 4317–4322 (2017).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, “Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles,” Nanophotonics 6(6), 1–20 (2017).
[Crossref]

G. Grosso, “2D materials: Valley polaritons,” Nat. Photonics 11(8), 455–456 (2017).
[Crossref]

K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
[Crossref] [PubMed]

G. Plechinger, T. Korn, and J. M. Lupton, “Valley-Polarized Exciton Dynamics in Exfoliated Monolayer WSe 2,” J. Phys. Chem. C 121(11), 6409–6413 (2017).
[Crossref]

K.-D. Park, T. Jiang, G. Clark, X. Xu, and M. B. Raschke, “Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect,” Nat. Nanotechnol. 13, 1–7 (2017).
[PubMed]

M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, “Exciton Hall effect in monolayer MoS2,” Nat. Mater. 16(12), 1193–1197 (2017).
[Crossref] [PubMed]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

2016 (30)

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1(11), 16055 (2016).
[Crossref]

E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, “Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2,” Nano Lett. 16(12), 7421–7426 (2016).
[Crossref] [PubMed]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, “Photonic Crystals for Enhanced Light Extraction from 2D Materials,” ACS Photonics 3(12), 2515–2520 (2016).
[Crossref]

T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
[Crossref] [PubMed]

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016).
[Crossref] [PubMed]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016).
[Crossref] [PubMed]

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
[Crossref]

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
[Crossref]

U. De Giovannini, H. Hübener, and A. Rubio, “Monitoring Electron-Photon Dressing in WSe2,” Nano Lett. 16(12), 7993–7998 (2016).
[Crossref] [PubMed]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
[Crossref] [PubMed]

L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, “Room-temperature exciton-polaritons with two-dimensional WS2,” Sci. Rep. 6(1), 33134 (2016).
[Crossref] [PubMed]

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
[Crossref] [PubMed]

A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, “Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields,” Nano Lett. 16(11), 7054–7060 (2016).
[Crossref] [PubMed]

T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
[Crossref]

M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
[Crossref] [PubMed]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2016).
[Crossref]

2015 (36)

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS 2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
[Crossref] [PubMed]

Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Res. 8(8), 2562–2572 (2015).
[Crossref]

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schüller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015).
[Crossref]

L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7(16), 7402–7408 (2015).
[Crossref] [PubMed]

B. Zhu, X. Chen, and X. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref] [PubMed]

A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale 7(23), 10421–10429 (2015).
[Crossref] [PubMed]

A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A. Velauthapillai, J. Hone, and T. F. Heinz, “Electrical Tuning of Exciton Binding Energies in Monolayer WS2,” Phys. Rev. Lett. 115(12), 126802 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
[Crossref] [PubMed]

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
[Crossref]

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15(5), 2794–2800 (2015).
[Crossref] [PubMed]

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2(4), 347 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
[Crossref] [PubMed]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10(6), 507–511 (2015).
[Crossref] [PubMed]

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature,” Nano Lett. 15(8), 5302–5306 (2015).
[Crossref] [PubMed]

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, “Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids,” Annu. Rev. Mater. Res. 45(1), 1–27 (2015).
[Crossref]

Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, “Observation of biexcitons in monolayer WSe 2,” Nat. Phys. 11(6), 477–481 (2015).
[Crossref]

J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, “Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor,” ACS Nano 9(1), 647–655 (2015).
[Crossref] [PubMed]

2014 (26)

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014).
[Crossref] [PubMed]

O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending,” Nano Lett. 14(5), 2443–2447 (2014).
[Crossref] [PubMed]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113(2), 26803 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Y. Ye, Z. Ye, M. Gharghi, H. Zhu, M. Zhao, Y. Wang, X. Yin, and X. Zhang, “Exciton-dominant electroluminescence from a diode of monolayer MoS 2,” Appl. Phys. Lett. 104(19), 193508 (2014).
[Crossref]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett. 14(4), 2019–2025 (2014).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014).
[Crossref]

M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014).
[Crossref]

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014).
[Crossref] [PubMed]

N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, and T. Yu, “Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2,” ACS Nano 8(11), 11320–11329 (2014).
[Crossref] [PubMed]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14(10), 5625–5629 (2014).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

2013 (17)

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013).
[Crossref] [PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: Monolayer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013).
[Crossref] [PubMed]

G. Eda and S. A. Maier, “Two-dimensional crystals: Managing light for optoelectronics,” ACS Nano 7(7), 5660–5665 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
[Crossref] [PubMed]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref] [PubMed]

2012 (8)

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887 (2012).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012).
[Crossref] [PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

2011 (3)

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

2010 (2)

H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
[Crossref] [PubMed]

2009 (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

2005 (1)

A. Al and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Abid, I.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Addou, R.

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Agarwal, R.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Ager, J. W.

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Ahn, G. H.

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

Aivazian, G.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref] [PubMed]

Aizpurua, J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Akinwande, D.

M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, “Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2,” Nanoscale 9(37), 13947–13955 (2017).
[Crossref] [PubMed]

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Akselrod, G. M.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward Multispectral Imaging with Colloidal Metasurface Pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Al, A.

A. Al and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Alarcon Llado, E.

O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014).
[Crossref] [PubMed]

Alem, N.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Alexeev, E. M.

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
[Crossref]

Aljarb, A.

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

Alpeggiani, F.

S. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” 1–25 (2017).

Alú, A.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

Alù, A.

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
[Crossref] [PubMed]

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
[Crossref]

F. Monticone and A. Alù, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

M. Wang, A. Krasnok, T. Zhang, L. Scarabelli, H. Liu, Z. Wu, L. M. Liz-Marzán, M. Terrones, A. Alù, and Y. Zheng, “Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature,” Adv. Mater.e1705779 in press (2018).

Amand, T.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014).
[Crossref]

M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014).
[Crossref]

D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014).
[Crossref] [PubMed]

Amani, M.

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Amsalem, P.

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

Antosiewicz, T. J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

Arefe, G.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

Argyropoulos, C.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

Arora, A.

M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, “Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles,” Nanophotonics 6(6), 1–20 (2017).
[Crossref]

G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
[Crossref] [PubMed]

A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale 7(23), 10421–10429 (2015).
[Crossref] [PubMed]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
[Crossref] [PubMed]

Aslan, O. B.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Aßmann, M.

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
[Crossref]

Ataca, C.

S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012).
[Crossref] [PubMed]

Avendano, C.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013).
[Crossref] [PubMed]

Azcatl, A.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Azzini, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Back, P.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
[Crossref]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Bakker, R. M.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

Balicas, L.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Ballottin, M.

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

Bao, W.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide,” Phys. Rev. Lett. 119(2), 027403 (2017).
[Crossref] [PubMed]

Baranov, D. G.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica 4(7), 814 (2017).
[Crossref]

Baranov, M. A. A.

S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Baranowski, M.

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

Bargheer, M.

F. Stete, W. Koopman, and M. Bargheer, “Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment,” ACS Photonics 4(7), 1669–1676 (2017).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Bartels, L.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Baumann, V.

Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
[Crossref] [PubMed]

Baumberg, J. J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Bayer, M.

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
[Crossref]

Beams, R.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10(6), 507–511 (2015).
[Crossref] [PubMed]

Beermann, J.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Belov, P.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Belov, P. A.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
[Crossref]

Belov, P. A. A.

S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Berger, H.

S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett. 14(4), 2019–2025 (2014).
[Crossref] [PubMed]

Berger, J. S.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Berghäuser, G.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
[Crossref] [PubMed]

Berkdemir, A.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

Berkelbach, T. C.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, “Observation of biexcitons in monolayer WSe 2,” Nat. Phys. 11(6), 477–481 (2015).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Berkovitch, N.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Bernardi, M.

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15(5), 2794–2800 (2015).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Bernardo-Gavito, R.

Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, “Photonic Crystals for Enhanced Light Extraction from 2D Materials,” ACS Photonics 3(12), 2515–2520 (2016).
[Crossref]

Bertelsen, L. P.

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97(4), 41402 (2018).
[Crossref]

Betzold, S.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Bhimanapati, G. R.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Birowosuto, M. D.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Blumstengel, S.

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

Bogucki, A.

T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
[Crossref]

Bohloul, A.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Bonod, N.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

Botello-Méndez, A.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Bouet, L.

M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014).
[Crossref]

D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014).
[Crossref] [PubMed]

Bowman, R. W.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Braasch, L.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

Bradley, A. J.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Bratschitsch, R.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2(4), 347 (2015).
[Crossref]

Brener, I.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

Brézin, L.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14(10), 5625–5629 (2014).
[Crossref] [PubMed]

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Brus, L. E.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Burg, W.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-Crystal Exciton-Polaritons in Monolayer Semiconductors,” 1–19 (2017).

Burkard, G.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
[Crossref]

Buscema, M.

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Cadiz, F.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

Cain, J. D.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

Caldarola, M.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

Cao, B.

J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, “Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor,” ACS Nano 9(1), 647–655 (2015).
[Crossref] [PubMed]

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Cao, T.

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887 (2012).
[Crossref] [PubMed]

Cao, Y.

Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, “Photonic Crystals for Enhanced Light Extraction from 2D Materials,” ACS Photonics 3(12), 2515–2520 (2016).
[Crossref]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Castellanos-Gomez, A.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2(4), 347 (2015).
[Crossref]

Castro-Beltran, A.

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

Cha, J.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Chakraborty, C.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10(6), 507–511 (2015).
[Crossref] [PubMed]

Chang, T.-R.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Chang, W.-H.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Charlier, J. C.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Chaves, A.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

Chen, C. H.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Chen, C.-A.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Chen, G.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14(10), 5625–5629 (2014).
[Crossref] [PubMed]

Chen, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
[Crossref] [PubMed]

H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016).
[Crossref] [PubMed]

Chen, H.-Y.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Chen, I.-T.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Chen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
[Crossref] [PubMed]

Chen, J.-D.

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Chen, W.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Chen, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

B. Zhu, X. Chen, and X. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref] [PubMed]

H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Chen, Y.

Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Res. 8(8), 2562–2572 (2015).
[Crossref]

C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
[Crossref] [PubMed]

Chen, Y.-J.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

Chen, Z.

T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]

Chen, Z.-H.

Cheng, F.

A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, “Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures,” Nano Lett. 17(7), 4317–4322 (2017).
[Crossref] [PubMed]

F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, “Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire-WS2-Film Composites,” ACS Photonics 4(6), 1421–1430 (2017).
[Crossref]

Cheng, W.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

Cheng, Y. C.

Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
[Crossref]

Cherkez, V.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
[Crossref] [PubMed]

Chernikov, A.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
[Crossref] [PubMed]

M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
[Crossref] [PubMed]

A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A. Velauthapillai, J. Hone, and T. F. Heinz, “Electrical Tuning of Exciton Binding Energies in Monolayer WS2,” Phys. Rev. Lett. 115(12), 126802 (2015).
[Crossref] [PubMed]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Cherotchenko, E.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Chervy, T.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014).
[Crossref] [PubMed]

Chichkov, B. N.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica 4(7), 814 (2017).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Chipouline, A.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

Chiu, M. H.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Chiu, Y.

Z. Wang, Y. Chiu, K. Honz, K. F. Mak, and J. Shan, “Electrical tuning of interlayer exciton gases in WSe2 bilayers,” (2017).

Cho, K.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Choi, H.

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

Choi, S.

X. Zhang, S. Choi, D. Wang, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances,” Nano Lett. 17(11), 6715–6720 (2017).
[Crossref] [PubMed]

Chou, C.-T. T.

T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Chou, Y.-C.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Christianen, P. C. M.

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
[Crossref] [PubMed]

Christiansen, D.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

Chu, L.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Clark, C.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref] [PubMed]

Clark, G.

C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017).
[Crossref] [PubMed]

K.-D. Park, T. Jiang, G. Clark, X. Xu, and M. B. Raschke, “Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect,” Nat. Nanotechnol. 13, 1–7 (2017).
[PubMed]

J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics in 2D materials,” Nat. Rev. Mater. 1(11), 16055 (2016).
[Crossref]

A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, “Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields,” Nano Lett. 16(11), 7054–7060 (2016).
[Crossref] [PubMed]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Cobden, D. H.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Coles, D. M.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8, 14097 (2017).
[Crossref] [PubMed]

L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, “Room-temperature exciton-polaritons with two-dimensional WS2,” Sci. Rep. 6(1), 33134 (2016).
[Crossref] [PubMed]

Coley, W. C.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Cong, C.

J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, “Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor,” ACS Nano 9(1), 647–655 (2015).
[Crossref] [PubMed]

Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Res. 8(8), 2562–2572 (2015).
[Crossref]

N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. L. Yeow, and T. Yu, “Nonblinking, intense two-dimensional light emitter: Monolayer WS2 Triangles,” ACS Nano 7(12), 10985–10994 (2013).
[Crossref] [PubMed]

Considine, C. R. C. R.

T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Cooper, V. R.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Cotlet, O.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
[Crossref]

Courtade, E.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

Crespi, V. H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Crommie, M. F.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Crooker, S. A.

A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, “Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields,” Nano Lett. 16(11), 7054–7060 (2016).
[Crossref] [PubMed]

Cuadra, J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light–Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Cubukcu, E.

X. Zhang, S. Choi, D. Wang, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances,” Nano Lett. 17(11), 6715–6720 (2017).
[Crossref] [PubMed]

Cui, X.

B. Zhu, X. Chen, and X. Cui, “Exciton Binding Energy of Monolayer WS2,” Sci. Rep. 5(1), 9218 (2015).
[Crossref] [PubMed]

H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013).
[Crossref] [PubMed]

Cui, Y.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Czaplewski, D. A.

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS 2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

da Jornada, F. H.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Dai, J.

H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013).
[Crossref] [PubMed]

Danovich, M.

E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
[Crossref]

Das, S.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, “Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids,” Annu. Rev. Mater. Res. 45(1), 1–27 (2015).
[Crossref]

Dass, C. K.

K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
[Crossref] [PubMed]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016).
[Crossref] [PubMed]

Datta, R.

H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Davanco, M.

Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
[Crossref] [PubMed]

Davis, B. N.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

De Giovannini, U.

U. De Giovannini, H. Hübener, and A. Rubio, “Monitoring Electron-Photon Dressing in WSe2,” Nano Lett. 16(12), 7993–7998 (2016).
[Crossref] [PubMed]

De Greve, K.

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

Debus, J.

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
[Crossref]

Decker, M.

H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016).
[Crossref] [PubMed]

Del Águila, A. G.

G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
[Crossref] [PubMed]

Del Corro, E.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Del Pozo-Zamudio, O.

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref] [PubMed]

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref] [PubMed]

Delmonte, V.

T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
[Crossref] [PubMed]

Demler, E.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
[Crossref]

Deng, H.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-Crystal Exciton-Polaritons in Monolayer Semiconductors,” 1–19 (2017).

Deng, Q.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

Deng, S.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
[Crossref] [PubMed]

Deng, Z.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Denisyuk, A. I.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Dibos, A.

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

Dietrich, C. P.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Djavid, M.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature,” Nano Lett. 15(8), 5302–5306 (2015).
[Crossref] [PubMed]

Dobusch, L.

L. Dobusch, S. Schuler, V. Perebeinos, and T. Mueller, “Thermal Light Emission from Monolayer MoS2,” Adv. Mater. 29(31), 1–7 (2017).
[Crossref] [PubMed]

Docherty, C. J.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Dravid, V. P.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11(7), 431–435 (2017).
[Crossref]

Dresselhaus, M. S.

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

Drummond, N. D.

M. Szyniszewski, E. Mostaani, N. D. Drummond, and V. I. Fal’ko, “Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations,” Phys. Rev. B 95(8), 081301 (2017).
[Crossref]

E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
[Crossref]

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
[Crossref]

Drüppel, M.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

Duan, X.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

Dubertret, B.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Dubey, M.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, “Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids,” Annu. Rev. Mater. Res. 45(1), 1–27 (2015).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Dufferwiel, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref] [PubMed]

Dumcenco, D.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

Ebbesen, T. W.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014).
[Crossref] [PubMed]

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Eda, G.

G. Eda and S. A. Maier, “Two-dimensional crystals: Managing light for optoelectronics,” ACS Nano 7(7), 5660–5665 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Eginligil, M.

J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu, “Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor,” ACS Nano 9(1), 647–655 (2015).
[Crossref] [PubMed]

Eich, M.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

Ekerdt, J. G.

F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, “Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire-WS2-Film Composites,” ACS Photonics 4(6), 1421–1430 (2017).
[Crossref]

Elias, A. L.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Elías, A. L.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

Engel, M.

R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013).
[Crossref] [PubMed]

Engheta, N.

A. Al and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, andor double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Englund, D.

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Escoffier, W.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

Estakhri, N. M.

Evlyukhin, A. B.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica 4(7), 814 (2017).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

A. B. Evlyukhin, R. L. Eriksen, W. Cheng, J. Beermann, C. Reinhardt, A. Petrov, S. Prorok, M. Eich, B. N. Chichkov, and S. I. Bozhevolnyi, “Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances,” Sci. Rep. 4(1), 4126 (2014).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Ezhov, A. A.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

Fabian, J.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Fal’ko, V.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
[Crossref]

Fal’ko, V. I.

E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
[Crossref]

M. Szyniszewski, E. Mostaani, N. D. Drummond, and V. I. Fal’ko, “Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations,” Phys. Rev. B 95(8), 081301 (2017).
[Crossref]

Fan, F.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12(10), 987–992 (2017).
[Crossref] [PubMed]

Fan, P.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

Fan, X.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

Fang, Z.

Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017).
[Crossref] [PubMed]

Fantini, C.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Faugeras, C.

M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, “Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles,” Nanophotonics 6(6), 1–20 (2017).
[Crossref]

T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
[Crossref] [PubMed]

T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
[Crossref]

A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale 7(23), 10421–10429 (2015).
[Crossref] [PubMed]

Fedyanin, A. A.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

Feenstra, R. M.

C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
[Crossref] [PubMed]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Feng, J.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12(10), 987–992 (2017).
[Crossref] [PubMed]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887 (2012).
[Crossref] [PubMed]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Feng, S.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013).
[Crossref] [PubMed]

Filonov, D. S.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Fink, T.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
[Crossref]

Flatten, L. C.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8, 14097 (2017).
[Crossref] [PubMed]

L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, “Room-temperature exciton-polaritons with two-dimensional WS2,” Sci. Rep. 6(1), 33134 (2016).
[Crossref] [PubMed]

Florian, M.

A. Steinhoff, M. Florian, M. Rösner, G. Schönhoff, T. O. Wehling, and F. Jahnke, “Exciton fission in monolayer transition metal dichalcogenide semiconductors,” Nat. Commun. 8(1), 1166 (2017).
[Crossref] [PubMed]

Fontcuberta i Morral, A.

O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014).
[Crossref] [PubMed]

Fryett, T.

C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017).
[Crossref] [PubMed]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Galfsky, T.

T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Garnett, E. C.

S. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” 1–25 (2017).

Gedik, N.

E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, “Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2,” Nano Lett. 16(12), 7421–7426 (2016).
[Crossref] [PubMed]

Geim, A. K.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref] [PubMed]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Genet, C.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014).
[Crossref] [PubMed]

George, J.

S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Gharghi, M.

Y. Ye, Z. Ye, M. Gharghi, H. Zhu, M. Zhao, Y. Wang, X. Yin, and X. Zhang, “Exciton-dominant electroluminescence from a diode of monolayer MoS 2,” Appl. Phys. Lett. 104(19), 193508 (2014).
[Crossref]

Ghimire, N. J.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref] [PubMed]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Gholinia, A.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref] [PubMed]

Ghorannevis, Z.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Ghosh, S.

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

Gillet, Y.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Ginzburg, P.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Glazov, M.

C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014).
[Crossref]

Glazov, M. M.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014).
[Crossref]

Glybovski, S.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

Gmitra, M.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
[Crossref]

Godde, T.

T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. Del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, “Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization,” Phys. Rev. B 94(16), 1–7 (2016).
[Crossref]

Gogna, R.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, “Photonic-Crystal Exciton-Polaritons in Monolayer Semiconductors,” 1–19 (2017).

Goldberger, J. E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gomathi, A.

H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Gonçalves, P. A. D.

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97(4), 41402 (2018).
[Crossref]

Gong, S.

S. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” 1–25 (2017).

Gong, Y.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

Gonze, X.

E. Del Corro, A. Botello-Méndez, Y. Gillet, A. L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J. C. Charlier, M. Terrones, and M. A. Pimenta, “Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy,” Nano Lett. 16(4), 2363–2368 (2016).
[Crossref] [PubMed]

Goodfellow, K. M.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10(6), 507–511 (2015).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Goryca, M.

T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
[Crossref]

Gray, S. K.

Greffet, J. J.

F. Marquier, C. Sauvan, and J. J. Greffet, “Revisiting quantum optics with surface plasmons and plasmonic resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient Third Harmonic Generation and Nonlinear Subwavelength Imaging at a Higher-Order Anapole Mode in a Single Germanium Nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

Grossman, J. C.

M. Palummo, M. Bernardi, and J. C. Grossman, “Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides,” Nano Lett. 15(5), 2794–2800 (2015).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012).
[Crossref] [PubMed]

Grosso, G.

G. Grosso, “2D materials: Valley polaritons,” Nat. Photonics 11(8), 455–456 (2017).
[Crossref]

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Guan, A.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Guo, R.

H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016).
[Crossref] [PubMed]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Gwo, S.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Haigh, S. J.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref] [PubMed]

Han, A.

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

Han, G. H.

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Han, T.

Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017).
[Crossref] [PubMed]

Han, W.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887 (2012).
[Crossref] [PubMed]

Hao, K.

K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
[Crossref] [PubMed]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016).
[Crossref] [PubMed]

Harutyunyan, A. R.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14(10), 5625–5629 (2014).
[Crossref] [PubMed]

Hatami, F.

C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017).
[Crossref] [PubMed]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Hayashi, T.

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

He, J. H.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

He, K.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113(2), 26803 (2014).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

He, R.

H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013).
[Crossref] [PubMed]

He, Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

He, Y.-M.

Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
[Crossref] [PubMed]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

He, Z.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8, 14097 (2017).
[Crossref] [PubMed]

L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, “Room-temperature exciton-polaritons with two-dimensional WS2,” Sci. Rep. 6(1), 33134 (2016).
[Crossref] [PubMed]

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Heinz, T. F.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
[Crossref] [PubMed]

A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A. Velauthapillai, J. Hone, and T. F. Heinz, “Electrical Tuning of Exciton Binding Energies in Monolayer WS2,” Phys. Rev. Lett. 115(12), 126802 (2015).
[Crossref] [PubMed]

Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, “Observation of biexcitons in monolayer WSe 2,” Nat. Phys. 11(6), 477–481 (2015).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14(10), 5625–5629 (2014).
[Crossref] [PubMed]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Herrmann, L. O.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Herz, L. M.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Heuck, M.

H. Choi, M. Heuck, and D. Englund, “Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities,” Phys. Rev. Lett. 118(22), 223605 (2017).
[Crossref] [PubMed]

Hibino, H.

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
[Crossref] [PubMed]

High, A. A.

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

Hill, H. M.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A. Velauthapillai, J. Hone, and T. F. Heinz, “Electrical Tuning of Exciton Binding Energies in Monolayer WS2,” Phys. Rev. Lett. 115(12), 126802 (2015).
[Crossref] [PubMed]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Höfling, S.

Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
[Crossref] [PubMed]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Hone, J.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A. Velauthapillai, J. Hone, and T. F. Heinz, “Electrical Tuning of Exciton Binding Energies in Monolayer WS2,” Phys. Rev. Lett. 115(12), 126802 (2015).
[Crossref] [PubMed]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
[Crossref] [PubMed]

Hone, J. C.

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Honz, K.

Z. Wang, Y. Chiu, K. Honz, K. F. Mak, and J. Shan, “Electrical tuning of interlayer exciton gases in WSe2 bilayers,” (2017).

Hopkins, B.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

Hsu, A. L.

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

Hsu, C. L.

C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending,” Nano Lett. 14(5), 2443–2447 (2014).
[Crossref] [PubMed]

Hsu, W.-T.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Hu, S.

F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, “Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire-WS2-Film Composites,” ACS Photonics 4(6), 1421–1430 (2017).
[Crossref]

Hu, T.

T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]

Hu, W.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

Huang, D.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12(10), 987–992 (2017).
[Crossref] [PubMed]

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Huang, J.-K.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Huang, L.

L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7(16), 7402–7408 (2015).
[Crossref] [PubMed]

Huang, S.

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

Huang, W.

Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Res. 8(8), 2562–2572 (2015).
[Crossref]

Hübener, H.

U. De Giovannini, H. Hübener, and A. Rubio, “Monitoring Electron-Photon Dressing in WSe2,” Nano Lett. 16(12), 7993–7998 (2016).
[Crossref] [PubMed]

Huber, R.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Hunt, R. J.

E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
[Crossref]

Hussain, Z.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Hutchison, J. A.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

S. Wang, T. Chervy, J. George, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Quantum yield of polariton emission from hybrid light-matter states,” J. Phys. Chem. Lett. 5(8), 1433–1439 (2014).
[Crossref] [PubMed]

Hybertsen, M. S.

Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, “Observation of biexcitons in monolayer WSe 2,” Nat. Phys. 11(6), 477–481 (2015).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Ideue, T.

M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, “Exciton Hall effect in monolayer MoS2,” Nat. Mater. 16(12), 1193–1197 (2017).
[Crossref] [PubMed]

Iff, O.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
[Crossref] [PubMed]

Imamoglu, A.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
[Crossref]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Ithurria, S.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Ivchenko, E. L.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

Iwasa, Y.

M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, “Exciton Hall effect in monolayer MoS2,” Nat. Mater. 16(12), 1193–1197 (2017).
[Crossref] [PubMed]

Jagadish, C.

J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, “Excited State Biexcitons in Atomically Thin MoSe2,” ACS Nano 11(7), 7468–7475 (2017).
[Crossref] [PubMed]

Jahnke, F.

A. Steinhoff, M. Florian, M. Rösner, G. Schönhoff, T. O. Wehling, and F. Jahnke, “Exciton fission in monolayer transition metal dichalcogenide semiconductors,” Nat. Commun. 8(1), 1166 (2017).
[Crossref] [PubMed]

Jakubczyk, T.

T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
[Crossref] [PubMed]

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Jauregui, L. A.

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

Javey, A.

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Jeng, H.-T.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Ji, Z. W.

C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014).
[Crossref]

Jiang, L.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Jiang, T.

K.-D. Park, T. Jiang, G. Clark, X. Xu, and M. B. Raschke, “Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect,” Nat. Nanotechnol. 13, 1–7 (2017).
[PubMed]

Jiang, Y.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

Jo, S.

S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett. 14(4), 2019–2025 (2014).
[Crossref] [PubMed]

Joe, A. Y.

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

Johnson, A.

C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
[Crossref] [PubMed]

C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending,” Nano Lett. 14(5), 2443–2447 (2014).
[Crossref] [PubMed]

Johnson, A. D.

A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, “Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures,” Nano Lett. 17(7), 4317–4322 (2017).
[Crossref] [PubMed]

F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, “Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire-WS2-Film Composites,” ACS Photonics 4(6), 1421–1430 (2017).
[Crossref]

Johnson, A. T. C.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

X. Zhang, S. Choi, D. Wang, C. H. Naylor, A. T. C. Johnson, and E. Cubukcu, “Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances,” Nano Lett. 17(11), 6715–6720 (2017).
[Crossref] [PubMed]

Johnston, M. B.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Johnston-Halperin, E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Jones, A. M.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref] [PubMed]

Joyce, H. J.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Juang, Z.-Y.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Jung, I. W.

G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, and N. P. Stern, “Silicon-nitride photonic circuits interfaced with monolayer MoS 2,” Appl. Phys. Lett. 107(9), 091112 (2015).
[Crossref]

Jung, Y.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kang, J.

Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Res. 8(8), 2562–2572 (2015).
[Crossref]

Kang, M.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Kasprzak, J.

T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
[Crossref] [PubMed]

Kavokin, A. V.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kazimierczuk, T.

T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
[Crossref]

Kc, S.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Ke, Y.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
[Crossref] [PubMed]

Kéna-Cohen, S.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Kern, J.

Khanikaev, A. B.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2016).
[Crossref]

Kim, B. G.

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

Kim, H.

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

Kim, J.

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Kim, K. K.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Kim, M. S.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

Kim, P.

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

Kim, S. S.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Kim, T.

M.-G. Lee, S. Yoo, T. Kim, and Q.-H. Park, “Large-area plasmon enhanced two-dimensional MoS2,” Nanoscale 9(42), 16244–16248 (2017).
[Crossref] [PubMed]

Kim, Y.-J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Kinnischtzke, L.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10(6), 507–511 (2015).
[Crossref] [PubMed]

Kiriya, D.

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Kis, A.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kitamura, K.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Kivshar, Y.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2016).
[Crossref]

H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
[Crossref]

Klaas, M.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Klembt, S.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Klement, P.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Kloc, C.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2,” ACS Nano 7(1), 791–797 (2013).
[Crossref] [PubMed]

Klopotowski, L.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

Knorr, A.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
[Crossref] [PubMed]

M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
[Crossref] [PubMed]

Ko, W.-C. C.

T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Kobayashi, Y.

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
[Crossref] [PubMed]

Koch, N.

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

Koch, R.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Single-Photon Nanoantennas,” ACS Photonics 4(4), 710–722 (2017).
[Crossref] [PubMed]

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Koman, V.

O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014).
[Crossref] [PubMed]

Kong, J.

E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, “Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2,” Nano Lett. 16(12), 7421–7426 (2016).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

Koopman, W.

F. Stete, W. Koopman, and M. Bargheer, “Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment,” ACS Photonics 4(7), 1669–1676 (2017).
[Crossref]

Koperski, M.

M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, “Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles,” Nanophotonics 6(6), 1–20 (2017).
[Crossref]

T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
[Crossref] [PubMed]

T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
[Crossref]

A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale 7(23), 10421–10429 (2015).
[Crossref] [PubMed]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
[Crossref] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Kormányos, A.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Mater. 2(2), 022001 (2015).
[Crossref]

Korn, T.

A. Raja, A. Chaves, J. Yu, G. Arefe, H. M. Hill, A. F. Rigosi, T. C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. E. Brus, T. F. Heinz, D. R. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun. 8, 15251 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
[Crossref] [PubMed]

G. Plechinger, T. Korn, and J. M. Lupton, “Valley-Polarized Exciton Dynamics in Exfoliated Monolayer WSe 2,” J. Phys. Chem. C 121(11), 6409–6413 (2017).
[Crossref]

G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, A. G. Del Águila, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, “Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide,” Nat. Commun. 7, 12715 (2016).
[Crossref] [PubMed]

M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
[Crossref] [PubMed]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016).
[Crossref] [PubMed]

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schüller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015).
[Crossref]

Kossacki, P.

T. Smoleński, M. Goryca, M. Koperski, C. Faugeras, T. Kazimierczuk, A. Bogucki, K. Nogajewski, P. Kossacki, and M. Potemski, “Tuning Valley Polarization in a WSe2 Monolayer with a Tiny Magnetic Field,” Phys. Rev. X 6(2), 21024 (2016).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
[Crossref] [PubMed]

Kotov, O. V.

Krasnok, A.

A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures,” Adv. Opt. Mater. 6(5), 1701094 (2018).
[Crossref]

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

M. Wang, A. Krasnok, T. Zhang, L. Scarabelli, H. Liu, Z. Wu, L. M. Liz-Marzán, M. Terrones, A. Alù, and Y. Zheng, “Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature,” Adv. Mater.e1705779 in press (2018).

Krasnok, A. E.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica 4(7), 814 (2017).
[Crossref]

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
[Crossref]

Krasnok, A. E. E.

S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Kraus, J.

G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. Strunk, C. Schüller, and T. Korn, “Identification of excitons, trions and biexcitons in single-layer WS2,” Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015).
[Crossref]

Krizhanovskii, D. N.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref] [PubMed]

Kroner, M.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13(3), 255–261 (2016).
[Crossref]

Krupke, R.

R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013).
[Crossref] [PubMed]

Kuhn, T.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

Kuipers, L.

S. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” 1–25 (2017).

Kumar, N.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113(2), 26803 (2014).
[Crossref]

Kung, Y. C.

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

Kuno, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref] [PubMed]

Kuzmenko, A. B.

S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett. 14(4), 2019–2025 (2014).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Lagarde, D.

M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014).
[Crossref]

D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014).
[Crossref] [PubMed]

Lalanne, P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

Langbein, W.

T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, “Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy,” Nano Lett. 16(9), 5333–5339 (2016).
[Crossref] [PubMed]

Late, D. J.

H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Lee, B.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Lee, C.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
[Crossref] [PubMed]

Lee, G. H.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
[Crossref] [PubMed]

Lee, J.

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

Lee, M. Y.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Lee, M.-G.

M.-G. Lee, S. Yoo, T. Kim, and Q.-H. Park, “Large-area plasmon enhanced two-dimensional MoS2,” Nanoscale 9(42), 16244–16248 (2017).
[Crossref] [PubMed]

Lee, S. C.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Lee, Y.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Lee, Y. H.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, “Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2,” Nano Lett. 16(12), 7421–7426 (2016).
[Crossref] [PubMed]

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

Lee, Y.-H.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Lee, Y.-H. H.

T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

Leem, J. Y.

M. S. Kim, S. Roy, J. Lee, B. G. Kim, H. Kim, J. H. Park, S. J. Yun, G. H. Han, J. Y. Leem, and J. Kim, “Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films,” ACS Appl. Mater. Interfaces 8(42), 28809–28815 (2016).
[Crossref] [PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lepeshov, S. I.

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Li, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref] [PubMed]

Li, H.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Li, J.

S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012).
[Crossref] [PubMed]

Li, L. J.

C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
[Crossref] [PubMed]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L. J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending,” Nano Lett. 14(5), 2443–2447 (2014).
[Crossref] [PubMed]

Li, L.-J.

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Li, M. Y.

C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
[Crossref] [PubMed]

Li, M.-Y.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Li, Q.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide,” Phys. Rev. Lett. 119(2), 027403 (2017).
[Crossref] [PubMed]

Li, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Li, S. V.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11(3), 1600268 (2017).
[Crossref]

Li, W.

M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, “Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2,” Nanoscale 9(37), 13947–13955 (2017).
[Crossref] [PubMed]

Li, X.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
[Crossref] [PubMed]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016).
[Crossref] [PubMed]

Li, Y.

Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017).
[Crossref] [PubMed]

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12(10), 987–992 (2017).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient Third Harmonic Generation and Nonlinear Subwavelength Imaging at a Higher-Order Anapole Mode in a Single Germanium Nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017).
[Crossref] [PubMed]

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

Liang, L.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Liao, I.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Liao, L.

T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]

Lidzey, D. G.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8, 14097 (2017).
[Crossref] [PubMed]

Lien, D. H.

M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, J. W. Ager, R. M. Wallace, and A. Javey, “Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides,” Nano Lett. 16(4), 2786–2791 (2016).
[Crossref] [PubMed]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Lin, E.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Lin, M.-H.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Lin, Y.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

Lin, Y.-C.

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

Lin, Z.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Ling, X.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett. 14(10), 5569–5576 (2014).
[Crossref] [PubMed]

List-Kratochvil, E. J. W.

S. Park, N. Mutz, T. Schultz, S. Blumstengel, A. Han, A. Aljarb, L.-J. Li, E. J. W. List-Kratochvil, P. Amsalem, and N. Koch, “Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates,” 2D Mater. 5(2), 025003 (2018).
[Crossref]

Liu, B.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(1), 887 (2012).
[Crossref] [PubMed]

Liu, B. L.

D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014).
[Crossref] [PubMed]

C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014).
[Crossref]

Liu, C. H.

C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017).
[Crossref] [PubMed]

Liu, F.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
[Crossref] [PubMed]

Liu, G. B.

H. Zeng, G. B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3(1), 1608 (2013).
[Crossref] [PubMed]

Liu, H.

X. Fan, W. Zheng, H. Liu, X. Zhuang, P. Fan, Y. Gong, H. Li, X. Wu, Y. Jiang, X. Zhu, Q. Zhang, H. Zhou, W. Hu, X. Wang, X. Duan, and A. Pan, “Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics,” Nanoscale 9(21), 7235–7241 (2017).
[Crossref] [PubMed]

M. Wang, A. Krasnok, T. Zhang, L. Scarabelli, H. Liu, Z. Wu, L. M. Liz-Marzán, M. Terrones, A. Alù, and Y. Zheng, “Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature,” Adv. Mater.e1705779 in press (2018).

Liu, K.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Liu, P.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures,” Nano Lett. 16(11), 6886–6895 (2016).
[Crossref] [PubMed]

Liu, S.-D.

Liu, W.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Liu, X.

X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, “Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide,” Phys. Rev. Lett. 119(2), 027403 (2017).
[Crossref] [PubMed]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Liu, Z.

Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, “Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling,” ACS Nano 11(2), 1165–1171 (2017).
[Crossref] [PubMed]

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
[Crossref] [PubMed]

Liz-Marzán, L. M.

M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, “Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2,” Nanoscale 9(37), 13947–13955 (2017).
[Crossref] [PubMed]

M. Wang, A. Krasnok, T. Zhang, L. Scarabelli, H. Liu, Z. Wu, L. M. Liz-Marzán, M. Terrones, A. Alù, and Y. Zheng, “Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature,” Adv. Mater.e1705779 in press (2018).

Lo, K.

S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012).
[Crossref] [PubMed]

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Lombardo, A.

R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in Single Layer MoS2,” Nano Lett. 13(4), 1416–1421 (2013).
[Crossref] [PubMed]

Lopez-Sanchez, O.

O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, “Light generation and harvesting in a van der Waals heterostructure,” ACS Nano 8(3), 3042–3048 (2014).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

López-Urías, F.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Lõpez-Urías, F.

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

Lou, J.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Louie, S. G.

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

Lu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10(6), 497–502 (2015).
[Crossref] [PubMed]

Lu, G.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012).
[Crossref] [PubMed]

Lu, I.-H.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Lu, J.

T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]

Lu, L.-S.

W.-T. Hsu, L.-S. Lu, D. Wang, J.-K. Huang, M.-Y. Li, T.-R. Chang, Y.-C. Chou, Z.-Y. Juang, H.-T. Jeng, L.-J. Li, and W.-H. Chang, “Evidence of indirect gap in monolayer WSe2,” Nat. Commun. 8(1), 929 (2017).
[Crossref] [PubMed]

Lu, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nat. Photonics 9(11), 733–737 (2015).
[Crossref]

Lu, Y.

J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, “Excited State Biexcitons in Atomically Thin MoSe2,” ACS Nano 11(7), 7468–7475 (2017).
[Crossref] [PubMed]

H. Chen, J. Yang, E. Rusak, J. Straubel, R. Guo, Y. W. Myint, J. Pei, M. Decker, I. Staude, C. Rockstuhl, Y. Lu, Y. S. Kivshar, and D. Neshev, “Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas,” Sci. Rep. 6(1), 22296 (2016).
[Crossref] [PubMed]

Lu, Z.

X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, “Magnetic brightening and control of dark excitons in monolayer WSe2,” Nat. Nanotechnol. 12(9), 883–888 (2017).
[Crossref] [PubMed]

Lü, T.

J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, “Excited State Biexcitons in Atomically Thin MoSe2,” ACS Nano 11(7), 7468–7475 (2017).
[Crossref] [PubMed]

Lui, C. H.

E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, “Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2,” Nano Lett. 16(12), 7421–7426 (2016).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Lukin, M. D.

Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons,” Nat. Nanotechnol. 12(9), 856–860 (2017).
[Crossref] [PubMed]

Lundt, N.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref] [PubMed]

Y.-M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco, K. Srinivasan, S. Höfling, and C. Schneider, “Cascaded emission of single photons from the biexciton in monolayered WSe2,” Nat. Commun. 7, 13409 (2016).
[Crossref] [PubMed]

Luo, S.

T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]

Lupton, J. M.

G. Plechinger, T. Korn, and J. M. Lupton, “Valley-Polarized Exciton Dynamics in Exfoliated Monolayer WSe 2,” J. Phys. Chem. C 121(11), 6409–6413 (2017).
[Crossref]

Lv, R.

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Ma, Z.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Mackowski, S.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

Madhvapathy, S. R.

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, “Near-unity photoluminescence quantum yield in MoS2,” Science 350(6264), 1065–1068 (2015).
[Crossref] [PubMed]

Maezono, R.

E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Maier, S. A.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient Third Harmonic Generation and Nonlinear Subwavelength Imaging at a Higher-Order Anapole Mode in a Single Germanium Nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

G. Eda and S. A. Maier, “Two-dimensional crystals: Managing light for optoelectronics,” ACS Nano 7(7), 5660–5665 (2013).
[Crossref] [PubMed]

Majumdar, A.

C. H. Liu, G. Clark, T. Fryett, S. Wu, J. Zheng, F. Hatami, X. Xu, and A. Majumdar, “Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode,” Nano Lett. 17(1), 200–205 (2017).
[Crossref] [PubMed]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113(2), 26803 (2014).
[Crossref]

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12(3), 207–211 (2013).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Z. Wang, Y. Chiu, K. Honz, K. F. Mak, and J. Shan, “Electrical tuning of interlayer exciton gases in WSe2 bilayers,” (2017).

Makarov, S.

A. Krasnok, S. Glybovski, M. Petrov, S. Makarov, R. Savelev, P. Belov, C. Simovski, and Y. Kivshar, “Demonstration of the enhanced Purcell factor in all-dielectric structures,” Appl. Phys. Lett. 108(21), 211105 (2016).
[Crossref]

A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, and Y. Kivshar, “Towards all-dielectric metamaterials and nanophotonics,” Proc. SPIE 9502, 950203 (2015).
[Crossref]

Makarov, S. V. V.

S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref] [PubMed]

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
[Crossref]

Malek, S. C.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Malic, E.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T. F. Heinz, T. Korn, A. Chernikov, E. Malic, and A. Knorr, “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun. 7, 13279 (2016).
[Crossref] [PubMed]

Mallet, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
[Crossref] [PubMed]

Malpuech, G.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref] [PubMed]

Manca, M.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8(9), 634–638 (2013).
[Crossref] [PubMed]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Maniwa, Y.

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
[Crossref] [PubMed]

Manna, A. K.

H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Manzeli, S.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Marauhn, P.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

Marcus, J.

A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale 7(23), 10421–10429 (2015).
[Crossref] [PubMed]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10(6), 503–506 (2015).
[Crossref] [PubMed]

Marie, X.

E. Courtade, M. Semina, M. Manca, M. M. Glazov, C. Robert, F. Cadiz, G. Wang, T. Taniguchi, K. Watanabe, M. Pierre, W. Escoffier, E. L. Ivchenko, P. Renucci, X. Marie, T. Amand, and B. Urbaszek, “Charged excitons in monolayer WSe2: experiment and theory,” Phys. Rev. B 96(8), 085302 (2017).
[Crossref]

C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu, and X. Marie, “Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers,” Phys. Rev. B 90(16), 161302 (2014).
[Crossref]

M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, “Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides,” Phys. Rev. B 89(20), 201302 (2014).
[Crossref]

D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, “Carrier and Polarization Dynamics in Monolayer MoS2,” Phys. Rev. Lett. 112(4), 047401 (2014).
[Crossref] [PubMed]

Marini, A.

A. Molina-Sánchez, D. Sangalli, L. Wirtz, and A. Marini, “Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2,” Nano Lett. 17(8), 4549–4555 (2017).
[Crossref] [PubMed]

Marquier, F.

F. Marquier, C. Sauvan, and J. J. Greffet, “Revisiting quantum optics with surface plasmons and plasmonic resonators,” ACS Photonics 4(9), 2091–2101 (2017).
[Crossref]

Martinez, A.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Martinez, J.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Martinez-Ta, D.

M. H. Tahersima, M. D. Birowosuto, Z. Ma, W. C. Coley, M. D. Valentin, S. Naghibi Alvillar, I.-H. Lu, Y. Zhou, I. Sarpkaya, A. Martinez, I. Liao, B. N. Davis, J. Martinez, D. Martinez-Ta, A. Guan, A. E. Nguyen, K. Liu, C. Soci, E. Reed, L. Bartels, and V. J. Sorger, “Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae,” ACS Photonics 4(7), 1713–1721 (2017).
[Crossref]

Matte, H. S.

H. S. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, “MoS2 and WS2 analogues of graphene,” Angew. Chem. Int. Ed. Engl. 49(24), 4059–4062 (2010).
[Crossref] [PubMed]

Matthews, T. S.

S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett. 12(11), 5576–5580 (2012).
[Crossref] [PubMed]

Maude, D. K.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17(10), 6360–6365 (2017).
[Crossref] [PubMed]

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

McEuen, P. L.

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

McGill, K. L.

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS2 transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

Mende, P. C.

C. Zhang, Y. Chen, A. Johnson, M. Y. Li, L. J. Li, P. C. Mende, R. M. Feenstra, and C. K. Shih, “Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2,” Nano Lett. 15(10), 6494–6500 (2015).
[Crossref] [PubMed]

Menon, V. M.

T. Galfsky, Z. Sun, C. R. C. R. Considine, C.-T. T. Chou, W.-C. C. Ko, Y.-H. H. Lee, E. E. Narimanov, and V. M. Menon, “Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals,” Nano Lett. 16(8), 4940–4945 (2016).
[Crossref] [PubMed]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Merkl, P.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Mertens, J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Meunier, V.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9(12), 11509–11539 (2015).
[Crossref] [PubMed]

Mi, Z.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature,” Nano Lett. 15(8), 5302–5306 (2015).
[Crossref] [PubMed]

Michaelis de Vasconcellos, S.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors,” Nano Lett. 18(3), 1751–1757 (2018).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2(4), 347 (2015).
[Crossref]

Mikkelsen, M. H.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward Multispectral Imaging with Colloidal Metasurface Pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Milichko, V. A. A.

S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Ming, T.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging nanocavity harmonics for control of optical processes in 2d semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2(5), 578–582 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref] [PubMed]

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of Fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104(2), 021104 (2014).
[Crossref]

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Phys. Uspekhi 56(6), 539–564 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Mishchenko, A.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref] [PubMed]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Mitioglu, A. A.

M. Baranowski, A. Surrente, D. K. Maude, M. Ballottin, A. A. Mitioglu, P. C. M. Christianen, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Dark excitons and the elusive valley polarization in transition metal dichalcogenides,” 2D Mater. 4(2), 025016 (2017).
[Crossref]

Miyata, Y.

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
[Crossref] [PubMed]

Mlayah, A.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Mo, S. K.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Mohammadi Estakhri, N.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Mokkapati, S.

J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, “Excited State Biexcitons in Atomically Thin MoSe2,” ACS Nano 11(7), 7468–7475 (2017).
[Crossref] [PubMed]

Molas, M. R.

M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, and M. Potemski, “Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles,” Nanophotonics 6(6), 1–20 (2017).
[Crossref]

Molina-Sánchez, A.

A. Molina-Sánchez, D. Sangalli, L. Wirtz, and A. Marini, “Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2,” Nano Lett. 17(8), 4549–4555 (2017).
[Crossref] [PubMed]

Monticone, F.

F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

F. Monticone and A. Alù, “Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials,” Chin. Phys. B 23(4), 047809 (2014).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

Moody, G.

K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, “Neutral and charged inter-valley biexcitons in monolayer MoSe2,” Nat. Commun. 8, 15552 (2017).
[Crossref] [PubMed]

K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, “Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2,” Nano Lett. 16(8), 5109–5113 (2016).
[Crossref] [PubMed]

Mori, S.

Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, and Y. Miyata, “Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite,” ACS Nano 9(4), 4056–4063 (2015).
[Crossref] [PubMed]

Mornhinweg, J.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Morozov, I. A. A.

S. V. V. Makarov, A. N. N. Tsypkin, T. A. A. Voytova, V. A. A. Milichko, I. S. S. Mukhin, A. V. V. Yulin, S. E. E. Putilin, M. A. A. Baranov, A. E. E. Krasnok, I. A. A. Morozov, and P. A. A. Belov, “Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation,” Nanoscale 8(41), 17809–17814 (2016).
[Crossref] [PubMed]

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Morpurgo, A. F.

S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett. 14(4), 2019–2025 (2014).
[Crossref] [PubMed]

Mortensen, N. A.

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97(4), 41402 (2018).
[Crossref]

Mostaani, E.

M. Szyniszewski, E. Mostaani, N. D. Drummond, and V. I. Fal’ko, “Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations,” Phys. Rev. B 95(8), 081301 (2017).
[Crossref]

E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, and V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96(7), 075431 (2017).
[Crossref]

Mousavi, S. H.

A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, “Three-dimensional all-dielectric photonic topological insulator,” Nat. Photonics 11(2), 130–136 (2016).
[Crossref]

Muchharla, B.

N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater. 23(44), 5511–5517 (2013).
[Crossref]

Mueller, T.

L. Dobusch, S. Schuler, V. Perebeinos, and T. Mueller, “Thermal Light Emission from Monolayer MoS2,” Adv. Mater. 29(31), 1–7 (2017).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).