Abstract

Two-dimensional transitional metal dichalcogenides (TMDCs) based lateral heterojunctions have emerged as appealing and intriguing materials for applications in the next generation flexible nanoelectronics. The construction of depletion region near the in-plane interface brings rich opto-electrical dynamics, which is essential for future applications. Due to the synchronous requirement of spatial and time resolution, the study of lateral heterojunction dynamics remains a challenging issue. Herein, with a home-built spatiotemporal femtosecond transient absorption (TAS) spectroscopy platform, we have investigated the ultrafast photocarrier dynamics of monolayer spatial composition-graded WS2xSe2(1−x) lateral heterojunctions. At the alloy interface, the charge transfer (CT) processes have been visualized and referred to occur in 1 ps time scale. The mobility difference between electrons and holes results in the space modulation of the interface and a significant broadening of rising edge on the shell region. Moreover, carrier lifetime near the interface is extraordinarily extended by over 3 times from 153 ps to 678 ps. All these results unveil its great potential in designing future low cost logic devices and ultrafast optical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Monolayer two-dimensional (2D) transitional metal dichalcogenides (TMDCs) have been attracting considerable interest due to their superior properties, such as strong light absorption and high emission efficiency, as well as the feature of direct band-gap semiconductors. [1–3]. A class of emerged TMDCs (such as MoS2, MoSe2, WS2, WSe2, etc) sharing the same geometrical structures can be easily integrated in industry systems [4,5] and opens up new possibilities for novel optoelectrical devices due to their strong light-matter interactions [3,6]. Through stacking alien TMDCs monolayers, both type-I and type-II heterobilayers, which were predicted by density functional theory (DFT) [7], have been exfoliated [8,9] or directly epitaxial grown [10–12] very recently. These weak van der Waals coupled TMDCs monolayers still maintain their original direct band gaps and attract tremendous attentions. To date, tremendous optical characterization approaches have been exploited to investigate these TMDCs heterobilayers, including photoluminescence (PL) measurements [13–16], femtosecond transient absorption spectroscopy (TAS) [8,17–23], time-resolved second-harmonic generation measurements (TRSHG) [20] and PL excitation (PLE) spectroscopy [24]. One inspiring finding is that the excitons/electrons/holes excited by photons can tunnel through the van der Waals heterojunction in ultrafast time scale. Moreover, due to the ultrafast charge transfer (CT)/energy transfer (ET) processes within these heterobilayers, the interlayer excitons are equipped with long lifetime and stronger PL [25], facilitating excellent potentials for the construction of multi-functional and high performance photonic devices [1,2,26–30].

Another type of heterojunctions based on monolayer TMDCs is their lateral atomic heterojunction. Since there is only ∼ 4% mismatch [31] between WS2 and WSe2 honeycomb lattice, a successive growth of WSe2 can be realized at the border of WS2, thus two hexagonal layers can be seamless stitched by their common metal atoms without poor interface quality. Therefore, a lateral heterojunction can be constructed. Recently, using single/two-step chemical vapor deposition (CVD) method [30, 32–39], various TMDCs-based lateral heterojunctions have been successfully grown, extending their industrial adaption beyond exfoliated vertical heterobilayers [8,33–35,40]. The following optical measurements of lateral heterojunctions have been performed, via atomic force microscopy (AFM), atomic-resolution scanning transmission electron microscopy (STEM), Raman spectroscopy and photoluminescence spectroscopy, suggesting a well combined hexagonal lattice with the same crystal orientation and an atomic sharp interface. An enhanced photoluminescence has also been observed in MoSe2/WSe2 in-plane heterojunctions [41]. Furthermore, by means of near-field measurements implenmented by tip-enhanced photoluminescence, a significant enhancement and quenching of photoluminescence have been found in both MoSe2/WSe2 and MoS2/WS2 lateral heterojunctions [32, 42]. Unambiguously photovoltaic effects of multilayer WS2/MoS2 lateral heterojunction obtained by Kevin probe force microscopy unravels a new avenue in its optical applications [43]. Notably, the in-plane heterojunctions own unique intrinsic p-n junction features [3, 31, 41, 43, 44] and can be applied to high-performance field-effect transistors [45,46] and voltage dependent photo detectors. Furthermore, it is flexible to modulate band alignment from type-II to type-I under certain conditions [47,48] by tailoring the corresponding lattice distortion, which is a remarkable property of lateral heterojunctions. Despite the fact that valleys manipulation has confirmed no valley crosstalk effect over the interface [49], the direct control of the heterojunctions with atomically sharp interface directly and precise spatial modulation is still highly expected.

It is important to stress that there are significant differences between these lateral and vertical heterojunctions. As a result of atomic thickness of the heterobilayers, the formation of the depletion region is almost impossible in the vertical type. On the contrary, lateral heterojunctions allow more space to form a depletion region with the maximum intensity of such built-in electric field been reported previously [36, 43]. Another difference is that two TMDCs may dope into each other during the growth of lateral heterojunctions. Even though almost all these previous results proclaim that their samples have sharp interfaces, there are more or less alloys formed over the interface. The properties of these mutant alloys and what role do these alloy components play on CT/ET process are rarely reported. Lately, through tip-enhanced photoluminescence, a CT process has been observed near the interface in very recent studies [42]. ET processes assisted by surface plasmon polaritons(SPPs), have also been observed by designing the substrate structure elaborately [40]. A crucial issue in this context, which has yet to be explored, is the ultrafast dynamics of CT processes and direct ET process in lateral heterojunctions. Considering the transient interaction between depleted region and carriers is hardy observed, the influence of the above two processes on lifetimes and the role of interface alloys in CT/ET process still remains unknown.

In this work, we experimentally synthesized spatial composition-graded WS2xSe2(1−x) alloy lateral heterojunctions with a mutant component over the interface and directly observed the CT process. Notably, strain-induced band alignment can be excluded from such structures because of the small lattice mismatch between WS2 and WSe2 [31, 47, 48]. Spatiotemporal femtosecond TAS mapping was applied to investigate the dynamics of ultrafast processes. Also, time-resolved femtosecond TAS mapping was conducted to confirm the existence of a depletion region near the interface with a width of ∼ 200 nm which is comparable to previous reports [42]. One appealing and advantageous characteristic of our system is the spatiotemporal resolution, from which absorption variation can be mapped with time and space simultaneously. As a result, the observation of CT processes across the interface and an ultrafast space modulation of the depletion region can be both achieved here. To the best of our knowledge for the first time, our experimental investigation demonstrates that the carrier lifetime of outer ring region near the interface can be greatly increased by more than 3 times. This work not only render a promising approach to analyze the interaction between the depletion region and photo-induced carriers, but also opens up new possibilities for the engineering of optoelectronic properties of lateral heterojunction, as well as the design of TMDs-based logic devices.

2. Method

2.1. Synthesis of WS2xSe2(1−x) alloy heterojunction

The monolayer lateral heterojunctions with the WS2xSe2(1−x) alloy having different S/(S+Se) ratios on two sides of the heterojunction was synthesized using a low-pressure chemical vapor deposition (CVD) system, similar to the strategy previously reported [50]. Two ceramic boats with WS2 powder and WSe2 powder as the solid sources were loaded into a 1-inch quartz tube in a horizontal tubular furnace. A clean Si chip coated with a 300 nm-thick SiO2 layer was placed at the downstream of the furnace as the growth substrate. The system was first pump-purged with argon (Ar) gas followed by being ramped to the temperature of 1150°C for ∼ 20 minutes with a constant flow of 300 sccm Ar gas for the growth of monolayer WS2. Subsequently, the boat with WS2 powder was pushed out of the hot zone without breaking the vacuum, while the boat with WSe2 powder was simultaneously pushed into the hot zone of the tube in-situ. The temperature was increased to 1190°C for the epitaxial growth of the lateral heterojunctions for ∼ 20 minutes under 500 sccm Ar flow. Finally, a fast cooling process was applied to quickly stop the growth and cool down the sample naturally.

2.2. Spatiotemporal femtosecond transient absorption system

Schematic diagram of spatiotemporal femtosecond transient absorption system is provided in Fig. 1(a). The output of a fs Ti:sapphire laser system was divided into two parts. The laser source delivers ultrashort pulses with a center wavelength of 800 nm and a repetition rate of 80 Mhz. The pulse width is 65 fs. The main portion was modulated via a acousto-optical modulator (AOM) and then focused on a beta barium borate (BBO) crystal to get its second harmonic generation acting as the pump. The other one was used to generate white light continuum through exciting photonic crystal fiber (PCF) and wavelength which was required could be filtered by a optical bandpass filter, serving as a probe light. A 2D galvanometer was employed to alter the relative angle between pump and probe beam, leading to the achievement of the asynchronous spatial scanning. After going through a microscopy (40×, NA=0.65), the spot sizes of two laser beams on the sample were close to their corresponding diffraction. Here, the APD was exploited to detect the intensity of reflected probe beam, followed by a lock-in amplifier, which could extract the differential reflection signal. This is defined as:

ΔR/R0=(RR0)/R0
where R and R0 are the probe reflection of the sample modulated with and without the presence of the pump beam, respectively. Details of the system can be viewed in Appendix 7.

 figure: Fig. 1

Fig. 1 (a) Diagram of the spatiotemporal femtosecond transient absorption system. (b) Energy level diagram of the lateral WS2xSe2(1−x) alloy heterostructures in real space. At the boundary between the core and the shell, WS2xSe2(1−x) alloy interface is formed and thus the energy band transits gradually from WS2 to WSe2. Through fixing the exciting position and scanning the probe light across the interface, the transient exciton density of both sides can be monitored.

Download Full Size | PPT Slide | PDF

Different delay times between pump and probe beams could be approached by controlling a delay line placed at the path of probe. Aiming at capturing a synchronous spatial mapping image, the sample was placed on an 2D motor-driven stage. In this case, both pump and probe beams were combined together with the delay line remaining unchanged. Notably, all the experiments were performed at room temperature (∼ 295 K).

3. Results and discussion

3.1. Sample characterization

The energy diagram of the lateral WS2xSe2(1−x) alloy heterostructures in real space is provided in Fig. 1(b) with the core, the interface and the shell presented. Optical microscopy, AFM and PL measurements were used to characterize the monolayer composition-graded WS2xSe2(1−x) alloy, as shown in Fig. 2. To start with, one can see the morphology of our sample from Fig. 2(a). The corresponding AFM results are presented in Fig. 2(b), indicating that the thickness of the sample is uniform being less than 1 nm which strongly confirmed its monolayer structure. Additionally, a sharp and clean interface of the core (internal triangle) and the shell (outer ring) region can be seen by the significant contrast difference in its phase mutation (Inserted in Fig. 2(b)). Figure. 2(c) exhibits the wavelength of PL peaks as a function of the position on the WS2xSe2(1−x) alloy lateral heterojunctions, which was measured using an excitation wavelength of 532 nm. The PL peak positions vary from 665 nm to 730 nm with a prominent color change at an interface 8 μm away from the edge, indicating the existence of a composition gradient along the radial direction in monolayer WS2xSe2(1−x) alloy with an interface having a sharp composition transition. Based on the linear relationship between the optical bandgap and the composition of ternary semiconductor alloys (see Appendix 6), the calculated ratio of S/(S+Se) in WS2xSe2(1−x) alloy varies from 0.65 to 0.22 from the center to the edge with a sudden change of ∼ 0.15 at the interface, as shown in Fig. 2(c). From Fig. 2(d), one can see that the PL spectra gathered from the core and shell regions separately show exclusive peaks in their corresponding area. The spatial composition change on the WS2xSe2(1−x) alloy was also supported by the Raman spectroscopy. Polarization-resolved second-harmonic generation(SHG) microscopy mapping was employed to validate the quality of the interface as well (see Appendix 2 and 3).

 figure: Fig. 2

Fig. 2 (a) Optical microscopy image of monolayer WS2xSe2(1−x) alloy lateral heterosjunction. Interface is labeled by white dash line. Spots marked by black, red and blue represent the selected positions of the PL measurement. (b) AFM image and the corresponding phase image. (c) Composition of ternary semiconductor alloys. Inset: PL mapping of the entire monolayer. (d) PL intensities collected from spots marked in (c).

Download Full Size | PPT Slide | PDF

3.2. Spatiotemporal femtosecond transient absorption spectrum measurement

In order to get a visual evidence for the formation of a depletion region in the sample, we slightly moved the sample in x–y plane in our time-resolved TAS system and a synchronous spatial mapping image was obtained. Here, under a peak pump fluence of 30 μJ/cm2 at 400 nm wavelength excitation, laser in different wavelengths were used as the probe to map the response of different regions. The corresponding results of synchronous pump-probe mapping at one corner are shown in Fig. 3(a). One significant finding is that a low-response gap appears at the interface, which proves the existence of a depletion region. Importantly, the results are repeatable at different probe wavelengths (see Appendix 1) and the width of depletion region can be roughly estimated by pixels, which is around 200 nm, which is close to the result of previously reported results [42].

 figure: Fig. 3

Fig. 3 (a) Optical microscopy image of heterojunction. Spots marked in black or red are the detection positions. Inset: Synchronous pump-probe mapping at 720 nm wavelength as the probe at 0 ps. (b) Normalized differential reflection signal as a function of delay time. Red and black curves are exponential fits of raw data. The rising time of both core and shell regions are around 400 fs. Gray area is the cross correlation of the pump and probe fitted by Gauss function.

Download Full Size | PPT Slide | PDF

Using a 400 nm laser excitation, we selectively excited the heterojunction at different positions. 670 nm pulses (photon energy of 1.85 eV, corresponding to the band edge emission of the core region) and 720 nm pulses (photon energy of 1.72 eV, corresponding to the band edge emission of the shell region) generated from PCF were used as the probe. Lifetimes of each alloy extracted from exponential fitting are comparable to their corresponding single crystal [51–53] [Fig. 3(b)], yielding 77 ps for the core area and 129 ps for the shell region respectively. Since the signal reaches its peak value at an ultrafast time scale (around 400 fs), the excitons in the core and shell areas are expected to form rapidly due to the strong Coulomb interaction in monolayer TMDCs.

According to the first-principle calculations, the fermi energies of WS2 and WSe2 monolayers are −4.6 eV and −4.3 eV [22], respectively. The work functions of these two TMDCs imply that electrons are more inclined to transfer from WSe2 to WS2 and vice versa for the hole transfer [9,54]. Recent experiment results on other TMDCs vertical heterojunctions agree well with this theory [22,29]. Being viewed as direct band gap semiconductors, these two types of TMDCs exhibit exotic properties, which is prerequisite for making quantum nano-devices [22]. Similar staggered type-II heterobilayers with van der Waals interfaces have been demonstrated to have versatile device physics, such as interlayer excitons and ultrafast charge transfer properties at the interface [8, 17, 18]. However, optoelectronic properties of heterojunctions are not only determined by their band structures, twist angles and tensile strain, but also influenced by the doping types and defects of both materials near the boundary. In particular, the doping type of each layer in the heterobilayer was often ignored, which is attributed by the thin thickness of ∼ 2 nm for the heterobilayers, where the depletion region can hardly be constructed. The sufficient planar space provided by lateral heterojunctions makes the formation of a depletion region possible near the coherent interface of these two TMDCs.

Another important parameter pertaining to low dimensional material is diffusion coefficient, whose value has been lately measured for graphene, TMDCs and hybrid perovskites via spatiotemporal femtosecond TAS [55–58]. On the other hand, a visible hot-migration was observed in perovskites by using 2D mapping spatiotemporal femtosecond TAS [56]. Based on the above cases, we first characterized the shell region of the heterojunction with a fixed excitation position. As illustrated in Fig. 4(a), one can find the microscopy image of this heterojunction with red dash line representing th probe scanning direction. In consideration of the spot sizes of both pump and probe beams, the scanning scale is fixed at 3 μm. How the spatial differential reflection signal varies with the probe delay was displayed in Fig. 4(b). We extracted signal profiles at several typical time delays. It is obvious that the shapes of the signal profiles remain the same and can be well fitted with Gauss function over the whole time range [Fig. 4(c)]. Last but not least, it can be easily seen from Fig. 4(d) that normalized spatial profiles at each time delay share similar full width at half maximum (FWHM) in real space. Diffusion length we get [51,55,57] in the first 50 ps is much shorter than the FWHM of the laser spot due to trap of excitons by defects localization [49,51,59]. Therefore, the effect of diffusion can be neglected in our following experiments.

 figure: Fig. 4

Fig. 4 (a) Microscope image of the heterojunction with a yellow dash line outlining the heterojunction. The relative position of the excitation spot and the heterojunction is shown in the picture. The red dash line in the middle of the spot represents the scanning direction. (b) Spatiotemporal differential reflection signal as a function of the real space (X-axis) and probe delay. (c) Spatial profile of differential reflection with different probe delays on the X-axis. Solid lines are fitted date by Gauss function. (d) Normalized differential reflection signal with different probe delays.

Download Full Size | PPT Slide | PDF

For completeness, we also explored the ultrafast carrier dynamics near the interface by means of asynchronous mapping. The pump laser spot is placed across the interface and stays unmoved, as shown as in Fig. 5(a). Considering the spot size is much larger than the width of depletion region, the relevant core and shell regions are both excited. In the mean while, the probe pulse is scanning around the pump laser spot in two-dimensional scale. An important conclusion is that the carrier distribution is divided into the core and shell parts by a low-response gap, consistent with the case of synchronous mapping, which proves the existence of the depletion region. In addition, when comparing the images with 0 ps [Fig. 5(c)] and 0.3 ps [Fig. 5(d)] delay times, it is found that the position of depletion region has moved, along with the significant differences of carrier dynamics between the core and shell regions. Precisely, in the core region, the peak value of differential reflection signals decreases from 0.7 to 0.4, while their FWHMs shrink gradually. In contrast, the peak value at the shell region keeps increasing after 0 ps, suggesting a CT process from core zone/depletion region to shell zone.

 figure: Fig. 5

Fig. 5 (a) Microscope image of the heterojunction (b) Spatiotemporal differential reflection signal as a function of the real space (X-axis) and probe delay. (c,d) 2D mapping of spatial profile of differential reflection at 0 ps and 0.3 ps. Dash circle represents the pump spot. Red dash line represents the scanning direction in 1D mapping. (e) Peak differential reflection signal of two sides as function of probe delay. (f) Spatial profile of differential reflection signal at 0 ps, 0.3 ps, 2.5 ps along X-axis. (g) Modulation of depletion region extracted from (b) in the first 3 ps.

Download Full Size | PPT Slide | PDF

An efficient alternative to study above phenomenon is scanning the probe spot along the red dash line. Figure. 5(b) shows the dynamics of differential reflection signals at this line. It can be found from this figure that the rising edges of the core and shell region have similar characteristic times when located away from the interface. However, as shown in Fig. 5(e), the signal rising time in the shell region is significantly longer than that in the core region. The time difference between the two peaks is about 0.3 ps.

The different rising time clearly indicates carrier transfer processes across the depletion region. Since the heterojunction is of type-II, we attribute this phenomenon to CT processes. Many mechanisms may lead to CT processes, such as thermionic emission [60], energy resonance [24,50] and resonant tunneling [28,45]. When taking the depletion region into consideration, tunneling and thermionic emission are two possible mechanisms, while energy resonance which had been observed in MoSe2/WS2 vertical heterostructures only works in dozens of nanometers [24,50].

The space modulation of depletion region is also attributed to the CT processes. From Fig. 5(f) and 5(g), it is found that with the probe delay time changing from −0.4 ps to 0.6 ps, the low-response gap has moved about 200 nm towards the core region. Moreover, the peak response in the core region decreases significantly, with the corresponding peak position moving away from the interface. Whereas, in the shell region, this response increases from 0 ps to 0.3 ps. These phenomena can be readily explained by the CT processes from the core to the shell region, which is carefully described in Fig. 6. As illustrated in Figs. 6(a)–(c), the band structures of the heterojunction being taken into account, the electrons tend to move from the shell to the core region, but vice versa for the hole movement. Thus, the CT process in Fig. 5(f) is caused by the hole transfer from the core to the shell region. The mobility of electrons in TMDC is much larger than that of holes. As a result, the CT process of electrons may have a much smaller time scale (< 100 fs), which can not be observed in our experiments.

 figure: Fig. 6

Fig. 6 Panel (a,b,c) shows the band structure of the lateral heterojunction and the movement of carriers as a result of Coulomb force originated from the depletion region. (d–h) Carrier density induced modulation of the interface. Pictures are drawing in chronological order.

Download Full Size | PPT Slide | PDF

Following the above discussion, the ultrafast dynamics for carrier transfer and depletion modulation processes can be simplified to several parts, as shown in Fig. 6: Once the pump pulse reaches the sample, photon-induced electrons would excess the CBM immediately [Fig. 6(a) and 6(d)]. Coulomb force originated from the depletion zone would drag them into the core region in ultrafast time scale (< 100 fs) [Fig. 6(b) and 6(e)]. In the meanwhile, relative larger effective mass of holes would only allow them to move a short distance [Fig. 6(f)]. The redistribution of carriers would change the charge concentration in real space, resulting in the movement of the low-response gap near the interface [Fig. 6(f)]. The subsequent hole transfer from −0.4 ps to 0.6 ps would pull the depletion region back [Fig. 6(g)], leading to the broadening of the rising time for the shell region. After the delay time of 0.6 ps, the whole process is dominated by the exciton recombination [Fig. 6(c) and 6(h)]. This stage further reduces the carrier density and restores the heterojunction to its initial state. 2D mapping with different delays was also used to confirm the movement of the depletion region [Fig. 5(c) and 5(d)]. It is clear that the carrier-deficient depletion region formed at the interface was modulated in real space during the first 1 ps after excitation. Detailed procedures are presented in Visualization 1.

On the other hand, when comparing the carrier dynamics data in Fig. 3(b) and Fig. 5(e), one can find that the lifetimes of carriers near or away from interface are also different. In order to obtain this phenomenon in detail, the investigation of the carrier dynamics at different positions of the shell region was carried out. Figure. 7 shows the spatiotemporal graphs along the red dash line while the pump laser spots cover different positions. In Fig. 7(a), the laser spot is far away enough from the interface, in which case the transient absorption data exhibits a Gaussian distribution in space and an exponential decrease with time. Next, when the pump laser spot moves gradually towards the interface, as illustrated in Figs. 7(b)–7(d), the carrier distributions are divided by depletion region, and the time scales of carrier relaxation times are significantly increased. Meanwhile, modulations of the depletion region with time are also obvious when the laser spots get close to the interface.

 figure: Fig. 7

Fig. 7 Panel (a,b,c,d) shows the spatiotemporal differential reflection signal with different excitation position. The wavelength of the probe is 720 nm corresponding to the band edge emission of shell region. Pictures on the right side are the spatiotemporal graphs of each left excitation position.

Download Full Size | PPT Slide | PDF

The time evolution of the peak value is shown in Fig. 8(a). Dispite of the oscillations caused by coherent phonons [61–63], the curves show an exponential decay. The lifetime of the carrier recombination can be extracted from Fig. 7(a), which is about 153 ps, close to the result presented in Fig. 3(b). While the laser spots get closer to the interface, the corresponding lifetime increases rapidly. The fitted lifetime derived from Fig. 7(d) is about 678 ps, which is more than 3 times larger than that in Fig. 7(a). Additionally, the early stages of time evolution are shown in Fig. 8(b). It is found that the timescale of the rising edge is affected by the laser spots position. Precisely, when the laser spots get closer to the interface, the rising time turns longer, which is a clear evidence for an enhanced CT process.

 figure: Fig. 8

Fig. 8 (a) Normalized peak differential reflection signal extracted from all four different excitation positions at the shell zone. (b) The magnified rising time of all four curves in (a) and data fitted by Gaussian error function.

Download Full Size | PPT Slide | PDF

As a result, a profound analysis of the relation between the CT process and carrier lifetime is in great need. The CT process may affect the carrier lifetime through several mechanisms, such as the formation of interfacial excitons. However, we would rather not to attribute our results to the long-lived interfacial excitons due to the following reasons. Firstly, no red shift was found in our PL spectra results [Fig. 2(d)]. Since the interfacial excitons are formed by electrons in CBM of WS2 and holes in VBM of WSe2, a lower resonance energy should be easily observed via PL spectrum at the interface, and the same goes for the charged excitons known as trions [64]. Secondly, the rising edge of the responses in the core region is not affected by the laser spot position with the estimated difference between positions less than 100 fs, which is in contrast with the assumption of the formation of interfacial excitons. Thirdly, as shown in Fig. 7(c) and 7(d), the decay of carrier densities in the shell region remains slow even when the carriers in the core region have almost vanished. Therefore the mechanism of interfacial excitons is eliminated from our analysis.

The most-likely mechanism responsible for the extended lifetime is the CT process, whose built-in electric field causes a temporary density difference between unbalanced electrons and holes:

Δp=Δn+Δh
where Δn and Δp are the density of unbalanced electrons and holes, respectively. Δh is the extra hole density induced by CT process. In particular, these holes have relatively long lifetime because of the built-in electric field. A simple rate equation, which incorporates only the direct exciton combination, is given by:
dΔpdt=A(npn0p0)=A(n0Δp+p0Δn+ΔpΔn)
Where n0 and p0 are the equilibrium density of electrons and holes, respectively. We have obtained numerical solutions for this rate equation, and found that qualitative agreement can be achieved between experimental and numerical results.(see Appendix 7)

4. Conclusions

To conclude, monolayer composition-graded WS2/WSe2 lateral heterostructures are synthesized in a CVD system. Synchronous pump-probe mapping demonstrated that a depletion region exists over the heterojunction. We experimentally investigated the ultrafast dynamics of carriers with the proposed spatiotemporal femtosecond transient absorption techniques. Our experiments demonstrate an obvious CT process across the interface, including a electron transfer process which is so fast that beyonds our time resolution and a hole transfer process within the first 1 ps. Transient space modulation of depletion region phenomenon is also observed for the first time to be about 200 nm, which is caused by the mobility difference between electrons and holes during the CT process. What’s more, we have found a significant extension on the carrier lifetime in shell region from 153 ps to 678 ps near the interface, which renders excellent potentials for the novel optical and quantum devices. We attribute this phenomenon to the temporary density difference between unbalanced electrons and holes. A rate equation model is employed to give a qualitative explanation. Our result corroborates the possibility to apply lateral heterostructure in photovoltaic devices and band gap engineering.

5. Appendix

5.1. Time-resolved femtosecond transient absorption mapping

Synchronous time-resolved pump-probe mapping results measured with 670 nm, 700 nm, 720 nm probe beams are placed in Fig. 9. Here, 0 ps is the time delay of the strongest probe signal. Definitely, there is a low-response gap in all three mapping images, dividing the whole image into two parts. From this figure, one can see that the signal probed by 670 nm is too small, almost two orders of magnitude smaller than 700 nm and 720 nm, in both regions of core and shell. In addition, 700 nm probe only has a good effect at the corner. Thus, 720 nm wavelength is selected as the probe light in the following experiments.

 figure: Fig. 9

Fig. 9 Time-resolved transient absorption spectrum mapping with different probe wavelengths at 0 ps. The step size is 200 nm. (a) Optical microscopy of composition-graded WS2xSe2(1−x) alloys and its interface marked by yellow dash line. (b,c,d) Mapping images with 670 nm, 700 nm, 720 nm wavelengths serving as probe lights.

Download Full Size | PPT Slide | PDF

5.2. Polarization-resolved second-harmonic generation microscopy mapping

Quality of the interface was also studied in our experiments [Fig. 10]. Boundary distortion, which is one of the key factors that determines the nature property of the interface, was characterized by polarization-resolved second-harmonic (SH) generation microscopy mapping. Since the crystal orientation can be calculated by the polarization intensity of SH in different directions [41], vertical and horizontal SH intensities were collected points by points. Figure. 10(a) illustrates the optical microscopy of the lateral heterojunction monolayer. White dash line represents the interface. Under the excitation of linearly polarized 800 nm laser, SHG spectra without polarization-resolved of points marked in red and black are collected and shown in Fig. 10(b) and 10(e). It is obvious that both core and shell region share similar SH intensities and profiles, suggesting that second-order nonlinear coefficient on both sides are close to each other. Second-harmonic intensity mapping images, with orthogonal polarization direction parallel and perpendicular to the incident laser, are shown in Fig. 10(c) and 10(d), respectively. Same as PL mapping, no visible signal suppression appears at the interface. The corresponding signal is uniform distributed over the entire triangle, which implies a well atomic connection across the interface. Previous report reveals that the lattice mismatching of WS2 and WSe2 lattice structure is only around 4%. To confirm the consistency of honeycomb lattice orientation, the angle between armchair axis and the excitation laser polarization direction is given by [65,66]:

θ=(1/3)tan1IV/IH
The calculated image displayed in Fig. 10(f) exhibits a nice lattice coherence at the border of each material. No remarkable interface can be viewed inside the lateral triangle, suggesting a negligible lattice distortion and demonstrating high quality of the atomic interface.

 figure: Fig. 10

Fig. 10 Polarization-resolved second-harmonic generation(SHG) microscopy measurement of the lateral heterostructure. (a) Optical microscopy of composition-graded WS2xSe2(1−x) alloys. Interface is noted by white dash line. Yellow dash square represents the mapping region. (b) Total SH intensity of points markd in panel (a). (c,d) Polarization-resolved SH mapping of the area enclosed by the yellow dash square in panel (a). (e) Total SH mapping IV + IH. (f) Calculated angle θ between armchair axis and the excitation laser polarization direction. The scale bar for all is 10 μm

Download Full Size | PPT Slide | PDF

5.3. Photoluminescence mapping

PL mapping result shows that the peak wavelength of the lateral heterostructure varies from 665 nm to 730 nm [Fig. 11(a)]. Even though there is no PL quenching phenomenon across the junction, the interface can still be distinguished by the sudden change of the PL peak wavelength. Gradual variation of the peak wavelength with position from the core to shell corresponds to the gradient of the alloy components [Fig. 11(b)]. It is pretty clear that a cleavage of peak wavelength has emerged at point 6, indicating the sudden proportional reversal of atom S and Se at the interface. Components on both sides of the interface can be further confirmed by Raman spectra. From Fig. 11(c), Raman shift of WS2 (E21g) gradually deflects to the peak position of WSe2 (E21g) while the intensity of WS2 (E21g) peak keeps rising with the variations in detection positions.

 figure: Fig. 11

Fig. 11 (a) Photoluminescence (PL) mapping of the entire lateral heterojunction. Each point is described by its peak PL wavelength. The step size is 1 μm. Interface can hardly been observed in this mapping image. (b) PL intensity of points marked in (a). Inset: Magnified PL spectrum with detailed information about points marked by 5,6 and 7. (C) Raman intensity of points marked in (a).

Download Full Size | PPT Slide | PDF

5.4. Time-resolved transient absorption spectrum

The spectral lines of transient absorption spectrum (TAS) can help us to identify the resonance peaks of A excitons and B excitons. It is obvious that the resonance energy of A excitons is around 1.77 eV with a small offset on both sides [Fig. 12(a)]. When the laser spot moves from core to shell, the absorption peak of A excitons begins to decline and then bound back gradually [Fig. 12(b)]. A red shift also occurs during this process, implying a decreasing band gap.

 figure: Fig. 12

Fig. 12 (a) Interpolated time-resolved transient absorption spectrum across the junction. The black dash line represents the interface position. (b) time-resolved transient absorption spectral lines across the junction.

Download Full Size | PPT Slide | PDF

5.5. Linear region of excitation fluence and spatial resolution

Through gradually increasing the pump fluence, peak signals under each pump fluence are gathered, as illustrated in Fig. 13(a). Linear region of pump fluence can be estimated to be less than 50 μJ/cm2, which is larger than the excitation fluence employed excitation fluence (30 μJ/cm2). Figure. 13(b) is the Gauss fitting for the spatial cross correlation between the pump and probe. The FWHM of the used Gauss function is estimated to be around 600 nm.

 figure: Fig. 13

Fig. 13 (a) Linear region measurement of pump fluence. The spot marked in red is the pump fluence we used in our experiment. (b) Measurement of spatial resolution of our spatiotemporal femtosecond transient absorption spectrum system.

Download Full Size | PPT Slide | PDF

5.6. Calculation of chemical composition

According to recent studies [67,68] the band gap of the monolayer WS2xSe2(1−x) can be calculated based on the equation:

Eg(x)=xEgWS2+(1x)EgWSe2
where EgWS2, EgWSe2 and Eg(x) represent the band gap of pristine monolayer WS2, WSe2 and WS2xSe2(1−x) alloy, respectively, and x represents the S/(S+Se) ratio. The band gap of intrinsic monolayer WS2 and WSe2 are ∼ 1.97 eV (630 nm) and ∼ 1.63 eV (760 nm), respectively [69,70]. The band gap of WS2xSe2(1−x) alloy at different locations of a domain has been extracted from the 2D PL peak position mapping. Therefore, the spatial variation of S/(S+Se) ratio is obtained by using the formula:
x=(1.97Eg(x))/0.34
The bright specks at the center of Fig. 11(a) are attributed to the weak local PL peak intensity, which is below the noise level in the PL measurements. This is caused by the fact that the crystal nucleus with a multilayer thickness would leading to a prominent decrease of the PL quantum efficiency. Therefore, the composition of the WS2xSe2(1−x) alloy corresponding to this very small region cannot be calculated.

5.7. Calculation of rate equation

The rate equation is written as:

dΔpdt=A(npn0p0)=A(n0Δp+p0Δn+ΔpΔn)
Since the shell region is typically p doped, n0Δp can be neglected. The equation is simplified to be:
dΔpdt=A[Δp2+(p0Δh)Δpp0Δh]
Under the pump intensity of 30 μJ/cm2, the initial excited carrier density is about 1012 to 1013/cm2, which is much larger than the original carrier density induced by doping. So we assume that Δp > Δn >> p0 >> n0 and therefore, the terms contain p0 in Eq. (8) can be neglected because of the reason that the transferred carrier density Δh is large and proportional to the excitation fluence. The simplified equation can be written as:
dΔpdt=A[Δp2ΔhΔp]
On the other hand, while the position is far away from the interface, the transferred carrier density Δh can also be neglected which makes the equation follows a quadratic relation with excitation fluence:
dΔpdt=AΔp2
It is obvious that the relative combining rate of carriers near the interface [Eq. (9)] is smaller than that away from the interface [Eq. (10)], which indicates a different life time of carriers. The coefficient A is extracted from the carrier relaxation data away from the interface. The different positions in Fig. 7 are simulated by different initial value of Δh. By varying Δh0, the solutions of Eq. (8) are shown in Fig. 14. Compared with Fig. 8, a qualitative agreement can be reached.

 figure: Fig. 14

Fig. 14 Solutions of Eq. (8) with different initial value of Δh.

Download Full Size | PPT Slide | PDF

 figure: Fig. 15

Fig. 15 Spatiotemporal femtosecond transient absorption spectrum system.

Download Full Size | PPT Slide | PDF

5.8. System schematics

There are two beam splitters (BSs) used in our spatiotemporal femtosecond transient absorption spectrum system (Fig. 15). The first BS placed right after our laser source is used to divide the original laser into two beams. The second BS would only work after the probe excite the PCF. Precisely, when the probe passes through the second BS, one part of it would be reflected into an APD, working as the reference light. Notably, the chopper before the APD is used to modulate the reference light. The other part of the probe would reach our sample and then be reflected back to another APD. Additionally, an optical attenuator is applied to balance these two APDs before we start our experiments. Thus, the balanced reference light R0 can be used in the following equation:

ΔR/R0=(RR0)/R0

Funding

Opening Foundation of State Key Laboratory of High Performance Computing (201601-01, 201601-02, 201601-03); Scientific Researches Foundation of National University of Defense Technology (zk16-03-59); Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (SKL2017KF06); Funds for International Cooperation and Exchange of National Natural Science Foundation of China (61120106, 60921062); Open Research Fund of Hunan Provincial Key Laboratory of High Energy Laser Technology (GNJGJS03); Director Fund of State Key Laboratory of Pulsed Power Laser Technology (SKL2018ZR05).

Acknowledgments

The authors are grateful for fruitful discussion with Shanshan Wang, Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, China. Thanks for her analysis of the material composition.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References and links

1. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013). [CrossRef]   [PubMed]  

2. Y. Zhou, J. Dong, and H. Li, “Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons,” RSC Adv. 5, 66852–66860 (2015). [CrossRef]  

3. X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016). [CrossRef]  

4. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014). [CrossRef]  

5. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013). [CrossRef]   [PubMed]  

6. L. F. Mattheiss, “Band Structures of Transition-Metal-Dichalcogenide Layer Compounds,” Phys. Rev. B 8, 3719–3740 (1973). [CrossRef]  

7. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013). [CrossRef]  

8. F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014). [CrossRef]   [PubMed]  

9. W. Wei, Y. Dai, and B. Huang, “In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures,” Phys. Chem. Chem. Phys. 18, 15632–15638 (2016). [CrossRef]   [PubMed]  

10. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014). [CrossRef]   [PubMed]  

11. Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015). [CrossRef]  

12. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature. 499, 419–425 (2013). [CrossRef]   [PubMed]  

13. Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017). [CrossRef]   [PubMed]  

14. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014). [CrossRef]   [PubMed]  

15. M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017). [CrossRef]   [PubMed]  

16. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017). [CrossRef]   [PubMed]  

17. X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014). [CrossRef]   [PubMed]  

18. Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017). [CrossRef]   [PubMed]  

19. J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016). [CrossRef]   [PubMed]  

20. X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015). [CrossRef]   [PubMed]  

21. J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014). [CrossRef]  

22. K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016). [CrossRef]   [PubMed]  

23. F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015). [CrossRef]   [PubMed]  

24. D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016). [CrossRef]   [PubMed]  

25. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015). [CrossRef]  

26. H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018). [CrossRef]  

27. M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014). [CrossRef]   [PubMed]  

28. Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015). [CrossRef]  

29. K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016). [CrossRef]   [PubMed]  

30. X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016). [CrossRef]  

31. X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014). [CrossRef]   [PubMed]  

32. J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

33. X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614. [CrossRef]  

34. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014). [CrossRef]   [PubMed]  

35. Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017). [CrossRef]   [PubMed]  

36. K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015). [CrossRef]   [PubMed]  

37. S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015). [CrossRef]  

38. Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015). [CrossRef]   [PubMed]  

39. K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016). [CrossRef]   [PubMed]  

40. J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017). [CrossRef]   [PubMed]  

41. C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014). [CrossRef]   [PubMed]  

42. C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

43. K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015). [CrossRef]   [PubMed]  

44. C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014). [CrossRef]   [PubMed]  

45. Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016). [CrossRef]   [PubMed]  

46. B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016). [CrossRef]   [PubMed]  

47. J. Kang, H. Sahin, and F. M. Peeters, “Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure,” The J. Phys. Chem. C 119, 9580–9586 (2015). [CrossRef]  

48. W. Wei, Y. Dai, and B. Huang, “Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides,” Phys. Chem. Chem. Phys. 19, 663–672 (2017). [CrossRef]  

49. F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017). [CrossRef]   [PubMed]  

50. W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

51. L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017). [CrossRef]   [PubMed]  

52. Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014). [CrossRef]   [PubMed]  

53. F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017). [CrossRef]  

54. H. L. Zhuang and R. G. Hennig, “Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts,” The J. Phys. Chem. C 117, 20440–20445 (2013). [CrossRef]  

55. J. He, D. He, Y. Wang, and H. Zhao, “Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures,” Opt. Express 25, 1949–1957 (2017). [CrossRef]  

56. Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017). [CrossRef]   [PubMed]  

57. W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015). [CrossRef]   [PubMed]  

58. Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015). [CrossRef]   [PubMed]  

59. V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016). [CrossRef]   [PubMed]  

60. Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015). [CrossRef]   [PubMed]  

61. T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016). [CrossRef]   [PubMed]  

62. D. R. Cremons, D. A. Plemmons, and D. J. Flannigan, “Defect-mediated phonon dynamics in TaS2 and WSe2,” Struct. Dyn. 4, 044019 (2017). [CrossRef]  

63. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015). [CrossRef]  

64. M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015). [CrossRef]   [PubMed]  

65. M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015). [CrossRef]   [PubMed]  

66. T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014). [CrossRef]   [PubMed]  

67. X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016). [CrossRef]  

68. J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013). [CrossRef]  

69. K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

70. B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
    [Crossref] [PubMed]
  2. Y. Zhou, J. Dong, and H. Li, “Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons,” RSC Adv. 5, 66852–66860 (2015).
    [Crossref]
  3. X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
    [Crossref]
  4. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  5. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
    [Crossref] [PubMed]
  6. L. F. Mattheiss, “Band Structures of Transition-Metal-Dichalcogenide Layer Compounds,” Phys. Rev. B 8, 3719–3740 (1973).
    [Crossref]
  7. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
    [Crossref]
  8. F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014).
    [Crossref] [PubMed]
  9. W. Wei, Y. Dai, and B. Huang, “In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures,” Phys. Chem. Chem. Phys. 18, 15632–15638 (2016).
    [Crossref] [PubMed]
  10. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
    [Crossref] [PubMed]
  11. Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
    [Crossref]
  12. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature. 499, 419–425 (2013).
    [Crossref] [PubMed]
  13. Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
    [Crossref] [PubMed]
  14. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
    [Crossref] [PubMed]
  15. M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
    [Crossref] [PubMed]
  16. B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
    [Crossref] [PubMed]
  17. X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
    [Crossref] [PubMed]
  18. Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
    [Crossref] [PubMed]
  19. J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
    [Crossref] [PubMed]
  20. X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
    [Crossref] [PubMed]
  21. J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
    [Crossref]
  22. K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
    [Crossref] [PubMed]
  23. F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015).
    [Crossref] [PubMed]
  24. D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
    [Crossref] [PubMed]
  25. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
    [Crossref]
  26. H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
    [Crossref]
  27. M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
    [Crossref] [PubMed]
  28. Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
    [Crossref]
  29. K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
    [Crossref] [PubMed]
  30. X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
    [Crossref]
  31. X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
    [Crossref] [PubMed]
  32. J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).
  33. X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
    [Crossref]
  34. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
    [Crossref] [PubMed]
  35. Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
    [Crossref] [PubMed]
  36. K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
    [Crossref] [PubMed]
  37. S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
    [Crossref]
  38. Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
    [Crossref] [PubMed]
  39. K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
    [Crossref] [PubMed]
  40. J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
    [Crossref] [PubMed]
  41. C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
    [Crossref] [PubMed]
  42. C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).
  43. K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
    [Crossref] [PubMed]
  44. C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
    [Crossref] [PubMed]
  45. Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
    [Crossref] [PubMed]
  46. B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
    [Crossref] [PubMed]
  47. J. Kang, H. Sahin, and F. M. Peeters, “Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure,” The J. Phys. Chem. C 119, 9580–9586 (2015).
    [Crossref]
  48. W. Wei, Y. Dai, and B. Huang, “Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides,” Phys. Chem. Chem. Phys. 19, 663–672 (2017).
    [Crossref]
  49. F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
    [Crossref] [PubMed]
  50. W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.
  51. L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
    [Crossref] [PubMed]
  52. Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
    [Crossref] [PubMed]
  53. F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017).
    [Crossref]
  54. H. L. Zhuang and R. G. Hennig, “Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts,” The J. Phys. Chem. C 117, 20440–20445 (2013).
    [Crossref]
  55. J. He, D. He, Y. Wang, and H. Zhao, “Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures,” Opt. Express 25, 1949–1957 (2017).
    [Crossref]
  56. Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
    [Crossref] [PubMed]
  57. W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
    [Crossref] [PubMed]
  58. Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
    [Crossref] [PubMed]
  59. V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
    [Crossref] [PubMed]
  60. Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
    [Crossref] [PubMed]
  61. T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
    [Crossref] [PubMed]
  62. D. R. Cremons, D. A. Plemmons, and D. J. Flannigan, “Defect-mediated phonon dynamics in TaS2 and WSe2,” Struct. Dyn. 4, 044019 (2017).
    [Crossref]
  63. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
    [Crossref]
  64. M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015).
    [Crossref] [PubMed]
  65. M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
    [Crossref] [PubMed]
  66. T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
    [Crossref] [PubMed]
  67. X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
    [Crossref]
  68. J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013).
    [Crossref]
  69. K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).
  70. B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
    [Crossref] [PubMed]

2018 (1)

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
[Crossref]

2017 (13)

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

W. Wei, Y. Dai, and B. Huang, “Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides,” Phys. Chem. Chem. Phys. 19, 663–672 (2017).
[Crossref]

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
[Crossref] [PubMed]

F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017).
[Crossref]

J. He, D. He, Y. Wang, and H. Zhao, “Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures,” Opt. Express 25, 1949–1957 (2017).
[Crossref]

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

D. R. Cremons, D. A. Plemmons, and D. J. Flannigan, “Defect-mediated phonon dynamics in TaS2 and WSe2,” Struct. Dyn. 4, 044019 (2017).
[Crossref]

2016 (14)

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

W. Wei, Y. Dai, and B. Huang, “In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures,” Phys. Chem. Chem. Phys. 18, 15632–15638 (2016).
[Crossref] [PubMed]

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

2015 (19)

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015).
[Crossref] [PubMed]

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

Y. Zhou, J. Dong, and H. Li, “Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons,” RSC Adv. 5, 66852–66860 (2015).
[Crossref]

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
[Crossref]

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

J. Kang, H. Sahin, and F. M. Peeters, “Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure,” The J. Phys. Chem. C 119, 9580–9586 (2015).
[Crossref]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015).
[Crossref] [PubMed]

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
[Crossref] [PubMed]

2014 (13)

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref] [PubMed]

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
[Crossref] [PubMed]

2013 (6)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature. 499, 419–425 (2013).
[Crossref] [PubMed]

H. L. Zhuang and R. G. Hennig, “Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts,” The J. Phys. Chem. C 117, 20440–20445 (2013).
[Crossref]

J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013).
[Crossref]

1973 (1)

L. F. Mattheiss, “Band Structures of Transition-Metal-Dichalcogenide Layer Compounds,” Phys. Rev. B 8, 3719–3740 (1973).
[Crossref]

Abbas, A.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Abbas, A. N.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

Addou, R.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Aivazian, G.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Ajayan, P. M.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Alù, A.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Arefe, G.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Bae, M.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Baranowski, M.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Battaglia, C.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Beanland, R.

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Bechtel, H. A.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Bellus, M. Z.

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015).
[Crossref] [PubMed]

M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015).
[Crossref] [PubMed]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014).
[Crossref] [PubMed]

Bogaert, K.

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

Borzda, T.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Boulesbaa, A.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Burgörfer, J.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
[Crossref] [PubMed]

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Cao, L.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Cao, T.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Carraro, C.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Carvalho, A.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Castro Neto, A. H.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Ceballos, F.

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015).
[Crossref] [PubMed]

M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015).
[Crossref] [PubMed]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014).
[Crossref] [PubMed]

Cerullo, G.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Chae, D.-H.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Chang, K.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Chen, C.-A.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Chen, H.

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

Chen, H.-Y.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Chen, I.-T.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Chen, K.

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

Chen, L.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Chen, P.

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

Chen, W.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

Chen, X.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Chen, Y.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Cheng, C. C.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Cheng, C.-C.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Cheng, G.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Cheng, R.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Cheong, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Chesin, J.

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

Chiu, H.-Y.

M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015).
[Crossref] [PubMed]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014).
[Crossref] [PubMed]

Cho, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Chu, C. W.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Chun, S.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Chung, K.-H.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Clark, G.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Cobden, D. H.

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Conlon, C.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Conti, G.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Cremons, D. R.

D. R. Cremons, D. A. Plemmons, and D. J. Flannigan, “Defect-mediated phonon dynamics in TaS2 and WSe2,” Struct. Dyn. 4, 044019 (2017).
[Crossref]

Cui, Q.

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref] [PubMed]

Cui, X.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Cui, Y.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Culbertson, J. C.

K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

Dai, N.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Dai, Y.

W. Wei, Y. Dai, and B. Huang, “Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides,” Phys. Chem. Chem. Phys. 19, 663–672 (2017).
[Crossref]

W. Wei, Y. Dai, and B. Huang, “In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures,” Phys. Chem. Chem. Phys. 18, 15632–15638 (2016).
[Crossref] [PubMed]

Dal Conte, S.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Datta, S.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Debbichi, L.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Desai, S. B.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Dong, J.

Y. Zhou, J. Dong, and H. Li, “Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons,” RSC Adv. 5, 66852–66860 (2015).
[Crossref]

Dorgan, V. E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Duan, X.

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Dubrovkin, A. M.

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Dumcenco, D.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Duscher, G.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Eda, G.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Eichfeld, S. M.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Fadley, C. S.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Fan, H. J.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Fan, W.

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Fan, Z.

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

Fang, H.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Fathi, M.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Flannigan, D. J.

D. R. Cremons, D. A. Plemmons, and D. J. Flannigan, “Defect-mediated phonon dynamics in TaS2 and WSe2,” Struct. Dyn. 4, 044019 (2017).
[Crossref]

Furchi, M. M.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
[Crossref] [PubMed]

Gadermaier, C.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Garaj, S.

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature. 499, 419–425 (2013).
[Crossref] [PubMed]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Geohegan, D. B.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Ghimire, N. J.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Ghosh, R. K.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Giustiniano, F.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Goldberger, J. E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Gong, X.

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Gong, Y.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Gong, Z.

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Gradecak, S.

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature. 499, 419–425 (2013).
[Crossref] [PubMed]

Guo, J.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Guo, Z.

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
[Crossref] [PubMed]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Gutierrez, H. R.

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Gwo, S.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Halim, U.

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

Han, M.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Hanbicki, A. T.

K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

Hao, G.

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

He, D.

J. He, D. He, Y. Wang, and H. Zhao, “Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures,” Opt. Express 25, 1949–1957 (2017).
[Crossref]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

He, J.

J. He, D. He, Y. Wang, and H. Zhao, “Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures,” Opt. Express 25, 1949–1957 (2017).
[Crossref]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

He, J. H.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

He, Y.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

He, Z.

C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

Heinz, T. F.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Hennig, R. G.

H. L. Zhuang and R. G. Hennig, “Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts,” The J. Phys. Chem. C 117, 20440–20445 (2013).
[Crossref]

Holleitner, A.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Hone, J.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Hong, H.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Hong, X.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Hu, S.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Hu, W.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Huang, B.

W. Wei, Y. Dai, and B. Huang, “Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides,” Phys. Chem. Chem. Phys. 19, 663–672 (2017).
[Crossref]

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

W. Wei, Y. Dai, and B. Huang, “In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures,” Phys. Chem. Chem. Phys. 18, 15632–15638 (2016).
[Crossref] [PubMed]

Huang, C.

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Huang, D.

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Huang, K.-H.

X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
[Crossref]

Huang, L.

L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
[Crossref] [PubMed]

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
[Crossref] [PubMed]

Huang, W.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Huang, Y.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Huo, N.

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Jahnke, F.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Jang, J. I.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Jang, Y. D.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Javey, A.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Jeong, H. Y.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Jeong, T. Y.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Jernigan, G. G.

K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

Ji, J.

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Ji, Z.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Jia, S.

C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

Jiang, J.

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Jiang, T.

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
[Crossref]

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Jiao, L.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Jin, B. M.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Jin, C.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Jin, Z.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Johnson, J.

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Johnston-Halperin, E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Jones, A. M.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Jonker, B. T.

K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

Jung, S.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Kamat, P. V.

Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
[Crossref] [PubMed]

Kang, J.

J. Kang, H. Sahin, and F. M. Peeters, “Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure,” The J. Phys. Chem. C 119, 9580–9586 (2015).
[Crossref]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013).
[Crossref]

Kang, J. S.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Kang, Z.

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

Keyshar, K.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Kim, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Kim, J.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Kim, K.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Kim, K. W.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Kim, M. J.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Kim, P.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Kim, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Kim, Y. S.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Kim, Y.-H.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Kim, Y.-J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Kis, A.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Klein, J.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

Klement, P.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Klopotowski, L.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Koldemir, U.

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Koman, V. B.

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Kou, L.

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

Kozawa, D.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Kronast, F.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Kumar, N.

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref] [PubMed]

Kung, Y. C.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Kuno, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Lai, X.

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Lane, S. D.

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

Le, C. T.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Lee, C.-H.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Lee, D.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Lee, G.-H.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Lee, H. R.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Lee, S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Lee, S. W.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Lee, Y.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Lee, Y.-H.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
[Crossref]

Lei, S.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Li, B.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Li, H.

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

Y. Zhou, J. Dong, and H. Li, “Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons,” RSC Adv. 5, 66852–66860 (2015).
[Crossref]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Li, J.

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013).
[Crossref]

Li, L.-J.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Li, M. Y.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Li, M.-Y.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Li, T.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Li, X.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Li, Y.

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Liang, J.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Libisch, F.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
[Crossref] [PubMed]

Lin, C.-H.

X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
[Crossref]

Lin, J.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Lin, M.-H.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Lin, M.-W.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Lin, Y. C.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Lin, Y.-C.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Lin, Z.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Liu, B.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Liu, C.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Liu, F.

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Liu, H.

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Liu, J.

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Liu, K.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Liu, P.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Liu, S.

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

Liu, W.-T.

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Liu, Y.

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
[Crossref]

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Liu, Z.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Lou, J.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

Lu, L. S.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Lu, N.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Luo, J.

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

Ma, Y.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Maboudian, R.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Mackowski, S.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Mahjouri-Samani, M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Mandrus, D. G.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Manser, J. S.

Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
[Crossref] [PubMed]

Martin, M. C.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Matsuda, K.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Mattheiss, L. F.

L. F. Mattheiss, “Band Structures of Transition-Metal-Dichalcogenide Layer Compounds,” Phys. Rev. B 8, 3719–3740 (1973).
[Crossref]

Maude, D. K.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Mccreary, K. M.

K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

Meng, S.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Mihailovic, D.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Miller, B.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

Minor, A. M.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Mishchenko, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Miyauchi, Y.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Mohammadi Estakhri, N.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Monahan, N. R.

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Mouri, S.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Mueller, T.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
[Crossref] [PubMed]

Nan, F.

F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017).
[Crossref]

Narang, D. S.

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Nelson, C. A.

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

Nemsak, S.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Neto, A. H. C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Novoselov, K. S.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Nuckolls, C.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Ozdol, B.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Palsson, G. K.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Pan, A.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Pano, B.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

Pantelides, S. T.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Park, C.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Park, J.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Park, K.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Park, S.-N.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Park, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Peeters, F. M.

J. Kang, H. Sahin, and F. M. Peeters, “Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure,” The J. Phys. Chem. C 119, 9580–9586 (2015).
[Crossref]

Peng, X.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Peng, Y.

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Peters, J. J. P.

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Plashnitsa, V. V.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Plemmons, D. A.

D. R. Cremons, D. A. Plemmons, and D. J. Flannigan, “Defect-mediated phonon dynamics in TaS2 and WSe2,” Struct. Dyn. 4, 044019 (2017).
[Crossref]

Plochocka, P.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Pogna, E. A. A.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Pop, E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Pospischil, A.

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
[Crossref] [PubMed]

Prijatelj, M.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Puretzky, A. A.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Purezky, A. A.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Qi, Z.

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

Qiao, R.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Qiu, Y.-H.

F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Rhim, S. H.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Ribeiro, R. M.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Rivera, P.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Robinson, J. A.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Robinson, R. D.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Ross, J. S.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Rouleau, C. M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Ruoff, R. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Ryoo, J. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Sahin, H.

J. Kang, H. Sahin, and F. M. Peeters, “Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure,” The J. Phys. Chem. C 119, 9580–9586 (2015).
[Crossref]

Sahoo, P. K.

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Salahuddin, S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Sanchez, A. M.

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Schaibley, J. R.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Seong, M.-J.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Seyler, K.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Seyler, K. L.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

Shan, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Shaw, J. C.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Shen, C.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

Shen, G.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Shen, Y.-R.

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Shen, Z. X.

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Sheng, Y.

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Shi, G.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Shi, J.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Shi, K.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Shi, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Shi, S.-F.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Shi, Y.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Shih, C.-K.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

Shim Yoo, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Sim, Y.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Sinclair, R.

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Snaider, J.

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

Son, Y.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Spencer, M. G.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Steinhoff, A.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

Strano, M. S.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Su, L.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Suh, J.

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Sun, L.

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Sun, Y.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Surrente, A.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Tang, C.

C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

Tang, H. L.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Tang, Y.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Taniguchi, T.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

Tay, B. K.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Tempra, I.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Terrones, H.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Terrones, M.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Tian, M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Titow, D.

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

Tongay, S.

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013).
[Crossref]

Topolovsek, P.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Tran Khac, B. C.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Tsai, M. L.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Tseng, Y.-W.

X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
[Crossref]

Ullah, F.

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Unal, A. A.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Urban, J. M.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Vajtai, R.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

van der Zande, A. M.

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Vega-Mayoral, V.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Vella, D.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Verzhbitskiy, I.

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

Voronine, D. V.

C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Vujicic, N.

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Wallace, R. M.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

Wan, H.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

Wan, X.

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

Wan, Y.

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

Wang, C.

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Wang, F.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Wang, K.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Wang, P.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Wang, Q.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Wang, Q. H.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Wang, Q.-Q.

F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017).
[Crossref]

Wang, S.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Wang, T.

L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
[Crossref] [PubMed]

Wang, X.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Wang, Y.

J. He, D. He, Y. Wang, and H. Zhao, “Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures,” Opt. Express 25, 1949–1957 (2017).
[Crossref]

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Warner, J. H.

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Watanabe, K.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

Wei, K.

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Wei, K. H.

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Wei, K.-H.

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Wei, W.

W. Wei, Y. Dai, and B. Huang, “Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides,” Phys. Chem. Chem. Phys. 19, 663–672 (2017).
[Crossref]

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

W. Wei, Y. Dai, and B. Huang, “In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures,” Phys. Chem. Chem. Phys. 18, 15632–15638 (2016).
[Crossref] [PubMed]

Wei, Z.

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Wen, J.

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

Williams, K. W.

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

Windl, W.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

Wiwatowski, K.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Wu, J.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013).
[Crossref]

Wu, K.

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Wu, S.

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Wu, X.

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Wurstbauer, U.

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

Xia, C.

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, K.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Xie, W.

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

Xu, J.

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

Xu, J.-B.

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

Xu, W.

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

Xu, X.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Xue, W.

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Yablonovitch, E.

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

Yakobson, B. I.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Yan, J.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

Yan, S.

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Yan, W.

Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
[Crossref] [PubMed]

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Yang, M.

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

Yao, W.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Ye, G.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Yee, K. J.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

Yin, T.

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Yoon, D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

Yoon, M.

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

Yu, H.

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

Yu, R.

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Yu, W.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Yuan, L.

L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
[Crossref] [PubMed]

Zang, K.

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

Zeng, C.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Zeng, X.

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

Zhang, A.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

Zhang, D.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Zhang, J.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Zhang, N.

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

Zhang, Q.

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

Zhang, S.

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

Zhang, T.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Zhang, X.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Zhang, X.-Q.

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
[Crossref]

Zhang, Y.

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Zhang, Z.

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
[Crossref]

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

Zhao, H.

J. He, D. He, Y. Wang, and H. Zhao, “Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures,” Opt. Express 25, 1949–1957 (2017).
[Crossref]

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015).
[Crossref] [PubMed]

M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015).
[Crossref] [PubMed]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref] [PubMed]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014).
[Crossref] [PubMed]

Zheng, S.

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Zheng, X.

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
[Crossref]

Zhou, C.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Zhou, J.

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

Zhou, L.

F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017).
[Crossref]

Zhou, M.

L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
[Crossref] [PubMed]

Zhou, W.

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

Zhou, X.

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, J. Dong, and H. Li, “Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons,” RSC Adv. 5, 66852–66860 (2015).
[Crossref]

Zhu, H.

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

Zhu, K.

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

Zhu, T.

L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
[Crossref] [PubMed]

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

Zhuang, H. L.

H. L. Zhuang and R. G. Hennig, “Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts,” The J. Phys. Chem. C 117, 20440–20445 (2013).
[Crossref]

Zong, H.

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Zou, X.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

ACS Nano (11)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7, 2898–2926 (2013).
[Crossref] [PubMed]

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2/MoSe2 van der Waals Heterostructure,” ACS Nano 8, 12717–12724 (2014).
[Crossref] [PubMed]

Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, L. Jiao, K. Shi, S. Meng, and K. Liu, “Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers,” ACS Nano 11, 12020–12026 (2017).
[Crossref] [PubMed]

K. Wang, B. Huang, M. Tian, F. Ceballos, M.-W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. A. Puretzky, C. M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, and D. B. Geohegan, “Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy,” ACS Nano 10, 6612–6622 (2016).
[Crossref] [PubMed]

K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, “Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures,” ACS Nano 10, 3852–3858 (2016).
[Crossref] [PubMed]

K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J.-B. Xu, “Electronic Properties of MoS2/WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy,” ACS Nano 9, 9868–9876 (2015).
[Crossref] [PubMed]

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano 10, 5153–5160 (2016).
[Crossref] [PubMed]

F. Ullah, Y. Sim, C. T. Le, M.-J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K.-H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, “Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe2-WSe2 Lateral Heterostructure,” ACS Nano 11, 8822–8829 (2017).
[Crossref] [PubMed]

Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient Absorption Microscopy of Monolayer and Bulk WSe2,” ACS Nano 8, 2970–2976 (2014).
[Crossref] [PubMed]

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D.-H. Chae, D. Lee, Y.-H. Kim, S. Jung, and K. J. Yee, “Coherent Lattice Vibrations in Mono- and Few-Layer WSe2,” ACS Nano 10, 5560–5566 (2016).
[Crossref] [PubMed]

M. Z. Bellus, F. Ceballos, H.-Y. Chiu, and H. Zhao, “Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures,” ACS Nano 9, 6459–6464 (2015).
[Crossref] [PubMed]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study,” Acs Nano 9, 6119 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, “Lateral Built-In Potential of Monolayer MoS2/WS2 In-Plane Heterostructures by a Shortcut Growth Strategy,” Adv. Mater. 27, 6431–6437 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. Zheng, L. Sun, T. Yin, A. M. Dubrovkin, F. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of Wx Mo(1 − x)S2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

X. Zhu, N. R. Monahan, Z. Gong, H. Zhu, K. W. Williams, and C. A. Nelson, “Charge Transfer Excitons at van der Waals Interfaces,” J. Am. Chem. Soc. 137, 8313–8320 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Kang, S. Tongay, J. Li, and J. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing,” J. Appl. Phys. 113, 143703 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

F. Nan, Y.-H. Qiu, L. Zhou, and Q.-Q. Wang, “Ultrafast exciton dynamics in chemical heterogenous WSe2 monolayer,” J. Phys. D: Appl. Phys. 50, 485109 (2017).
[Crossref]

Nano Lett. (13)

Y. Son, M.-Y. Li, C.-C. Cheng, K.-H. Wei, P. Liu, Q. H. Wang, L.-J. Li, and M. S. Strano, “Observation of Switchable Photoresponse of a Monolayer WSe2/MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging,” Nano Lett. 16, 3571–3577 (2016).
[Crossref] [PubMed]

Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett. 15, 6135–6141 (2015).
[Crossref] [PubMed]

K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, and S. Garaj, “Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures,” Nano Lett. 16, 5129–5134 (2016).
[Crossref] [PubMed]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

D. Kozawa, A. Carvalho, I. Verzhbitskiy, F. Giustiniano, Y. Miyauchi, S. Mouri, A. H. Castro Neto, K. Matsuda, and G. Eda, “Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures,” Nano Lett. 16, 4087–4093 (2016).
[Crossref] [PubMed]

X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, and J. Jiang, “Synthesis of WS2xSe2(1−x) Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett. 16, 264 (2016).
[Crossref]

M. M. Furchi, A. Pospischil, F. Libisch, J. Burgörfer, and T. Mueller, “Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction,” Nano Lett. 14, 4785–4791 (2014).
[Crossref] [PubMed]

X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, and Y.-H. Lee, “Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers,” Nano Lett. 15, 410–415 (2015). : 25494614.
[Crossref]

M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, “Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure,” Nano Lett. 17, 6360–6365 (2017).
[Crossref] [PubMed]

B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, “Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures,” Nano Lett. 17, 5229–5237 (2017).
[Crossref] [PubMed]

S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers,” Nano Lett. 14, 3185–3190 (2014).
[Crossref] [PubMed]

Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Cao, “Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures,” Nano Lett. 15, 486–491 (2015).
[Crossref]

Y. Li, Q. Cui, F. Ceballos, S. D. Lane, Z. Qi, and H. Zhao, “Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers,” Nano Lett. 17, 6661–6666 (2017).
[Crossref] [PubMed]

Nano Res. (1)

X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, “Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions,” Nano Res. 9, 507–516 (2016).
[Crossref]

Nanoscale (1)

F. Ceballos, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure,” Nanoscale 7, 17523–17528 (2015).
[Crossref] [PubMed]

Nanoscale. (2)

H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, “Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure,” Nanoscale. 10, 1650–1659 (2018).
[Crossref]

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujicic, G. Cerullo, D. Mihailovic, and C. Gadermaier, “Exciton and charge carrier dynamics in few-layer WS2,” Nanoscale. 8, 5428–5434 (2016).
[Crossref] [PubMed]

Nat. Chem. (1)

W. Yan, Z. Guo, T. Zhu, S. Yan, J. Johnson, and L. Huang, “Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy,” Nat. Chem. 7, 785 (2015).
[Crossref] [PubMed]

Nat. Commun. (7)

Z. Guo, J. S. Manser, W. Yan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun. 6, 7471 (2015).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

J. Shi, M.-H. Lin, I.-T. Chen, N. Mohammadi Estakhri, X.-Q. Zhang, Y. Wang, H.-Y. Chen, C.-A. Chen, C.-K. Shih, A. Alù, X. Li, Y.-H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8, 35 (2017).
[Crossref] [PubMed]

P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, “Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures,” Nat. Commun. 6, 6242 (2015).
[Crossref]

J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, and H. Zhao, “Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures,” Nat. Commun. 5, 5622 (2014).
[Crossref]

Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta, and J. A. Robinson, “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 1–10 (2015).
[Crossref]

J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, “Directional interlayer spin-valley transfer in two-dimensional heterostructures,” Nat. Commun. 7, 13747 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref] [PubMed]

C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater. 13, 1096–1101 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (5)

C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10, 676 (2015).
[Crossref] [PubMed]

T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, “Valley and band structure engineering of folded MoS2 bilayers,” Nat. Nanotechnol. 9, 825–829 (2014).
[Crossref] [PubMed]

X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol. 9, 1024 (2014).
[Crossref] [PubMed]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Nature. (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature. 499, 419–425 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (2)

W. Wei, Y. Dai, and B. Huang, “Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides,” Phys. Chem. Chem. Phys. 19, 663–672 (2017).
[Crossref]

W. Wei, Y. Dai, and B. Huang, “In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures,” Phys. Chem. Chem. Phys. 18, 15632–15638 (2016).
[Crossref] [PubMed]

Phys. Rev. B (1)

L. F. Mattheiss, “Band Structures of Transition-Metal-Dichalcogenide Layer Compounds,” Phys. Rev. B 8, 3719–3740 (1973).
[Crossref]

Proc. Natl. Acad. Sci. (1)

H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111, 6198–6202 (2014).
[Crossref] [PubMed]

RSC Adv. (1)

Y. Zhou, J. Dong, and H. Li, “Electronic transport properties of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons,” RSC Adv. 5, 66852–66860 (2015).
[Crossref]

Sci. Reports (1)

K. M. Mccreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, “Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence,” Sci. Reports 6, 1861–1871 (2016).

Science (3)

M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, and J. H. He, “NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science 349, 524 (2015).
[Crossref] [PubMed]

Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, and L. Huang, “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science 356, 59 (2017).
[Crossref] [PubMed]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Science. (1)

Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, and X. Duan, “Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices,” Science. 357, 788–792 (2017).
[Crossref] [PubMed]

Struct. Dyn. (1)

D. R. Cremons, D. A. Plemmons, and D. J. Flannigan, “Defect-mediated phonon dynamics in TaS2 and WSe2,” Struct. Dyn. 4, 044019 (2017).
[Crossref]

The J. Phys. Chem. C (2)

H. L. Zhuang and R. G. Hennig, “Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts,” The J. Phys. Chem. C 117, 20440–20445 (2013).
[Crossref]

J. Kang, H. Sahin, and F. M. Peeters, “Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure,” The J. Phys. Chem. C 119, 9580–9586 (2015).
[Crossref]

The J. Phys. Chem. Lett. (1)

L. Yuan, T. Wang, T. Zhu, M. Zhou, and L. Huang, “Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors,” The J. Phys. Chem. Lett. 8, 3371–3379 (2017).
[Crossref] [PubMed]

Other (3)

C. Tang, Z. He, W. Chen, S. Jia, J. Lou, and D. V. Voronine, “Quantum plasmonic hot electron injection in the lateral heterostructure of WSe2-MoSe2,” arXrvpreprint (2017).

W. Xu, D. Kozawa, Y. Liu, Y. Sheng, K. Wei, V. B. Koman, S. Wang, X. Wang, T. Jiang, M. S. Strano, and J. H. Warner, “Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2:hBN:MoS2 Heterostructures for Exciton Energy Transfer,” Small pp. 1703727–n/a. 1703727.

J. Liu, W. Xue, H. Zong, X. Lai, P. K. Sahoo, H. R. Gutierrez, and D. V. Voronine, “Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure,” arXrvpreprint (2017).

Supplementary Material (2)

NameDescription
» Visualization 1       This video illustrates the modulation of the depletion region induced by ultrafast photo-carrier dynamics.
» Visualization 1       This video illustrates the modulation of the depletion region induced by ultrafast photo-carrier dynamics.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) Diagram of the spatiotemporal femtosecond transient absorption system. (b) Energy level diagram of the lateral WS2xSe2(1−x) alloy heterostructures in real space. At the boundary between the core and the shell, WS2xSe2(1−x) alloy interface is formed and thus the energy band transits gradually from WS2 to WSe2. Through fixing the exciting position and scanning the probe light across the interface, the transient exciton density of both sides can be monitored.
Fig. 2
Fig. 2 (a) Optical microscopy image of monolayer WS2xSe2(1−x) alloy lateral heterosjunction. Interface is labeled by white dash line. Spots marked by black, red and blue represent the selected positions of the PL measurement. (b) AFM image and the corresponding phase image. (c) Composition of ternary semiconductor alloys. Inset: PL mapping of the entire monolayer. (d) PL intensities collected from spots marked in (c).
Fig. 3
Fig. 3 (a) Optical microscopy image of heterojunction. Spots marked in black or red are the detection positions. Inset: Synchronous pump-probe mapping at 720 nm wavelength as the probe at 0 ps. (b) Normalized differential reflection signal as a function of delay time. Red and black curves are exponential fits of raw data. The rising time of both core and shell regions are around 400 fs. Gray area is the cross correlation of the pump and probe fitted by Gauss function.
Fig. 4
Fig. 4 (a) Microscope image of the heterojunction with a yellow dash line outlining the heterojunction. The relative position of the excitation spot and the heterojunction is shown in the picture. The red dash line in the middle of the spot represents the scanning direction. (b) Spatiotemporal differential reflection signal as a function of the real space (X-axis) and probe delay. (c) Spatial profile of differential reflection with different probe delays on the X-axis. Solid lines are fitted date by Gauss function. (d) Normalized differential reflection signal with different probe delays.
Fig. 5
Fig. 5 (a) Microscope image of the heterojunction (b) Spatiotemporal differential reflection signal as a function of the real space (X-axis) and probe delay. (c,d) 2D mapping of spatial profile of differential reflection at 0 ps and 0.3 ps. Dash circle represents the pump spot. Red dash line represents the scanning direction in 1D mapping. (e) Peak differential reflection signal of two sides as function of probe delay. (f) Spatial profile of differential reflection signal at 0 ps, 0.3 ps, 2.5 ps along X-axis. (g) Modulation of depletion region extracted from (b) in the first 3 ps.
Fig. 6
Fig. 6 Panel (a,b,c) shows the band structure of the lateral heterojunction and the movement of carriers as a result of Coulomb force originated from the depletion region. (d–h) Carrier density induced modulation of the interface. Pictures are drawing in chronological order.
Fig. 7
Fig. 7 Panel (a,b,c,d) shows the spatiotemporal differential reflection signal with different excitation position. The wavelength of the probe is 720 nm corresponding to the band edge emission of shell region. Pictures on the right side are the spatiotemporal graphs of each left excitation position.
Fig. 8
Fig. 8 (a) Normalized peak differential reflection signal extracted from all four different excitation positions at the shell zone. (b) The magnified rising time of all four curves in (a) and data fitted by Gaussian error function.
Fig. 9
Fig. 9 Time-resolved transient absorption spectrum mapping with different probe wavelengths at 0 ps. The step size is 200 nm. (a) Optical microscopy of composition-graded WS2xSe2(1−x) alloys and its interface marked by yellow dash line. (b,c,d) Mapping images with 670 nm, 700 nm, 720 nm wavelengths serving as probe lights.
Fig. 10
Fig. 10 Polarization-resolved second-harmonic generation(SHG) microscopy measurement of the lateral heterostructure. (a) Optical microscopy of composition-graded WS2xSe2(1−x) alloys. Interface is noted by white dash line. Yellow dash square represents the mapping region. (b) Total SH intensity of points markd in panel (a). (c,d) Polarization-resolved SH mapping of the area enclosed by the yellow dash square in panel (a). (e) Total SH mapping IV + IH. (f) Calculated angle θ between armchair axis and the excitation laser polarization direction. The scale bar for all is 10 μm
Fig. 11
Fig. 11 (a) Photoluminescence (PL) mapping of the entire lateral heterojunction. Each point is described by its peak PL wavelength. The step size is 1 μm. Interface can hardly been observed in this mapping image. (b) PL intensity of points marked in (a). Inset: Magnified PL spectrum with detailed information about points marked by 5,6 and 7. (C) Raman intensity of points marked in (a).
Fig. 12
Fig. 12 (a) Interpolated time-resolved transient absorption spectrum across the junction. The black dash line represents the interface position. (b) time-resolved transient absorption spectral lines across the junction.
Fig. 13
Fig. 13 (a) Linear region measurement of pump fluence. The spot marked in red is the pump fluence we used in our experiment. (b) Measurement of spatial resolution of our spatiotemporal femtosecond transient absorption spectrum system.
Fig. 14
Fig. 14 Solutions of Eq. (8) with different initial value of Δh.
Fig. 15
Fig. 15 Spatiotemporal femtosecond transient absorption spectrum system.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ R / R 0 = ( R R 0 ) / R 0
Δ p = Δ n + Δ h
d Δ p d t = A ( n p n 0 p 0 ) = A ( n 0 Δ p + p 0 Δ n + Δ p Δ n )
θ = ( 1 / 3 ) tan 1 I V / I H
E g ( x ) = x E gWS 2 + ( 1 x ) E gWSe 2
x = ( 1.97 E g ( x ) ) / 0.34
d Δ p d t = A ( n p n 0 p 0 ) = A ( n 0 Δ p + p 0 Δ n + Δ p Δ n )
d Δ p d t = A [ Δ p 2 + ( p 0 Δ h ) Δ p p 0 Δ h ]
d Δ p d t = A [ Δ p 2 Δ h Δ p ]
d Δ p d t = A Δ p 2
Δ R / R 0 = ( R R 0 ) / R 0

Metrics