Abstract

Laser performances around 1.3 μm are investigated in 879 nm laser diode (LD) end pumped Nd3+ doped mixed crystals with Nd:Gd0.69Y0.3TaO4 and Nd:Gd0.68Y0.3NbO4 crystals for the first time to our best knowledge. The maximum average power in LD end pumped Nd:Gd0.69Y0.3TaO4 1328 nm laser reaches 435 mW at 50 Hz with an optical-to-optical efficiency of 5.0% and a slope efficiency of 6.9%. In comparison, the highest average power of LD end pumped Nd:Gd0.68Y0.3NbO4 laser at 1337 nm is 190 mW at 50 Hz, corresponding to an optical-to-optical efficiency of 3.5% and a slope efficiency of 4.2%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Laser sources at 1.3 μm are widely used in many fields including telecommunication systems, remote sensing, and fiber sensing [1–3]. By nonlinear conversion, lasers in visible and ultraviolet region can be produced and used in applications of laser display, optical cooling, and trapping of lithium [4–7]. Laser diode (LD) pumped neodymium doped laser via the 4F3/24I13/2 transition is an effective approach to generate lasers around 1.3 μm. In recent years, research on LD pumped Nd3+-doped lasers at 1.3 μm has been conducted with different host materials [8–11].

Mixed laser crystals with structural disorder have specific characteristics of broad absorption and fluorescence spectrum and longer lifetime compared with single crystals. They are promising in ultrashort mode-locking lasers [12,13]. Owning to similar ionic radii, Y3+, Gd3+ and Lu3+ ions are often used to generate mixed laser materials. Various Nd3+-doped mixed crystals such as Nd:LuGdVO4 [14], Nd:GdYVO4 [15], Nd:CaYAlO4 [16] and Nd:GYSGG [17] have been produced and investigated in continuous-wave (cw) and pulsed laser operation. Recently, Nd3+-doped orthotantalate and niobate have been proven to be promising laser materials by efficient 1.06 μm laser operation. In 2015, Peng presented a LD end pumped cw Nd:GdTaO4 1066 nm with an optical-to-optical efficiency of 34.6% and a slope efficiency of 36% [18]. In 2017, Ding showed a novel Nd:GdNbO4 crystal grown by the Czochralski (Cz) method and got an efficient 1066 nm laser via the 4F3/24I11/2 transition [19]. Nd:Gd0.69Y0.3TaO4 (abbreviated as Nd:GdYTaO4 or Nd:GYTO) and Nd:Gd0.68Y0.3NbO4 (abbreviated as Nd:GdYNbO4 or Nd:GYNO) obtained by the Cz method were also employed to generate lasers around 1.06 μm and performance enhancement was achieved compared with single crystals [20–22]. The large energy gap between pump and laser leads to low Stokes efficiency and high thermal loading in LD pumped Nd3+-doped 1.3 μm laser. Direct pumping to the upper laser level of Nd3+ ion is an effective approach to reduce Stokes factor and increase laser efficiency [23,24]. Recently direct pumping has been widely used in Nd3+-doped lasers with the development of laser diode around 880 nm [25–27]. Owning to broad absorption bandwidths around 880 nm, Nd:GYTO and Nd:GYNO crystals have advantages in reduction of the requirement of pumping light and efficiency enhancement under direct pumping [21,22]. It is meaningful to research on LD directly-pumped 1.3 μm laser performance with Nd:GYTO and Nd:GYNO crystals for their unique properties. In addition, new ultraviolet wavelengths could be obtained based on the 4F3/24I13/2 transitions of Nd:GYTO and Nd:GYNO by using high order frequency conversion [28].

In this paper, laser performances at 1.3 μm with novel Nd:GYTO and Nd:GYNO mixed crystals are studied for the first time to our best knowledge. The laser emission wavelength is measured to be 1328 nm in the LD pumped Nd:GYTO 4F3/24I13/2 laser while it is 1337 nm for Nd:GYNO crystal. The maximum average output power of 1328 nm laser is 435 mW at 50 Hz with an optical-to-optical efficiency of 5.0% and a slope efficiency of 6.9%. The beam quality factors of 1328 nm laser at 50 Hz are measured to be Mx2 = 1.5 and My2 = 1.8 by using the travelling knife-edge method. In comparison, an output pulse energy of 3.8 mJ is obtained at 50 Hz for Nd:GYNO 1337 nm laser, corresponding to an optical-to-optical efficiency of 3.5% and a slope efficiency of 4.2%. The beam quality factors of Nd:GYNO 1337 nm laser at 50 Hz are measured to be Mx2 = 2.2 and My2 = 2.3 in orthogonal directions.

2. Experimental setup

Figure 1 shows an experimental setup of 879 nm LD end pumped 1.3 μm laser with mixed crystals. Pump source is a fiber-coupled 879 nm LD (PearTM P16, nLIGHT Inc.) with a fiber diameter of 400 μm and a N.A. of 0.22. With the help of a volume Bragg grating (VBG), the output laser wavelength is stabilized at approximately 879.2 nm with a full width at half maximum (FWHM) of 0.6 nm. The LD works in quasi-continuous-wave operation with a pump duration of 1 ms to reduce influence of thermal effects on laser performance. A pair of aspherical lens with focal lengths of f1 = 32.1 mm and f2 = 22.4 mm are used to reimage the pump laser into the laser rod with a pump beam waist radius of ωp = 140 μm. Tight pumping is preferable to achieve efficient 1.3 μm laser output as 4F3/24I13/2 transition is a four-level laser system with a smaller emission cross section [29]. The laser crystal is wrapped with 0.05 mm indium foil, placed in a micro-channel heat sink and kept at 18 °C by water-cooling. The dimension of Nd:GYTO is 2x2x5 mm3 and it is 2x2x4 mm3 for Nd:GYNO. Both end facets of laser rods are coated with high transmissivity (HT) at 879 nm, 1066 nm, 1328 nm and 1337 nm (T>99%). A linear cavity with a geometrical length of 30 mm is utilized. The plane mirror M1 is HT coated at 879 nm (T>95%) and high-reflectivity coated at 1328 nm and 1337 nm. The output mirror M2 is coated with partial transmission at 1328 nm and 1337 nm. The reflectivities of output mirror M2 are R = 97.0% and T = 96.0% at 1328 nm while they are T = 96.4% and T = 95.2% for Nd:GYNO 1337 nm laser. Both the mirrors M1 and M2 are HT coated (T>90%) at 1.06 μm to suppress oscillation of the high gain 4F3/24I11/2 transition. A convex lens is used to measure the beam radius variation and calculates the beam quality factors for 1.3 μm lasers by the travelling knife-edge method [30].

 figure: Fig. 1

Fig. 1 Experimental setup of LD pumped 1.3 μm laser with Nd:GYTO and Nd:GYNO crystals.

Download Full Size | PPT Slide | PDF

Nd:GYTO and Nd:GYNO mixed crystals are both grown by using the Cz method. The raw materials of Nd2O3, Gd2O3, Y2O3 and Ta2O5 compounds are weighted according to the chemical formula Nd0.01Gd0.69Y0.3TaO4. Similarly, the raw materials of Gd2O3, Y2O3, Nb2O5, and Nd2O3 compounds are weighted according to the chemical formula Nd0.02Gd0.68Y0.3NbO4. Nd:GYTO and Nd:GYNO are both monoclinic crystals similar as the single crystals (Nd:GdTaO4 and Nd:GdNbO4) [31, 32]. The crystals are a-axis oriented and cut perpendicular to crystallographic axes due to the issue of processing difficulty. Because the thermal expansion coefficient along a-axis is smaller than those along b-axis and c-axis for these two crystals, a-cut laser rods are chosen to reduce the thermal lensing effect. Table 1 gives a comparison of characteristics of Nd:GYTO and Nd:GYNO crystals. The doping concentration of Nd:GYTO is measured to be 1.67 × 1020 cm−3 by using the X-ray fluorescence (XRF) analysis, which is higher than 6.1 × 1019 cm−3 of Nd:GYNO crystal. The peak absorption cross section of Nd:GYTO is approximate 1.3 × 10−20 cm2 around 879 nm while it is ~1.5 × 10−20 cm2 for Nd:GYNO crystal. The absorption bandwidths for these two crystals at 879 nm are broader than 1 nm, so there is good overlap between LD emission and crystal absorption spectrum. According to the Füchtbauer-Ladenburg method [33], the maximum emission cross sections around 1.3 μm are calculated to be 4.1 × 10−20 cm2 and 4.8 × 10−20 cm2 for Nd:GYTO and Nd:GYNO crystals [20,21].

Tables Icon

Table 1. Comparison of characteristics of Nd:GYTO and Nd:GYNO

3. Experimental results and discussions

The laser performance at 1.3 μm with Nd:GYTO under 879 nm LD pumping with different output mirrors is studied at a pump repetition rate of 10 Hz and a pump duration of 1 ms. With an output mirror of R = 97.0%, the maximum output energy at 1.3 μm reaches 9.8 mJ with a slope efficiency of 5.7% at the incident pump energy of ~175.1 mJ. In comparison, an output energy of 14.6 mJ at 10 Hz is obtained with an output mirror of R = 96.0%, corresponding to an optical-to-optical efficiency of 8.3% and a slope efficiency of 8.8%. Figure 2 presents the laser emission spectrum of Nd:GYTO crystal via the 4F3/24I13/2 transition ranging from 1300 nm to 1450 nm recorded by using a laser spectrum analyzer (Model 721, Bristol Instruments Inc.). The laser emission wavelength via the 4F3/24I13/2 transition is approximate 1328 nm for Nd:GYTO crystal. No 1066 nm emission is observed when a fiber-coupled spectrometer (HR4000, Ocean Optics Inc.) is used with a spectrum range of 200-1100 nm.

 figure: Fig. 2

Fig. 2 Emission spectrum of LD pumped Nd:GYTO 1328 nm laser.

Download Full Size | PPT Slide | PDF

Output characteristic of LD pumped Nd:GYTO 1328 nm laser at different pump repetition rates is investigated with an output mirror of R = 96.0%, as shown in Fig. 3. It can be seen that the pulse energy of 1328 nm laser increases linearly with the incident pump energy at 10 Hz and 20 Hz. At repetition rates of 50 Hz and 100 Hz, saturation of output energy occurs when the pump energy is higher than 100 mJ. The duty cycle of pumping source is 1% at 10 Hz and increases to 10% at 100 Hz. At 100 Hz, output energy decreases at high pump energy because of the increased thermal lensing effect of the mixed crystal with the lower specific heats and thermal conductivity. The maximum average power at 1328 nm laser reaches 435 mW at 50 Hz with an optical-to-optical efficiency of 5.0% and a slope efficiency of 6.9%. The beam quality factors of 1328 nm laser at 50 Hz under 879 nm LD pumping are measured by the travelling knife-edge method. Figure 4 presents the beam radius variation of 1328 nm laser at an output average power of 435 mW. The beam quality factors are calculated to be Mx2 = 1.5 and My2 = 1.8 by fitting these data to Gaussian beam propagation expression. The asymmetry of beam quality factors in two directions is caused by the anisotropy of thermal conductivity (ka = 4.4 W/mk, kb = 3.5 W/mk, kc = 5.2 W/mk) of Nd:GYTO mixed crystal.

 figure: Fig. 3

Fig. 3 Dependence of output energies on incident pump energy in LD pumped Nd:GYTO 1328 nm laser at different repetition rates.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Beam radius variation of 1328 nm laser at the maximum average output power of 435mW.

Download Full Size | PPT Slide | PDF

In our work, 1.3 μm laser performance with the Nd:GYNO crystal is also studied utilizing the same pumping parameters as Nd:GYTO 1328 nm laser. The reflectivity of output mirror is R = 95.2% at 1337 nm. The emission spectrum of Nd:GYNO crystal between 1300 nm and 1450 nm is recorded in Fig. 5 and the emission peak wavelength is approximate 1337 nm, corresponding to the transition R1(4F3/2)→X3(4I13/2). Output performance of LD pumped Nd:GYNO 1337 nm laser at different repetition rates is given in Fig. 6. The output energy of Nd:GYNO laser shows linear dependence on pump energy at 10 Hz and 20 Hz when the pump energy is less than ~138 mJ. When the incident energy is higher than ~140 mJ, the increase of the pump energy greatly hampers the output energy because of the poor thermal conductivity of Nd:GYNO crystal. The highest output energies of 1337 nm laser are 6.8 mJ and 6.2 mJ at 10 Hz and 20 Hz. The output energy at 50 Hz reaches 3.8 mJ at the pump energy of ~108.2 mJ, corresponding to an optical-to-optical efficiency of 3.5% and a slope efficiency of 4.2%. It could be found that Nd:GYNO 1337 nm laser suffers a more serious thermal effects compared with Nd:GYTO at the same pump power. The beam quality factors are measured to be Mx2 = 2.2 and My2 = 2.3 in orthogonal directions for Nd:GYNO 1337 nm laser at 50 Hz.

 figure: Fig. 5

Fig. 5 Emission spectrum of LD pumped Nd:GYNO laser via the 4F3/24I13/2 transition.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 Output energies of 879 nm LD pumped Nd:GYNO 1337 nm laser versus incident pump energy at different repetition rates.

Download Full Size | PPT Slide | PDF

The comparison of output laser performance between Nd:GYTO 1328 nm laser and Nd:GYNO 1337 nm laser is given in Table 2. Nd:GYTO crystal has a superior output performance at 1328 nm compared with Nd:GYNO crystal, which is attributed to the long fluorescence lifetime of 182 μs and big absorption coefficient around 879 nm. However, it is hard to achieve cw laser operation at 1.3 μm with both crystals which is related to the quality of available crystals. By using Findlay-Clay method [34], the internal losses of Nd:GYTO is measured to be 0.083cm−1 and it is 0.038cm−1 for Nd:GYNO crystal, which are both higher than 0.002 cm−1 for Nd:YAG. According to theory, the slope efficiency of laser output could be given as following [35]:

ηs=2(1R)(1+R)(δln(R))ηuηp
where R is the reflectivity of output mirror, δ is the intrinsic losses, induced by the absorption, diffraction or the non-homogeneous of the laser material, ηu is the upper state efficiency and ηp is overall pumping efficiency. From Eq. (1), high scattering losses has fatal influence on laser efficiency. If the internal losses was reduced to 0.002 cm−1, the efficiencies of Nd:GYTO 1328 nm laser and Nd:GYNO 1337 nm laser would be risen by 2.9 and 1.7 times. Further power scaling of LD pumped 1.3 μm lasers based on the 4F3/24I13/2 transition with Nd:GYTO and Nd:GYNO crystals would be expected by improving the quality of crystal.

Tables Icon

Table 2. Comparison of 1.3 μm laser performances with Nd:GYTO and Nd:GYNO crystals

4. Conclusion

In conclusion, we have investigated on 879 nm LD end-pumped 1.3 μm lasers with Nd:GYTO and Nd:GYNO mixed crystals for the first time to our best knowledge. The laser emission wavelength is measured to be 1328 nm and 1337 nm for Nd:GYTO and Nd:GYNO mixed crystals, respectively. The maximum average power of Nd:GYNO laser at 50 Hz reaches 190 mW at an incident energy of ~108.2 mJ, corresponding to an optical-to-optical efficiency of 3.5% and a slope efficiency of 4.2%. In comparison, it has an better laser performance for Nd:GYTO crystal with a highest average output power of 435 mW at 50 Hz and an optical-to-optical efficiency of 5.0%. Using the travelling knife-edge method, the beam quality factors of LD pumped Nd:GYTO 1328 nm laser at 50 Hz are measured to be Mx2 = 1.5 and My2 = 1.8 while they are Mx2 = 2.2 and My2 = 2.3 for Nd:GYNO 1337 nm laser. Investigation on thermal characteristics and improvement of crystal quality will be conducted to improve 1.3 μm laser performance with Nd:GYTO and Nd:GYNO crystals.

Funding

National Natural Science Foundation of China (NSFC) (61605032, 61505042); Shenzhen Science and Technology Program (JSGG20170414141239041); National Key Instrument Development Project of China (Grant No. ZDYZ2013-1), State Key Project of China (grant number 2016YFB0402202); Key Project of Jiangsu Province (grant numbers BE2016090 and BE2016005-2); Open Fund of the State Key Laboratory on Integrated Optoelectronics (grant number IOSKL2016KF12), and General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2015M80263).

References and links

1. F. Q. Li, K. Liu, L. Han, N. Zong, Y. Bo, J. Y. Zhang, Q. J. Peng, D. F. Cui, and Z. Y. Xu, “High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with a semiconductor saturable absorber mirror,” Opt. Lett. 36(8), 1485–1487 (2011). [CrossRef]   [PubMed]  

2. Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with periodically poled LiNbO3.,” Opt. Lett. 36(5), 698–700 (2011). [CrossRef]   [PubMed]  

3. T. J. Whitley, “A review of recent system demonstrations incorporating 1.3-μm praseodymium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 13(5), 744–760 (1995). [CrossRef]  

4. D. Jaque, J. Capmany, and J. G. Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75(3), 325–327 (1999). [CrossRef]  

5. Z. Sun, R. Li, Y. Bi, X. Yang, Y. Bo, W. Hou, X. Lin, H. Zhang, D. Cui, and Z. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12(26), 6428–6433 (2004). [CrossRef]   [PubMed]  

6. T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015). [CrossRef]  

7. P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22(11), 13648–13658 (2014). [CrossRef]   [PubMed]  

8. Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017). [CrossRef]  

9. W. Ge, H. Zhang, J. Wang, X. Cheng, M. Jiang, C. Du, and S. Yuan, “Pulsed laser output of LD-end-pumped 1.34 μm Nd: GdVO4 laser with Co: LaMgAl11O19 crystal as saturable absorber,” Opt. Express 13(10), 3883–3889 (2005). [CrossRef]   [PubMed]  

10. D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008). [CrossRef]  

11. J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/24I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016). [CrossRef]  

12. W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016). [CrossRef]  

13. H. Xu, H. Yu, Z. Wang, S. Han, Y. Wang, Z. Pan, Y. Zhang, S. Sun, J. Wang, and H. Zhang, “Thermal and laser characteristics of Nd doped La0.11Y0.89VO4 crystal,” Opt. Express 20(15), 16524–16531 (2012). [CrossRef]  

14. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shao, and M. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett. 32(15), 2152–2154 (2007). [CrossRef]   [PubMed]  

15. L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003). [CrossRef]  

16. D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010). [CrossRef]   [PubMed]  

17. K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/24I13/2 transition,” J. Phys. D 46(31), 315106 (2013). [CrossRef]  

18. F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015). [CrossRef]  

19. S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017). [CrossRef]  

20. F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015). [CrossRef]  

21. S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017). [CrossRef]  

22. Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017). [CrossRef]  

23. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38(36), 7382–7385 (1999). [CrossRef]   [PubMed]  

24. V. Lupei, G. Aka, and D. Vivien, “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level,” Opt. Commun. 204(1-6), 399–405 (2002). [CrossRef]  

25. N. Pavel, K. Lünstedt, K. Petermann, and G. Huber, “Multipass pumped Nd-based thin-disk lasers: continuous-wave laser operation at 1.06 and 0.9 μm with intracavity frequency doubling,” Appl. Opt. 46(34), 8256–8263 (2007). [CrossRef]   [PubMed]  

26. X. Ding, H. Zhang, R. Wang, W. Q. Wen, P. Wang, J. Q. Yao, and X. Y. Yu, “High-efficiency direct-pumped Nd:YVO4 laser operating at 1.34 μm,” Opt. Express 16(15), 11247–11252 (2008). [CrossRef]   [PubMed]  

27. B. Li, X. Ding, B. Sun, Q. Sheng, J. Liu, Z. Wei, P. Jiang, C. Fan, H. Zhang, and J. Yao, “12.45 W wavelength-locked 878.6 nm laser diode in-band pumped multisegmented Nd:YVO4 laser operating at 1342 nm,” Appl. Opt. 53(29), 6778–6781 (2014). [CrossRef]   [PubMed]  

28. J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018). [CrossRef]  

29. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988). [CrossRef]  

30. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983). [CrossRef]   [PubMed]  

31. W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010). [CrossRef]  

32. R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015). [CrossRef]  

33. C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012). [CrossRef]  

34. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966). [CrossRef]  

35. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999).

References

  • View by:
  • |
  • |
  • |

  1. F. Q. Li, K. Liu, L. Han, N. Zong, Y. Bo, J. Y. Zhang, Q. J. Peng, D. F. Cui, and Z. Y. Xu, “High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with a semiconductor saturable absorber mirror,” Opt. Lett. 36(8), 1485–1487 (2011).
    [Crossref] [PubMed]
  2. Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with periodically poled LiNbO3.,” Opt. Lett. 36(5), 698–700 (2011).
    [Crossref] [PubMed]
  3. T. J. Whitley, “A review of recent system demonstrations incorporating 1.3-μm praseodymium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 13(5), 744–760 (1995).
    [Crossref]
  4. D. Jaque, J. Capmany, and J. G. Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75(3), 325–327 (1999).
    [Crossref]
  5. Z. Sun, R. Li, Y. Bi, X. Yang, Y. Bo, W. Hou, X. Lin, H. Zhang, D. Cui, and Z. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12(26), 6428–6433 (2004).
    [Crossref] [PubMed]
  6. T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
    [Crossref]
  7. P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22(11), 13648–13658 (2014).
    [Crossref] [PubMed]
  8. Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
    [Crossref]
  9. W. Ge, H. Zhang, J. Wang, X. Cheng, M. Jiang, C. Du, and S. Yuan, “Pulsed laser output of LD-end-pumped 1.34 μm Nd: GdVO4 laser with Co: LaMgAl11O19 crystal as saturable absorber,” Opt. Express 13(10), 3883–3889 (2005).
    [Crossref] [PubMed]
  10. D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
    [Crossref]
  11. J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
    [Crossref]
  12. W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
    [Crossref]
  13. H. Xu, H. Yu, Z. Wang, S. Han, Y. Wang, Z. Pan, Y. Zhang, S. Sun, J. Wang, and H. Zhang, “Thermal and laser characteristics of Nd doped La0.11Y0.89VO4 crystal,” Opt. Express 20(15), 16524–16531 (2012).
    [Crossref]
  14. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shao, and M. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett. 32(15), 2152–2154 (2007).
    [Crossref] [PubMed]
  15. L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
    [Crossref]
  16. D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
    [Crossref] [PubMed]
  17. K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
    [Crossref]
  18. F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
    [Crossref]
  19. S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
    [Crossref]
  20. F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
    [Crossref]
  21. S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
    [Crossref]
  22. Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
    [Crossref]
  23. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38(36), 7382–7385 (1999).
    [Crossref] [PubMed]
  24. V. Lupei, G. Aka, and D. Vivien, “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level,” Opt. Commun. 204(1-6), 399–405 (2002).
    [Crossref]
  25. N. Pavel, K. Lünstedt, K. Petermann, and G. Huber, “Multipass pumped Nd-based thin-disk lasers: continuous-wave laser operation at 1.06 and 0.9 μm with intracavity frequency doubling,” Appl. Opt. 46(34), 8256–8263 (2007).
    [Crossref] [PubMed]
  26. X. Ding, H. Zhang, R. Wang, W. Q. Wen, P. Wang, J. Q. Yao, and X. Y. Yu, “High-efficiency direct-pumped Nd:YVO4 laser operating at 1.34 μm,” Opt. Express 16(15), 11247–11252 (2008).
    [Crossref] [PubMed]
  27. B. Li, X. Ding, B. Sun, Q. Sheng, J. Liu, Z. Wei, P. Jiang, C. Fan, H. Zhang, and J. Yao, “12.45 W wavelength-locked 878.6 nm laser diode in-band pumped multisegmented Nd:YVO4 laser operating at 1342 nm,” Appl. Opt. 53(29), 6778–6781 (2014).
    [Crossref] [PubMed]
  28. J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
    [Crossref]
  29. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [Crossref]
  30. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [Crossref] [PubMed]
  31. W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
    [Crossref]
  32. R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
    [Crossref]
  33. C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012).
    [Crossref]
  34. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [Crossref]
  35. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999).

2018 (1)

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

2017 (4)

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

2016 (2)

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

2015 (4)

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

2014 (2)

2013 (1)

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

2012 (2)

H. Xu, H. Yu, Z. Wang, S. Han, Y. Wang, Z. Pan, Y. Zhang, S. Sun, J. Wang, and H. Zhang, “Thermal and laser characteristics of Nd doped La0.11Y0.89VO4 crystal,” Opt. Express 20(15), 16524–16531 (2012).
[Crossref]

C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012).
[Crossref]

2011 (2)

2010 (2)

D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
[Crossref] [PubMed]

W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
[Crossref]

2008 (2)

X. Ding, H. Zhang, R. Wang, W. Q. Wen, P. Wang, J. Q. Yao, and X. Y. Yu, “High-efficiency direct-pumped Nd:YVO4 laser operating at 1.34 μm,” Opt. Express 16(15), 11247–11252 (2008).
[Crossref] [PubMed]

D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
[Crossref]

2007 (2)

2005 (1)

2004 (1)

2003 (1)

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

2002 (1)

V. Lupei, G. Aka, and D. Vivien, “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level,” Opt. Commun. 204(1-6), 399–405 (2002).
[Crossref]

1999 (2)

R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38(36), 7382–7385 (1999).
[Crossref] [PubMed]

D. Jaque, J. Capmany, and J. G. Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75(3), 325–327 (1999).
[Crossref]

1995 (1)

T. J. Whitley, “A review of recent system demonstrations incorporating 1.3-μm praseodymium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 13(5), 744–760 (1995).
[Crossref]

1988 (1)

1983 (1)

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Aka, G.

C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012).
[Crossref]

V. Lupei, G. Aka, and D. Vivien, “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level,” Opt. Commun. 204(1-6), 399–405 (2002).
[Crossref]

Bartschke, J.

Bi, Y.

Bo, Y.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

F. Q. Li, K. Liu, L. Han, N. Zong, Y. Bo, J. Y. Zhang, Q. J. Peng, D. F. Cui, and Z. Y. Xu, “High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with a semiconductor saturable absorber mirror,” Opt. Lett. 36(8), 1485–1487 (2011).
[Crossref] [PubMed]

Z. Sun, R. Li, Y. Bi, X. Yang, Y. Bo, W. Hou, X. Lin, H. Zhang, D. Cui, and Z. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12(26), 6428–6433 (2004).
[Crossref] [PubMed]

Cai, Z.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

Cao, X.

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Capmany, J.

D. Jaque, J. Capmany, and J. G. Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75(3), 325–327 (1999).
[Crossref]

Chen, C. D.

Chen, J.

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

Chen, Y.

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Cheng, M.

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

Cheng, X.

Chu, H.

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Cui, D.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Z. Sun, R. Li, Y. Bi, X. Yang, Y. Bo, W. Hou, X. Lin, H. Zhang, D. Cui, and Z. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12(26), 6428–6433 (2004).
[Crossref] [PubMed]

Cui, D. F.

Ding, S.

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Ding, X.

Dou, R.

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

Du, C.

W. Ge, H. Zhang, J. Wang, X. Cheng, M. Jiang, C. Du, and S. Yuan, “Pulsed laser output of LD-end-pumped 1.34 μm Nd: GdVO4 laser with Co: LaMgAl11O19 crystal as saturable absorber,” Opt. Express 13(10), 3883–3889 (2005).
[Crossref] [PubMed]

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Fan, C.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Gao, H.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Garetz, B. A.

Ge, W.

Gheorghe, C.

C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012).
[Crossref]

Gheorghe, L.

C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012).
[Crossref]

Gu, C.

W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
[Crossref]

Guo, C.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Han, L.

Han, S.

He, L. J.

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

He, Y.

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Henrich, B.

D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
[Crossref]

Hou, W.

Hu, X. P.

Huang, X.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

Huber, G.

Ito, S.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Jackel, S.

Jaque, D.

D. Jaque, J. Capmany, and J. G. Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75(3), 325–327 (1999).
[Crossref]

Jiang, F.

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Jiang, M.

Jiang, P.

Kakizaki, K.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Katz, M.

Khosrofian, J. M.

Knappe, R.

D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
[Crossref]

Koch, P.

Krennrich, D.

D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
[Crossref]

L’huillier, J. A.

P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22(11), 13648–13658 (2014).
[Crossref] [PubMed]

D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
[Crossref]

Lan, J.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

Lan, Y.

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Lavi, R.

Lebiush, E.

Li, B.

Li, D.

Li, F. Q.

Li, G.

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Li, J.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Li, R.

Li, T.

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Li, X.

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Lin, X.

Lin, Z.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

Liu, J.

B. Li, X. Ding, B. Sun, Q. Sheng, J. Liu, Z. Wei, P. Jiang, C. Fan, H. Zhang, and J. Yao, “12.45 W wavelength-locked 878.6 nm laser diode in-band pumped multisegmented Nd:YVO4 laser operating at 1342 nm,” Appl. Opt. 53(29), 6778–6781 (2014).
[Crossref] [PubMed]

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Liu, K.

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

F. Q. Li, K. Liu, L. Han, N. Zong, Y. Bo, J. Y. Zhang, Q. J. Peng, D. F. Cui, and Z. Y. Xu, “High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with a semiconductor saturable absorber mirror,” Opt. Lett. 36(8), 1485–1487 (2011).
[Crossref] [PubMed]

Liu, W.

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
[Crossref]

Liu, Y.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Liu, Y. H.

Liu, Z.

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Loiseau, P.

C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012).
[Crossref]

Lu, J.

Lünstedt, K.

Luo, J.

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Lupei, V.

V. Lupei, G. Aka, and D. Vivien, “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level,” Opt. Commun. 204(1-6), 399–405 (2002).
[Crossref]

Lv, X. J.

Ma, Y.

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Meng, J.

Meng, X.

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Nakazato, T.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Onose, T.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Paiss, I.

Pan, S. D.

Pan, Z.

Pavel, N.

Peng, F.

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

Peng, Q.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Peng, Q. J.

Peng, Z.

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Petermann, K.

Qiao, W.

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Qin, L.

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Risk, W. P.

Sarukura, N.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Shao, Z.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shao, and M. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett. 32(15), 2152–2154 (2007).
[Crossref] [PubMed]

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Sheng, Q.

Solé, J. G.

D. Jaque, J. Capmany, and J. G. Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75(3), 325–327 (1999).
[Crossref]

Sun, B.

Sun, C.

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Sun, D.

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Sun, G.

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

Sun, S.

Sun, Z.

Tanaka, Y.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Tsuboi, M.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Tzuk, Y.

Vivien, D.

V. Lupei, G. Aka, and D. Vivien, “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level,” Opt. Commun. 204(1-6), 399–405 (2002).
[Crossref]

Wallenstein, R.

D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
[Crossref]

Wang, J.

Wang, P.

Wang, R.

Wang, X.

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Wang, Y.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

H. Xu, H. Yu, Z. Wang, S. Han, Y. Wang, Z. Pan, Y. Zhang, S. Sun, J. Wang, and H. Zhang, “Thermal and laser characteristics of Nd doped La0.11Y0.89VO4 crystal,” Opt. Express 20(15), 16524–16531 (2012).
[Crossref]

Wang, Z.

Watanabe, S.

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Wei, Z.

Wen, W. Q.

Whitley, T. J.

T. J. Whitley, “A review of recent system demonstrations incorporating 1.3-μm praseodymium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 13(5), 744–760 (1995).
[Crossref]

Winik, M.

Wu, F.

Xia, C.

Xie, Z. D.

Xing, X.

Xu, B.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Xu, D.

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Xu, F.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Xu, H.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

H. Xu, H. Yu, Z. Wang, S. Han, Y. Wang, Z. Pan, Y. Zhang, S. Sun, J. Wang, and H. Zhang, “Thermal and laser characteristics of Nd doped La0.11Y0.89VO4 crystal,” Opt. Express 20(15), 16524–16531 (2012).
[Crossref]

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Xu, J.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
[Crossref] [PubMed]

Xu, W.

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Xu, X.

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
[Crossref] [PubMed]

Xu, Y.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Xu, Z.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Z. Sun, R. Li, Y. Bi, X. Yang, Y. Bo, W. Hou, X. Lin, H. Zhang, D. Cui, and Z. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express 12(26), 6428–6433 (2004).
[Crossref] [PubMed]

Xu, Z. Y.

Yan, R.

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Yang, F.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Yang, H.

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

Yang, J.

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Yang, K.

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Yang, X.

Yao, J.

B. Li, X. Ding, B. Sun, Q. Sheng, J. Liu, Z. Wei, P. Jiang, C. Fan, H. Zhang, and J. Yao, “12.45 W wavelength-locked 878.6 nm laser diode in-band pumped multisegmented Nd:YVO4 laser operating at 1342 nm,” Appl. Opt. 53(29), 6778–6781 (2014).
[Crossref] [PubMed]

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Yao, J. Q.

Yin, S.

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
[Crossref]

Yu, H.

Yu, X.

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Yu, X. Y.

Yu, Y.

Yuan, L.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

Yuan, S.

Yuan, Y.

Zhang, F.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Zhang, H.

Zhang, J. Y.

Zhang, Q.

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, D. Sun, W. Liu, G. Sun, R. Dou, X. Wang, and X. Xing, “Growth, thermal properties, and LD-pumped 1066 nm laser performance of Nd3+ doped Gd/YTaO4 mixed single crystal,” Opt. Mater. Express 5(11), 2536–2544 (2015).
[Crossref]

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
[Crossref]

Zhang, S.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Zhang, Y.

Zhao, G.

Zhao, J.

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Zhao, L. N.

Zhao, S.

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Zhong, K.

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

Zhou, D.

Zhou, W.

W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
[Crossref]

Zhu, L.

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

Zhu, S. N.

Zong, N.

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

F. Q. Li, K. Liu, L. Han, N. Zong, Y. Bo, J. Y. Zhang, Q. J. Peng, D. F. Cui, and Z. Y. Xu, “High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with a semiconductor saturable absorber mirror,” Opt. Lett. 36(8), 1485–1487 (2011).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. B (2)

D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’Huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3µm.Part 1: cw-operation,” Appl. Phys. B 92(2), 165–174 (2008).
[Crossref]

F. Peng, H. Yang, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, and G. Sun, “Spectroscopic properties and laser performance at 1066 nm of a new laser crystal Nd:GdTaO4,” Appl. Phys. B 118(4), 549–554 (2015).
[Crossref]

Appl. Phys. Lett. (1)

D. Jaque, J. Capmany, and J. G. Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75(3), 325–327 (1999).
[Crossref]

Chem. Phys. Lett. (1)

L. Qin, X. Meng, L. Zhu, J. Liu, B. Xu, H. Xu, F. Jiang, C. Du, X. Wang, and Z. Shao, “Influence of the different Gd/Y ratio on the properties of Nd:YxGd1-xVO4 mixed crystals,” Chem. Phys. Lett. 380(3), 273–278 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Li, F. Zhang, Z. Wang, Y. Xu, C. Guo, N. Zong, S. Zhang, F. Yang, H. Gao, L. Yuan, F. Xu, Y. Liu, Y. Bo, D. Cui, Q. Peng, and Z. Xu, “High-energy single-frequency millisecond 1336.630-nm Nd:LGGG amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600106 (2018).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

W. Liu, Q. Zhang, W. Zhou, C. Gu, and S. Yin, “Growth and luminescence of M-Type GdTaO4 and Tb:GdTaO4 scintillation single crystals,” IEEE Trans. Nucl. Sci. 57(3), 1287–1290 (2010).
[Crossref]

J. Alloys Compd. (2)

S. Ding, Q. Zhang, F. Peng, W. Liu, J. Luo, R. Dou, D. Sun, X. Wang, and G. Sun, “Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal,” J. Alloys Compd. 698, 159–163 (2017).
[Crossref]

S. Ding, F. Peng, Q. Zhang, J. Luo, W. Liu, D. Sun, R. Dou, G. Sun, and M. Cheng, “Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4,” J. Alloys Compd. 693, 339–343 (2017).
[Crossref]

J. Appl. Phys. (1)

C. Gheorghe, L. Gheorghe, P. Loiseau, and G. Aka, “Spectroscopic features and laser performance at 1.06 μm of Nd3+-doped Gd1-xLuxGa4O(BO3)3 single crystal,” J. Appl. Phys. 111(1), 013102 (2012).
[Crossref]

J. Lightwave Technol. (1)

T. J. Whitley, “A review of recent system demonstrations incorporating 1.3-μm praseodymium-doped fluoride fiber amplifiers,” J. Lightwave Technol. 13(5), 744–760 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (2)

K. Zhong, W. Xu, C. Sun, J. Yao, D. Xu, X. Cao, Q. Zhang, J. Luo, D. Sun, and S. Yin, “Continuous-wave Nd:GYSGG laser properties in 1.3 and 1.4 µm regions based on 4F3/2→4I13/2 transition,” J. Phys. D 46(31), 315106 (2013).
[Crossref]

J. Lan, Y. Wang, X. Huang, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, and J. Xu, “Single- and dual-wavelength lasers of diode-pumped Nd:LuYAG mixed crystal on various 4F3/2→4I13/2 Stark-level transitions,” J. Phys. D 49(30), 305101 (2016).
[Crossref]

Laser Phys. Lett. (1)

Y. Ma, Z. Peng, Y. He, X. Li, R. Yan, X. Yu, Q. Zhang, S. Ding, and D. Sun, “Diode-pumped continuous-wave and passively Q-switched 1066nm Nd:GYNbO4 laser,” Laser Phys. Lett. 14(8), 085801 (2017).
[Crossref]

Opt. Commun. (1)

V. Lupei, G. Aka, and D. Vivien, “Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885nm into the emitting level,” Opt. Commun. 204(1-6), 399–405 (2002).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (2)

Y. Chen, K. Liu, L. J. He, J. Yang, N. Zong, F. Yang, H. Gao, Z. Liu, L. Yuan, Y. Lan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser,” Opt. Laser Technol. 87, 26–30 (2017).
[Crossref]

W. Qiao, H. Chu, S. Zhao, G. Li, K. Yang, T. Li, and J. Zhao, “Passive mode-locking characteristics from the Nd:Gd0.19Y0.81VO4 laser at 1.34 µm,” Opt. Laser Technol. 82, 101–103 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

R. Dou, Q. Zhang, J. Luo, J. Chen, H. Yang, W. Liu, G. Sun, and D. Sun, “Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal,” Opt. Mater. 42, 56–61 (2015).
[Crossref]

Opt. Mater. Express (1)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Proc. SPIE (1)

T. Nakazato, M. Tsuboi, T. Onose, Y. Tanaka, N. Sarukura, S. Ito, K. Kakizaki, and S. Watanabe, “Development of high coherence, 200mW, 193 nm solid-state laser at 6 kHz,” Proc. SPIE 9342, 93420P (2015).
[Crossref]

Other (1)

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of LD pumped 1.3 μm laser with Nd:GYTO and Nd:GYNO crystals.
Fig. 2
Fig. 2 Emission spectrum of LD pumped Nd:GYTO 1328 nm laser.
Fig. 3
Fig. 3 Dependence of output energies on incident pump energy in LD pumped Nd:GYTO 1328 nm laser at different repetition rates.
Fig. 4
Fig. 4 Beam radius variation of 1328 nm laser at the maximum average output power of 435mW.
Fig. 5
Fig. 5 Emission spectrum of LD pumped Nd:GYNO laser via the 4F3/24I13/2 transition.
Fig. 6
Fig. 6 Output energies of 879 nm LD pumped Nd:GYNO 1337 nm laser versus incident pump energy at different repetition rates.

Tables (2)

Tables Icon

Table 1 Comparison of characteristics of Nd:GYTO and Nd:GYNO

Tables Icon

Table 2 Comparison of 1.3 μm laser performances with Nd:GYTO and Nd:GYNO crystals

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η s = 2 ( 1 R ) ( 1 + R ) ( δ ln ( R ) ) η u η p

Metrics