Abstract

Room-temperature thermal detection at a wavelength of 2 µm in the short-wave infrared range (1.7–3 µm) was demonstrated for the first time using a Nb5N6 microbolometer. The photothermal responses of two types of Nb5N6 microbolometers were evaluated. By suspending Nb5N6 microwires in the air above the substrate, a reduction in thermal conductance of the device by a factor of 39 was achieved. The measured optical voltage responsivity RO of the Nb5N6 microbolometer reached the value of 61.5 V/W. A noise equivalent power of 8.5 × 10−11 W/√Hz (at 1 kHz) and a detectivity D* = 2.0 × 107 cm√Hz /W with a typical response time as small as 0.17 ms was obtained at a wavelength of 2 µm for a 10 × 30-µm2 device. The performance could be improved further by optimizing the design and operating parameters. This study revealed a simple low-cost technique to develop a large-scale focal plane array in silicon for infrared detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The detection of short-wave infrared (SWIR) radiation near 2 μm, which typically relies on thermal and photo responses [1], attracts significant research interest owing to the applications in the fields of medical treatment [2], remote atmospheric sensing [3], hyperspectral imaging [4], meat production monitoring [5], gas sensing [6], and telecommunications [7]. In general, infrared (IR) photon detectors, including photoconductors [8], quantum well photodetectors [9], and superconductor detectors [10], exhibit rapid response and high sensitivity; however, they usually require complex fabrication processes and low-temperature operation with a cooling equipment. Thermal detectors, such as thermocouple detectors and resistance thermal detectors, can operate at room temperature with a broadband response; however, they usually suffer from a slow response owing to the relatively large thermal inertia of the sensitive elements. Microbolometer [11–14] is a type of thermal detector, constructed using materials with a high temperature coefficient of resistance (TCR = 1RdRdT), so that the absorbed IR radiation changes the resistance. Microbolometers based on different materials are integrated in various technologies for IR detection and thermal imaging. They operate at room temperature; however, they exhibit a low overall performance; their slow response (in the range of milliseconds) is a typical disadvantage. In order to improve the response of a thermal detector, the thermal inertia and size of the sensitive element were reduced [15]; the responsivity was also improved by employing an air-bridge microstructure [16]. Recently, micro- and nanobolometers based on novel materials have attracted significant attention for IR detection [17–22]. However, these materials cannot be easily obtained in large quantities. In addition, the fabrication process cannot be easily integrated with standard silicon technologies; therefore, it is challenging to prepare large-scale arrays for IR imaging.

A typical microbolometer detector structurally consists of several stacked layers constructed in a Fabry Perot cavity configuration to achieve maximum absorption of the incident IR radiation and to deliver the maximum energy to the heat sensitive layer. The layer stack typically consists of (top-to-bottom): An absorber layer, a heat sensitive layer, a mechanical support layer, a thermal isolation layer and a reflector layer (mirror) [23]. The most widely used heat sensitive layer material in microbolometers is vanadium-oxide (VOx). By using Micro-Electro-Mechanical System (MEMS) techniques, VOx thin-films have shown high temperature coefficients of resistance (TCR), and suitable pixel resistances for CMOS readout circuits [24–27]. Despite those advantages, VOx thin-films have a low infrared optical absorption coefficient in the IR band. Thus an absorber material layer is required inside the detector stack to perform absorption and then transfer heat to microbolometer by virtue of thermal conduction. Silicon nitride (Si3N4) [28], Titanium (Ti) [29], Nichrome (NiCr) [23], and black gold [30] have been used as absorber materials in the VOx-based microbolometers. This increases the difficulty of the preparation process. In addition, semiconductor films of vanadium oxide have a large resistance at 300 K, so the thermal noise will be relatively large. Our earlier studies [31] demonstrated the possibility of using Nb5N6 thin-films as the absorber layer and also the heat sensitive layer in microbolometer fabrication. In the last years, we have proposed the use of sputtered Nb5N6 thin film as sensing material for terahertz detection [32–34] for it exhibited moderate values of the electrical resistivity to obtain low-noise resistors. In our recent experiments, we revealed that these films have a strong absorption in the IR regime. Moreover, the material is processed at temperatures below 50°C and patterned using standard reactive ion etching (RIE), being therefore fully compatible with conventional technologies in silicon integrated circuits (ICs).

In this study, the photothermal responses of Nb5N6 microbolometers with different structures are investigated for a 2-µm detection. Moreover, a sensitive room-temperature thermal detector with a D* = 2.0 × 107 cm√Hz /W and typical response time as small as 0.17 ms is achieved by suspending Nb5N6 microwires in the air above the substrate. Nb5N6 microbolometer was proposed for a 2-µm detection, which exhibited relatively high sensitivity, low cost, and wideband detection. The approach could be applied for infrared focal-plane imaging array.

2. Device design and fabrication

The performance of a microbolometer can be improved by increasing its thermal impedance [16]. For example, the performance of an air-bridge microbolometer is optimized by suspending the device in air above the substrate. The only conduction path is from the ends of the detector to the metal pads. In this study, two Nb5N6 microbolometer samples are fabricated. The microwire sizes of the two microbolometers are equal to 10 μm × 30 μm. Sample A is fabricated on a thermally oxidized silicon substrate with a 200-nm-thick layer of SiO2. The SiO2 layer acts as a thermal insulator between the Nb5N6 microwire and Si substrate. Sample B is fabricated on the same thermally oxidized silicon substrate; the middle part of the wire is suspended above the air to obtain isolation from the substrate. The SiO2 layer in sample B supports the suspending Nb5N6 microwire in case of fractures of the Nb5N6 thin film. Radio-frequency (RF) magnetron sputtering is used to deposit a 120-nm-thick Nb5N6 film on the substrate. The square resistance of the Nb5N6 thin film is approximately 0.5 kΩ with a TCR of up to −0.7% K−1 at 300 K. Subsequently, the Nb5N6 thin film is patterned into microbridges using photolithography and reactive ion etching (RIE). The resistance of the Nb5N6 microbridge depends on the dimensions of the Nb5N6 film. Test leads are integrated with the Nb5N6 thin-film microbridge by depositing a 5-nm-thick Ti film and 220-nm-thick gold layer, and using the lift-off technology. The Nb5N6 microwire is placed across two Ti/Au electrodes sputtered on the plate, as illustrated in Fig. 1(a). For sample B, two etching areas at both sides of the Nb5N6 microbridge are defined by patterning the substrate with a photoresist and etching the surficial SiO2 in a buffered-HF solution. The opening formed on silicon is then etched using RIE to create an air cavity [Fig. 1(b)]. RIE is performed in SF6 gas at a pressure of 8 Pa and RF power of 70 W. The air-bridge [Fig. 1(c)] under the Nb5N6 microbridge is formed by anisotropic etching at 3 μm of the Si part of the substrate. The fabricated sample B is shown in Fig. 1.

 figure: Fig. 1

Fig. 1 (a) Sample B with an air-bridge. It contains a Nb5N6 air-bridge, Au leads, bonding pad, and align markers for lithography. (b) Magnified optical image of the Nb5N6 air-bridge in sample B; the etching openings for the air-bridge are at both sides of the Nb5N6 microwire. (c) Scanning electron microscopy (SEM) micrograph of the Nb5N6 microbridge on an air-bridge in sample B.

Download Full Size | PPT Slide | PDF

The electrical properties of the bolometers were investigated by measuring current–voltage (I–V) curves using a source meter (Keithley 2400) in a DC current bias mode from −0.8 to 0.8 mA, as shown in Fig. 2. The linear shape of the curve for sample A in the range of −0.8 to 0.8 mA reveals good ohmic contacts between the Nb5N6 microbridge and electrodes, while sample B exhibits semiconducting properties, which is desirable for IR detection. Sample B exhibited a nonlinear behavior with the increase of the bias current. This is related to the bolometric effect, as the bias current power increases the temperature. It is attributed to the air-bridge structure, which yields a low thermal conductance [16, 17]. The voltage responsivity of the microbolometer can be expressed as [17]:

Rv=IbRαηG2+ω2C2
where Ib is the bias current, R is the measured device resistance at the operating temperature, α is the TCR, η is the absorptivity of the IR active area, G is the thermal conductance of the microbolometer, ω is the modulation frequency, and C is the heat capacitance of the detector material. The thermal conductance (G) can be calculated from the relation between the square of the bias current and inverse of the resistance using the IV curves [35, 36]:
1R=1R0(αG)Ib2
where R0 is the resistance measured at room temperature. The Nb5N6 thin film has a negative TCR of α=0.7%K1 at 300 K [33]. The measured resistances at room temperature of samples A and B are 1.48 kΩ and 1.42 kΩ, respectively. By substituting the measured resistance in Eq. (1) and extracting the slope of the fitted curves (α/G), shown in the inset of Fig. 2, G values are calculated to be 7.1 × 10−5 W/K and 1.8 × 10−6 W/K for samples A and B, respectively. The thermal conductance of the air-bridge microbolometer is approximately 39 times smaller than that of the microbolometer without an air-bridge. The thermal conductance is an important factor that directly affects the performance of microbolometers. A low thermal conductance is desirable; therefore, the thermal isolation and air-bridge technique employed in this study can improve the sensitivity of the detectors.

 figure: Fig. 2

Fig. 2 I–V curves of the detectors measured at room temperature. The insets show the inverse of the microbolometers’ resistances as a function of I2. The solid line represents the linear fit of the data. The slopes reveal that the thermal conductances G of samples A and B are 7.1 × 10−5 W/K and 1.8 × 10−6 W/K, respectively.

Download Full Size | PPT Slide | PDF

3. Nb5N6 microbolometer for a 2-µm detection

Figure 3 illustrates the setup used to characterize the Nb5N6 microbolometer for a 2-μm detection. The optical responses of the microbolometers were measured using a single-mode (SM) fiber-coupled mini laser diode source (Thorlabs FPL2000S); the modulation frequency could be set by an arbitrary waveform generator (AWG, Agilent 8357D) in the range of 0.01–100 kHz. The laser light was focused approximately 1.2 mm away from the microbridge of the device through the SM fiber (Thorlabs SM2000) centered at a wavelength of 2.0 µm, used to irradiate the microbolometers. The temperature of the Nb5N6 microwire increased with the light absorption, leading to a change in the resistance, which can be used to obtain the intensity of the incident light. The microbolometer connected in series with a bias resistance of 50 kΩ was DC-biased using a low-noise battery-power current source; the response voltage was measured by a lock-in amplifier (Stanford SR830).

 figure: Fig. 3

Fig. 3 Schematic of the setup used to characterize the Nb5N6 microbolometers for a 2-µm detection.

Download Full Size | PPT Slide | PDF

Figure 4 shows the optical voltage responses under a 2-μm irradiation as a function of the bias current for samples A and B. A pulse with a wavelength of 2 µm, period of 1 ms, and width of 0.5 ms was irradiated on the microbridge. At low bias currents, the optical response voltage increased linearly with the bias current. At bias currents of 1.8 mA and 0.57 mA for samples A and B, respectively, the responsivity voltages of the microbolometers reached their maximum values, as shown in Fig. 4. The bias current could be increased up to 2.0 mA without burning out sample B, which demonstrates the robustness of this detector. The optical responsivity is defined as:

RO=VdetPIncidentpower
where Vdet is the output voltage of the detector, while Pincident power, measured by the power meter, is the incident power irradiated on the surface of the chips (not the power received by the microbolometers). Biased at 1.8 mA and 0.57 mA, the measured optical responsivities (RO) of samples A and B are 40 V/W and 61.5 V/W, respectively. The voltage responsivity of the device is approximately inversely proportional to its thermal conductance (Eq. (1)). The comparison of the above thermal conductances of the devices A and B reveals that the optical voltage response of the device B should be larger than 61.5 V/W. This difference could be attributed to two factors: misalignment between the light from the fiber and Nb5N6 microbolometer and interference attenuation caused by the formation of an optical cavity at the air bridge with a depth of 3 µm. The optical voltage response of the detector could be improved by a resonant optical cavity [37].

 figure: Fig. 4

Fig. 4 Optical voltage responses under a 2-μm irradiation as a function of the bias current for samples A and B.

Download Full Size | PPT Slide | PDF

The response time of the Nb5N6 microbolometer detection, as a type of thermal detection, can be estimated as [18]:

τ=CG

As depicted in Fig. 3, by changing the modulation frequency of the laser source and measuring the corresponding peak-to-peak value of the response voltage by the lock-in amplifier, we can obtain the response time of the detector [32]. Figure 5 shows the modulation-frequency dependence of the resistance change of the Nb5N6 microbolometers caused by the incident pulses. The amplitude of the response voltage decreases with the increase of the modulation frequency. The measured 3-dB roll-off times of the Nb5N6 microbolometer samples A and B for a 2-μm detection were approximately 0.1 ms and 0.17 ms, respectively, smaller than those of microbolometers based on other materials reported in [14, 21], and one order of magnitude smaller than those of ZnO IR detectors [20].

 figure: Fig. 5

Fig. 5 Measured frequency responses of samples A and B.

Download Full Size | PPT Slide | PDF

A standard figure of merit to evaluate the performance of bolometers is the specific detectivity D*, expressed as [18]:

D*=RO×AVn=ANEP
Where Vn is the root mean square (RMS) voltage fluctuation per unit bandwidth corresponding to the total voltage noise power spectral density in the sample. It is evident from Eq. (5) that noise can severely limit the performance of the device. A is the active area of 10 μm by 30 μm. A dynamic signal analyzer (Agilent 35670A) and low-noise amplifier (LNA, Stanford SR560) with a voltage gain of 1,000 were used to measure the noise spectrum of the microbolometer in a shielded room. In experiments, the voltage noise spectral density of the microbolometer is obtained by subtracting the noise value of the cascaded LNA [31]. The noise spectra of the Nb5N6 microbolometers tended to be constant when the modulation frequency was larger than 4 kHz [31]. This result can be attributed only to the thermal noise (4kBTR, kB is the Boltzmann constant and T is the absolute temperature [18]). Noise intensities of 4.5 nV/√Hz and 5.2 nV/√Hz (at 1 kHz), corresponding to NEPs of 1.1 × 10−10 W/√Hz and 8.5 × 10−11 W/√Hz, and were obtained for samples A and B, respectively. The experimental results for the two Nb5N6 microbolometers are summarized in Table 1. According to Eq. (5), a maximum detectivity of about 2.0 × 107 cm√Hz /W was reached for sample A.

Tables Icon

Table 1. Summary of the results for the two Nb5N6 microbolometers.

4. Conclusion

A rapid thermal detection of a 2-μm irradiation using a Nb5N6 microbolometer was demonstrated for the first time. An NEP of 8.5 × 10−11 W/√Hz (at 1 kHz) and response time of 0.17 ms were obtained at a wavelength of 2 µm. Although a monochromatic 2-µm-wavelength laser was employed, the rapid sensitive response of the Nb5N6 microbolometer was extended to a wider IR spectrum owing to the broadband absorption of the Nb5N6 thin film in the IR spectral range and its bolometric detection nature. We aim to design an optical cavity with an increased optical absorption in a future study to enhance the sensitivity of the microbolometer. It is worth noting that a combination of the air-bridge Nb5N6 microbolometer array with a proper readout integrated circuit could be an efficient approach to develop sensitive low-cost focal-plane arrays for SWIR imaging applications.

Funding

National Basic Research Program of China (“973”) (2014CB339800), National Natural Science Foundation of China (11227904, 61521001, 61571217), Natural Science Foundation of Jiangsu Province (BK20160635), Fundamental Research Funds for the Central Universities, and Jiangsu Key Laboratory of Advanced Techniques for Manipulation of Electromagnetic Waves.

References and links

1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002). [CrossRef]  

2. V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011). [CrossRef]   [PubMed]  

3. N. Pahlevan, J. C. Roger, and Z. Ahmad, “Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters,” Opt. Express 25(6), 6015–6035 (2017). [CrossRef]   [PubMed]  

4. J. Jemec, F. Pernuš, B. Likar, and M. Bürmen, “Deconvolution-based restoration of SWIR pushbroom imaging spectrometer images,” Opt. Express 24(21), 24704–24718 (2016). [CrossRef]   [PubMed]  

5. N. Prieto, O. Pawluczyk, M. E. R. Dugan, and J. L. Aalhus, “Review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products,” Appl. Spectrosc. 71(7), 1403–1426 (2017). [CrossRef]   [PubMed]  

6. X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016). [CrossRef]  

7. Q. Hao, G. Zhu, S. Yang, K. Yang, T. Duan, X. Xie, K. Huang, and H. Zeng, “Mid-infrared transmitter and receiver modules for free-space optical communication,” Appl. Opt. 56(8), 2260–2264 (2017). [CrossRef]   [PubMed]  

8. Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016). [CrossRef]  

9. D. Stange, N. von den Driesch, D. Rainko, S. Roesgaard, I. Povstugar, J. M. Hartmann, T. Stoica, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, “Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells,” Optica 4(2), 185–188 (2017). [CrossRef]  

10. N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017). [CrossRef]  

11. T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34(11), 773–776 (1979). [CrossRef]  

12. S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999). [CrossRef]  

13. F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005). [CrossRef]  

14. O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014). [CrossRef]  

15. P. Renoux and S. Ingvarsson, “Sample size effects on the performance of sub-wavelength metallic thin-film bolometers,” J. Opt. 15(11), 114011 (2013). [CrossRef]  

16. D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984). [CrossRef]  

17. R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94(16), 163110 (2009). [CrossRef]  

18. P. Renoux, S. A. Jónsson, L. J. Klein, H. F. Hamann, and S. Ingvarsson, “Sub-wavelength bolometers: uncooled platinum wires as infrared sensors,” Opt. Express 19(9), 8721–8727 (2011). [CrossRef]   [PubMed]  

19. H. H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016). [CrossRef]  

20. W. Dai, Q. Yang, F. Gu, and L. Tong, “ZnO subwavelength wires for fast-response mid-infrared detection,” Opt. Express 17(24), 21808–21812 (2009). [CrossRef]   [PubMed]  

21. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006). [CrossRef]   [PubMed]  

22. N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013). [CrossRef]   [PubMed]  

23. E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015). [CrossRef]  

24. S. Chen, J. Lai, J. Dai, H. Ma, H. Wang, and X. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express 17(26), 24153–24161 (2009). [CrossRef]   [PubMed]  

25. S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005). [CrossRef]  

26. Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003). [CrossRef]  

27. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004). [CrossRef]  

28. M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009). [CrossRef]  

29. Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011). [CrossRef]  

30. B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012). [CrossRef]  

31. X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013). [CrossRef]  

32. X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014). [CrossRef]  

33. X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015). [CrossRef]   [PubMed]  

34. X. Tu, C. Jiang, P. Xiao, L. Kang, S. Zhai, Z. Jiang, R. Feng Su, X. Jia, L. Zhang, J. Chen, and P. Wu, “Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity,” Opt. Express 26(7), 8990–8997 (2018). [CrossRef]   [PubMed]  

35. J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996). [CrossRef]  

36. P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997). [CrossRef]  

37. J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18(12), 12890–12896 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
    [Crossref]
  2. V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
    [Crossref] [PubMed]
  3. N. Pahlevan, J. C. Roger, and Z. Ahmad, “Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters,” Opt. Express 25(6), 6015–6035 (2017).
    [Crossref] [PubMed]
  4. J. Jemec, F. Pernuš, B. Likar, and M. Bürmen, “Deconvolution-based restoration of SWIR pushbroom imaging spectrometer images,” Opt. Express 24(21), 24704–24718 (2016).
    [Crossref] [PubMed]
  5. N. Prieto, O. Pawluczyk, M. E. R. Dugan, and J. L. Aalhus, “Review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products,” Appl. Spectrosc. 71(7), 1403–1426 (2017).
    [Crossref] [PubMed]
  6. X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016).
    [Crossref]
  7. Q. Hao, G. Zhu, S. Yang, K. Yang, T. Duan, X. Xie, K. Huang, and H. Zeng, “Mid-infrared transmitter and receiver modules for free-space optical communication,” Appl. Opt. 56(8), 2260–2264 (2017).
    [Crossref] [PubMed]
  8. Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
    [Crossref]
  9. D. Stange, N. von den Driesch, D. Rainko, S. Roesgaard, I. Povstugar, J. M. Hartmann, T. Stoica, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, “Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells,” Optica 4(2), 185–188 (2017).
    [Crossref]
  10. N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
    [Crossref]
  11. T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34(11), 773–776 (1979).
    [Crossref]
  12. S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
    [Crossref]
  13. F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
    [Crossref]
  14. O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
    [Crossref]
  15. P. Renoux and S. Ingvarsson, “Sample size effects on the performance of sub-wavelength metallic thin-film bolometers,” J. Opt. 15(11), 114011 (2013).
    [Crossref]
  16. D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984).
    [Crossref]
  17. R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94(16), 163110 (2009).
    [Crossref]
  18. P. Renoux, S. A. Jónsson, L. J. Klein, H. F. Hamann, and S. Ingvarsson, “Sub-wavelength bolometers: uncooled platinum wires as infrared sensors,” Opt. Express 19(9), 8721–8727 (2011).
    [Crossref] [PubMed]
  19. H. H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
    [Crossref]
  20. W. Dai, Q. Yang, F. Gu, and L. Tong, “ZnO subwavelength wires for fast-response mid-infrared detection,” Opt. Express 17(24), 21808–21812 (2009).
    [Crossref] [PubMed]
  21. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
    [Crossref] [PubMed]
  22. N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013).
    [Crossref] [PubMed]
  23. E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
    [Crossref]
  24. S. Chen, J. Lai, J. Dai, H. Ma, H. Wang, and X. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express 17(26), 24153–24161 (2009).
    [Crossref] [PubMed]
  25. S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
    [Crossref]
  26. Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
    [Crossref]
  27. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
    [Crossref]
  28. M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009).
    [Crossref]
  29. Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011).
    [Crossref]
  30. B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012).
    [Crossref]
  31. X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
    [Crossref]
  32. X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
    [Crossref]
  33. X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
    [Crossref] [PubMed]
  34. X. Tu, C. Jiang, P. Xiao, L. Kang, S. Zhai, Z. Jiang, R. Feng Su, X. Jia, L. Zhang, J. Chen, and P. Wu, “Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity,” Opt. Express 26(7), 8990–8997 (2018).
    [Crossref] [PubMed]
  35. J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996).
    [Crossref]
  36. P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
    [Crossref]
  37. J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18(12), 12890–12896 (2010).
    [Crossref] [PubMed]

2018 (1)

2017 (5)

2016 (4)

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016).
[Crossref]

J. Jemec, F. Pernuš, B. Likar, and M. Bürmen, “Deconvolution-based restoration of SWIR pushbroom imaging spectrometer images,” Opt. Express 24(21), 24704–24718 (2016).
[Crossref] [PubMed]

H. H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

2015 (2)

E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
[Crossref]

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

2014 (2)

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

2013 (3)

P. Renoux and S. Ingvarsson, “Sample size effects on the performance of sub-wavelength metallic thin-film bolometers,” J. Opt. 15(11), 114011 (2013).
[Crossref]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013).
[Crossref] [PubMed]

2012 (1)

B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012).
[Crossref]

2011 (3)

Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011).
[Crossref]

P. Renoux, S. A. Jónsson, L. J. Klein, H. F. Hamann, and S. Ingvarsson, “Sub-wavelength bolometers: uncooled platinum wires as infrared sensors,” Opt. Express 19(9), 8721–8727 (2011).
[Crossref] [PubMed]

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (4)

2006 (1)

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

2005 (2)

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

2004 (1)

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
[Crossref]

2003 (1)

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

2002 (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
[Crossref]

1999 (1)

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
[Crossref]

1997 (1)

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

1996 (1)

J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996).
[Crossref]

1984 (1)

D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984).
[Crossref]

1979 (1)

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34(11), 773–776 (1979).
[Crossref]

Aalhus, J. L.

Abdel-Rahman, M.

E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
[Crossref]

Agarwal, A. M.

Ahmad, Z.

Alda, J.

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

Alduraibi, M.

E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
[Crossref]

Alexander, V. V.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Al-Khalli, N.

E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
[Crossref]

Almasri, M.

Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011).
[Crossref]

Andersson, J. Y.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Aseev, A. L.

Awad, E. S.

E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
[Crossref]

Baert, K.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
[Crossref]

Becla, P.

Bhadram, V. S.

N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013).
[Crossref] [PubMed]

Boreman, G. D.

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

Borondics, F.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Bradshaw, T.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Buca, D.

Bui, T.

Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011).
[Crossref]

Bürmen, M.

Chaker, M.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
[Crossref]

Chen, J.

X. Tu, C. Jiang, P. Xiao, L. Kang, S. Zhai, Z. Jiang, R. Feng Su, X. Jia, L. Zhang, J. Chen, and P. Wu, “Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity,” Opt. Express 26(7), 8990–8997 (2018).
[Crossref] [PubMed]

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Chen, S.

Chen, S. H.

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

Chen, X. Y.

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

Chen, Y. M.

J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996).
[Crossref]

Cheng, O. Y.

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

Cheng, Q.

Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011).
[Crossref]

Choi, I.-H.

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Chong, X. Y.

X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016).
[Crossref]

Chou, B. C. S.

J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996).
[Crossref]

Crook, M.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Dai, J.

Dai, W.

Debbar, N.

E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
[Crossref]

Dem’yanenko, M. A.

Dobrovolskiy, S.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Dorenbos, S. N.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Dou, W.

Du, B.

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

Duan, T.

Dugan, M. E. R.

Eriksson, P.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Esaev, D. G.

Feng Su, R.

Fiorini, P.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
[Crossref]

Fomin, B. I.

Freeman, M. J.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Gao, Y. Q.

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

Gemmell, N. R.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Gonzalez, F. J.

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

Green, B.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Grützmacher, D.

Gu, F.

Gu, Y.

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

Haddad, E.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
[Crossref]

Haddon, R. C.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Hadfield, R. H.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Hamann, H. F.

Han, Y.-H.

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Hao, Q.

Hartmann, J. M.

Heath, R. M.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Hermans, L.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
[Crossref]

Hills, M.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Hou, Y.

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

Hu, H.

B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012).
[Crossref]

Hu, J.

Huang, G.

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

Huang, K.

Huang, Z. M.

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

Hwang, T. L.

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34(11), 773–776 (1979).
[Crossref]

Ikonic, Z.

Ilic, B.

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

Ingvarsson, S.

P. Renoux and S. Ingvarsson, “Sample size effects on the performance of sub-wavelength metallic thin-film bolometers,” J. Opt. 15(11), 114011 (2013).
[Crossref]

P. Renoux, S. A. Jónsson, L. J. Klein, H. F. Hamann, and S. Ingvarsson, “Sub-wavelength bolometers: uncooled platinum wires as infrared sensors,” Opt. Express 19(9), 8721–8727 (2011).
[Crossref] [PubMed]

Islam, M. N.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Itkis, M. E.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Jemec, J.

Ji, Z.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Jia, X.

Jiang, C.

Jiang, Z.

Jin, B.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Jin, B. B.

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

Jónsson, S. A.

Kang, H.-K.

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Kang, L.

X. Tu, C. Jiang, P. Xiao, L. Kang, S. Zhai, Z. Jiang, R. Feng Su, X. Jia, L. Zhang, J. Chen, and P. Wu, “Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity,” Opt. Express 26(7), 8990–8997 (2018).
[Crossref] [PubMed]

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Ke, K.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Kim, K.-T.

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Kimerling, L. C.

Klein, L. J.

Knyazev, B. A.

Kruzelecky, R. V.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
[Crossref]

Kulipanov, G. N.

Kulkarni, G. U.

N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013).
[Crossref] [PubMed]

Kurra, N.

N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013).
[Crossref] [PubMed]

Lai, J.

Lam, W. W.

D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984).
[Crossref]

Li, E.

X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016).
[Crossref]

Li, H.

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

Li, Z.

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94(16), 163110 (2009).
[Crossref]

Likar, B.

Liu, Q.

B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012).
[Crossref]

Liu, X.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Lu, R.

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94(16), 163110 (2009).
[Crossref]

Ma, H.

Ma, Y. J.

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

Mantl, S.

Mao, Q.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Mao, Q. K.

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

Margot, J.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
[Crossref]

Mertens, R.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
[Crossref]

Moon, S.

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Narayana, C.

N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013).
[Crossref] [PubMed]

Neikirk, D. P.

D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984).
[Crossref]

Orringer, J. S.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Ou-Yang, M.

J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996).
[Crossref]

Ovsyuk, V. N.

Pahlevan, N.

Paradis, S.

Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011).
[Crossref]

Park, J.-Y.

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Pawluczyk, O.

Pernuš, F.

Pitt, B.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Povstugar, I.

Prieto, N.

Rainko, D.

Rawlings, T.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Rebeiz, G. M.

H. H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

Renoux, P.

P. Renoux and S. Ingvarsson, “Sample size effects on the performance of sub-wavelength metallic thin-film bolometers,” J. Opt. 15(11), 114011 (2013).
[Crossref]

P. Renoux, S. A. Jónsson, L. J. Klein, H. F. Hamann, and S. Ingvarsson, “Sub-wavelength bolometers: uncooled platinum wires as infrared sensors,” Opt. Express 19(9), 8721–8727 (2011).
[Crossref] [PubMed]

Roesgaard, S.

Rogalski, A.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
[Crossref]

Roger, J. C.

Rutledge, D. B.

D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984).
[Crossref]

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34(11), 773–776 (1979).
[Crossref]

Schwarz, S. E.

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34(11), 773–776 (1979).
[Crossref]

Sedky, S.

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
[Crossref]

Shie, J. S.

J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996).
[Crossref]

Shin, H.-J.

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Soltani, M.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
[Crossref]

Squire, K.

X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016).
[Crossref]

Stange, D.

Stemme, G.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Stoica, T.

Tong, L.

Tsimvrakidis, K.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Tu, X.

Tu, X. C.

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

Vinokurov, N. A.

von den Driesch, N.

Wan, C.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Wang, A. X.

X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016).
[Crossref]

Wang, B.

B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012).
[Crossref]

Wang, H.

Wang, J.

Wang, S. B.

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

Welsh, M. J.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Wu, J.

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94(16), 163110 (2009).
[Crossref]

Wu, P.

Wu, P. H.

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

Xi, S. P.

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

Xiao, P.

Xie, X.

Xiong, B. F.

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

Xu, G.

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94(16), 163110 (2009).
[Crossref]

Xu, L.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

Xu, W.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Xu, Z.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Yang, H. H.

H. H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

Yang, K.

Yang, Q.

Yang, S.

Yi, X.

Yi, X. J.

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

Yu, A.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Zeng, H.

Zhai, S.

Zhang, L.

Zhang, Y. G.

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

Zhao, E.

B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012).
[Crossref]

Zhou, S. B.

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

Zhou, W.

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

Zhu, G.

Zwiller, V.

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

Y. Gu, Y. G. Zhang, X. Y. Chen, Y. J. Ma, S. P. Xi, B. Du, and H. Li, “Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP,” Appl. Phys. Lett. 108(3), 032102 (2016).
[Crossref]

X. Y. Chong, E. Li, K. Squire, and A. X. Wang, “On-chip near-infrared spectroscopy of CO2 using high-resolution plasmonic filter array,” Appl. Phys. Lett. 108(22), 221106 (2016).
[Crossref]

T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34(11), 773–776 (1979).
[Crossref]

O. Y. Cheng, W. Zhou, J. Wu, Y. Hou, Y. Q. Gao, and Z. M. Huang, “Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging,” Appl. Phys. Lett. 105(2), 022105 (2014).
[Crossref]

R. Lu, Z. Li, G. Xu, and J. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers,” Appl. Phys. Lett. 94(16), 163110 (2009).
[Crossref]

H. H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85(11), 1958–1960 (2004).
[Crossref]

Appl. Spectrosc. (1)

Chin. Phys. B (1)

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-coupled infrared detectors for imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. S. Awad, N. Al-Khalli, M. Abdel-Rahman, M. Alduraibi, and N. Debbar, “Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films,” IEEE Photonics Technol. Lett. 27(5), 462–465 (2015).
[Crossref]

IEEE Sens. J. (1)

Q. Cheng, S. Paradis, T. Bui, and M. Almasri, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J. 11(1), 167–175 (2011).
[Crossref]

IEEE Trans. Electron Dev. (1)

S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, “Characterization and optimization of infrared poly SiGe bolometers,” IEEE Trans. Electron Dev. 46(4), 675–682 (1999).
[Crossref]

Infrared Phys. Technol. (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3–5), 187–210 (2002).
[Crossref]

Int. J. Infrared Millim. Waves (1)

D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984).
[Crossref]

J. Appl. Remote Sens. (1)

X. C. Tu, L. Xu, Q. K. Mao, C. Wan, L. Kang, B. B. Jin, J. Chen, and P. H. Wu, “Quasioptical terahertz detector based on the series connection of Nb5N6 microbolometers,” J. Appl. Remote Sens. 8(1), 084992 (2014).
[Crossref]

J. Microelectromech. Syst. (2)

J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” J. Microelectromech. Syst. 5(4), 298–306 (1996).
[Crossref]

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

J. Opt. (1)

P. Renoux and S. Ingvarsson, “Sample size effects on the performance of sub-wavelength metallic thin-film bolometers,” J. Opt. 15(11), 114011 (2013).
[Crossref]

J. Opt. Technol. (1)

Lasers Surg. Med. (1)

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43(6), 470–480 (2011).
[Crossref] [PubMed]

Nanoscale (1)

N. Kurra, V. S. Bhadram, C. Narayana, and G. U. Kulkarni, “Few layer graphene to graphitic films: infrared photoconductive versus bolometric response,” Nanoscale 5(1), 381–389 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

B. Wang, J. Lai, E. Zhao, H. Hu, Q. Liu, and S. Chen, “Vanadium oxide microbolometer with gold black absorbing layer,” Opt. Eng. 51(7), 074003 (2012).
[Crossref]

Opt. Express (8)

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, C. Jiang, P. Xiao, L. Kang, S. Zhai, Z. Jiang, R. Feng Su, X. Jia, L. Zhang, J. Chen, and P. Wu, “Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity,” Opt. Express 26(7), 8990–8997 (2018).
[Crossref] [PubMed]

S. Chen, J. Lai, J. Dai, H. Ma, H. Wang, and X. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express 17(26), 24153–24161 (2009).
[Crossref] [PubMed]

W. Dai, Q. Yang, F. Gu, and L. Tong, “ZnO subwavelength wires for fast-response mid-infrared detection,” Opt. Express 17(24), 21808–21812 (2009).
[Crossref] [PubMed]

P. Renoux, S. A. Jónsson, L. J. Klein, H. F. Hamann, and S. Ingvarsson, “Sub-wavelength bolometers: uncooled platinum wires as infrared sensors,” Opt. Express 19(9), 8721–8727 (2011).
[Crossref] [PubMed]

N. Pahlevan, J. C. Roger, and Z. Ahmad, “Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters,” Opt. Express 25(6), 6015–6035 (2017).
[Crossref] [PubMed]

J. Jemec, F. Pernuš, B. Likar, and M. Bürmen, “Deconvolution-based restoration of SWIR pushbroom imaging spectrometer images,” Opt. Express 24(21), 24704–24718 (2016).
[Crossref] [PubMed]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18(12), 12890–12896 (2010).
[Crossref] [PubMed]

Optica (1)

Science (1)

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science 312(5772), 413–416 (2006).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

S. B. Wang, B. F. Xiong, S. B. Zhou, G. Huang, S. H. Chen, and X. J. Yi, “Preparation of 128 element of IR detector array based on vanadium oxide thin films obtained by ion beam sputtering,” Sens. Actuators A Phys. 117(1), 110–114 (2005).
[Crossref]

Supercond. Sci. Technol. (1)

N. R. Gemmell, M. Hills, T. Bradshaw, T. Rawlings, B. Green, R. M. Heath, K. Tsimvrakidis, S. Dobrovolskiy, V. Zwiller, S. N. Dorenbos, M. Crook, and R. H. Hadfield, “A miniaturized 4 k platform for superconducting infrared photon counting detectors,” Supercond. Sci. Technol. 30(11), 11LT01 (2017).
[Crossref]

Thin Solid Films (1)

Y.-H. Han, I.-H. Choi, H.-K. Kang, J.-Y. Park, K.-T. Kim, H.-J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films 425(1–2), 260–264 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sample B with an air-bridge. It contains a Nb5N6 air-bridge, Au leads, bonding pad, and align markers for lithography. (b) Magnified optical image of the Nb5N6 air-bridge in sample B; the etching openings for the air-bridge are at both sides of the Nb5N6 microwire. (c) Scanning electron microscopy (SEM) micrograph of the Nb5N6 microbridge on an air-bridge in sample B.
Fig. 2
Fig. 2 I–V curves of the detectors measured at room temperature. The insets show the inverse of the microbolometers’ resistances as a function of I2. The solid line represents the linear fit of the data. The slopes reveal that the thermal conductances G of samples A and B are 7.1 × 10−5 W/K and 1.8 × 10−6 W/K, respectively.
Fig. 3
Fig. 3 Schematic of the setup used to characterize the Nb5N6 microbolometers for a 2-µm detection.
Fig. 4
Fig. 4 Optical voltage responses under a 2-μm irradiation as a function of the bias current for samples A and B.
Fig. 5
Fig. 5 Measured frequency responses of samples A and B.

Tables (1)

Tables Icon

Table 1 Summary of the results for the two Nb5N6 microbolometers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R v = I b R α η G 2 + ω 2 C 2
1 R = 1 R 0 ( α G ) I b 2
R O = V det P I n c i d e n t p o w e r
τ = C G
D * = R O × A V n = A N E P

Metrics