Abstract

Electro-optic modulators perform a key function for data processing and communication. Rapid growth in data volume and increasing bits per second rates demand increased transmitter and thus modulator performance. Recent years have seen the introduction of new materials and modulator designs to include polaritonic optical modes aimed at achieving advanced performance in terms of speed, energy efficiency, and footprint. Such ad hoc modulator designs, however, leave a universal design for these novel material classes of devices missing. Here we execute a holistic performance analysis for waveguide-based electro-absorption modulators and use the performance metric switching energy per unit bandwidth (speed). We show that the performance is fundamentally determined by the ratio of the differential absorption cross-section of the switching material’s broadening and the waveguide effective mode area. We find that the former shows highest performance for a broad class of materials relying on Pauli-blocking (absorption saturation), such as semiconductor quantum wells, quantum dots, graphene, and other 2D materials, but is quite similar amongst these classes. In this respect these materials are clearly superior to those relying on free carrier absorption, such as Si and ITO. The performance improvement on the material side is fundamentally limited by the oscillator sum rule and thermal broadening of the Fermi-Dirac distribution. We also find that performance scales with modal waveguide confinement. Thus, we find highest energy-bandwidth-ratio modulator designs to be graphene, QD, QW, or 2D material-based plasmonic slot waveguides where the electric field is in-plane with the switching material dimension. We show that this improvement always comes at the expense of increased insertion loss. Incorporating fundamental device physics, design trade-offs, and resulting performance, this analysis aims to guide future experimental modulator explorations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Applications in data centers (core computing) and the looming era of sensor-driven internet-of-things (edge computing) drive demand for data bandwidth. Given the limitation of charging electrical wires, the need for optical communication is made [1]. Thus, electrical control of optical signals (electro-optic, EO) conversion remains a critical function [2]. However, the weak light–matter interaction (LMI) of Silicon or III-V photonics electro-optic modulators (EOM) requires footprints and energy-per-bit functions that are orders of magnitude higher compared to their electronic 3-terminal switching counterparts (i.e. transistors). The challenge is to obtain the highest optical modal index change with the least amount of voltage (i.e. steepest switching), while observing optical loss limitations [3,4], under a fundamental constraint given by the Kramers-Kronig relationship. While EO modulation can be enabled by either changing the real part (n) of the modal refractive index leading to phase shifting-based interferometer-like devices termed here electro-optic modulators (EOM), this work focuses solely on physical effects modulating the imaginary part (κ) leading to the class of electro-absorptive modulators (EAM). In both types, the fundamental complex index of refraction is altered electrically inside the active material, modifying the optical mode’s propagation constant inside the waveguide. Assuming on-off-keying, EOMs always require an interferometric scheme to induce an amplitude modulation which fundamentally requires more real estate on-chip compared to EAMs, which, in contrast, induce optical amplitude changes directly in a linear device design. Furthermore, here we make the distinction between current-driven and voltage-driven modulators; in the former the index change is a result of injecting carriers into (or removing from) the active region thus enabling (disabling) the optical transitions and therefore adding (subtracting) to the oscillator strength inside the active material layer. We only consider current-driven (i.e. ‘gated’) modulation effects in this work. In contrast, in voltage-driven modulators no current flows in/out of the active region, and the change in index is induced by the energy level shifts and oscillator strength change induced by the electric field (e.g. Stark effect). The widely used lithium niobate (LiNbO3) modulators based on Pockels effect and III-V semiconductor based quantum-confined Stark effect modulators are two examples of voltage driven EO modulators [5–7]. Recent current-driven modulators (e.g. state-of-the-art plasmonic modulators), on the other hand, have shown promising performance with respect to footprint, speed and power consumption due to their ability to confine the optical mode and hence increase the interaction of photons with the active material [8,9]. The spectrum of active current-driven materials and their respective modulation effects is wide and includes III-V based a) quantum dots (QDs) and b) quantum wells (QWs), free carrier based c) Silicon (Si) and d) Indium-tin-oxide (ITO), and emerging materials such as atomically-thin e) graphene and f) transition metal dichalcogenides (TMDs). While the promise of improved device performance has been made in an ad hoc manner, a systematic analysis and subsequent performance comparison between optical mode, active material mechanism, and subsequent device performance tradeoffs is yet outstanding. Here we show such comparison for the first time where we contrast the different modulation mechanisms-material combinations, to include III-V based band-filling a) QDs and b) QWs, free carrier based c) Si and d) ITO, and novel 2D materials such as e) graphene’s Pauli Blocking and f) exciton modulation in transition metal dichalcogenides (TMDs). We show that the modulation performance based on free-carriers falls short of all other mechanisms considered, while the remaining materials perform about equally. We further show that the key to improved performance lies in the waveguide design where the benefits of tight confinement must be weighed against the increased insertion loss.

2. Absorption modulator definitions

2.1 Effective area of the waveguide

A generic picture of a current-driven EAM is given in Fig. 1, defining the modulator length, L and cross-sectional width, W. The active layer (thickness, da) is sandwiched between two cladding layers for gating. With applied drive voltage, Vd the drive current, Id injects charges into the active layer. Charge, –Q in the active layer and + Q in the gate, are formed by such electrostatic gating. Key to the modulator’s performance is a strong LMI, which points towards requiring a small effective mode area, Seff, or simply in one dimension (1D), a short effective thickness, teff.

 figure: Fig. 1

Fig. 1 Schematic of the waveguide structure with a biasing scheme to the active region (drive voltage, Vd and current (charge) flow into the active layer, Id), the charge -Q in the active layer and + Q in the gate is induced, and propagation direction (indicated with blue arrow, βeff). The associated electric field in the y-direction is shown. da is the width of the active region and teff is the effective thickness. The relevant coordinate system used in this work is also included to accompany the text.

Download Full Size | PPT Slide | PDF

To determine the effective area of the waveguide we consider electromagnetic wave propagating along the z-direction with the propagation constantE=E(x,y)ei(βzωt)+c.c. The total power flow is then P=neffEa02Seff/2η0 where Ea0 is the magnitude of the transverse electric field in the middle of active layer (Fig. 1), η0=377Ω is the impedance of free space, and the effective index has been introduced as neff=βc/ω. The effective area of the waveguide as shown in Appendix A is

Seff=1neff2n2(x,y)(Ex2+Ey2)dxdy/Ea02
This definition of the effective area may differ from others in the literature, but the difference is small and involves the distinction between the effective and group indices. We note that this definition includes the fact that the active layer is not necessary at the center of the waveguide, i.e. Ea0 may not be the peak electric field.

2.2 Absorption cross-section and effective thickness

Let us now estimate the absorption change induced by the injection (or depletion of carriers). We first consider two level absorbers, which can be atoms or quantum dots (QDs) with absorption coefficient, according to Appendix B, as

α(ω)=σa(ω)WFSeffN2D=σa(ω)teffN2D
where σa is the absorption cross-section, N2D is the two-dimensional density of carriers, and F is the uniformity function (Appendix B). The effective thickness of the waveguide has been introduced as
teff=Seff/WF=Seff'/W
where Seff'=Seff/F. For the waveguides in which the field does not change much laterally, which is often the case,

teff1neff2n2(x)(Ex2+Ey2)dx/Ea02

2.3 Switching characteristics: definitions

Next, we introduce the absorption modulation characteristics. The absorption modulation is achieved by Pauli blocking. As electrons are injected into the upper level (or holes into the lower) the transitions are blocked and absorption is reduced. Here we (arbitrarily) select the maximum (minimum) transmission to be 90% (10%), for an extinction ratio (ER) of ~10 dB modulation. Minimum transmission (maximum absorption) is achieved when no electrons are injected

αmax(ω)L=σ(ω)N2DL/teff=ln(10)2.302
whereas maximum transmission occurs when δn2D carriers are injected by applying the positive voltage to the gate,
αmin(ω)L=σ(ω)(N2Dδn2D)L/teff=ln(0.9)0.105
Subtracting (6) from (5) we obtain
δn2DL2.2teff/σ(ω)
and when multiplied by the waveguide width and length, we obtain the expression and using (4) to evaluate one of the key modulator characteristics – the switching charge
Qsw=eWLδn2D=2.2eWteff/σ(ω)=2.2eSeff/σ(ω)F
We find, that the switching charge depends only on the ratio of the effective cross-section of the waveguide and the ‘effective absorption cross-section’ of the material σ(ω)F. One can then determine the switching voltage as
Vsw=dgateeδn2Dε0εeff=2.2eε0εeffteffLdgateσ(ω)eε0εeffN2Ddgate
where dgate and εeff are the thickness and dielectric constant of the insulator between the active layer and the gate. In the last step (5) was used which implicitly indicates that minimum absorption is achieved when nearly all the absorbers are bleached. Note, the voltage depends only on the density of the QDs and thus can be adjusted within reasonable limits, say from 1010 to 1012 cm−2. Similarly, according to (5) we have the freedom of choosing the length of the modulator as long as
L2.302teff/N2Dσ(ω)
Therefore, the capacitance of the modulator can be found as
C=ε0εeffWL/dgate=2.3ε0εeffdgateWteffN2Dσa=2.3ε0εeffdgateSeffN2DσaF
The 3-dB cut-off frequency of the modulator then becomes
f3dB=1/2πRCdgateε0εeffN2DσaF14.5SeffR
where R is the resistance. Finally, we can determine the switching energy (per bit) as
Usw=12QSWVSWe2dgateε0εeffN2DSeffσa(ω)F
One should note that while the switching charge is rather rigidly defined by (8), in principle it is often possible to reduce the switching energy per bit Usw=12Qsw2/C by simply increasing the capacitance (reducing gate oxide thickness, or simultaneously decreasing N2D and increasing length), which evidently reduces the speed. Ignoring bandwidth for a moment, the switching energy itself cannot serve as a holistic performance metric for modulators. Hence, we introduce a more relevant figure of merit – the ratio of switching energy to the 3dB cut-off frequency or energy-bandwidth-ratio (EBR) as
EBR=USW/f3dB14.5e2RSeff2σa2(ω)F2
This expression is strikingly simple as it does not only depend on the intrinsic absorption strength of the active material,σa(ω), but also on the degree of waveguide confinement, Seff, and the efficiency of coupling between the electric field in the waveguide and the active medium, F. Note that EBR is measured in units of J/Hz (or more conveniently fJ/THz) and indicates that for a constant EBR, the power consumption of the modulator increases quadratically with its speed (bandwidth). We shall see that this result leads to severe limitations of the performance. First, we shall investigate the intrinsic absorption strengths by considering four different material-based modulation mechanisms (Fig. 2).

 figure: Fig. 2

Fig. 2 Schematics of different absorption modulation mechanisms considered in this work for the OFF and ON states are for the attenuated and non-attenuated modulator output powers, respectively (a) quantum dot (QD), (b) quantum well (QW) or graphene, (c) excitons in transition metal dichalcogenides (TMDs), and (d) free carrier based modulation schemes (e.g. Si, ITO).

Download Full Size | PPT Slide | PDF

3. Material classes for EAMs

To evaluate different modulation potentials offered by various different materials (both traditional and emerging active materials), here we chose to include four broad categories of material classes: a) two level absorbers, i.e. QDs; b) Pauli (transition) blocking based QWs and graphene; c) excitonic modulators in TMDs; and d) free-carrier schemes in Si and transparent conducting oxides, such as ITO. The changes in absorption for these broad classes of materials are schematically depicted in Fig. 2 upon active modulation. This sample space of broad categorical materials can suffice to describe most current-driven (i.e. charge) modulation mechanisms to date.

3.1 Modulator based on two-level absorbers

The first class of modulators we consider is two-level absorbers, a most practical example of which could be a semiconductor QD (Fig. 2(a)). The absorption cross-section in QDs is determined in Appendix B, and in Appendix C we find its value on resonance Δω=0 as

σQD(ω)=πα0neffFcvγ(mc1m01)=πα0neffFcv2/m0γ(m0mc1)=1.75×1017cm2Fcvγneff(m0mc1)
where α0 is the fine structure constant, the energy broadening γ is given in electron volts (eV), mc is the electron effective mass, and Fcv=|ψcψvdV|2<~1 is the overlap between the ‘envelope’ wave-functions of the conduction and valence bands. As one can perceive, the absorption cross-section does only depend on a few parameters; for instance, at resonance it depends only on the resonance width and the effective mass. Since the latter is essentially determined by the value of the bandgap we obtain, therefore, for a given photon energy ω
σQD(ω)=πα0neffFcvEPω2/m0γ3.5×1016cm2Fcv(γ)(ω)neff
where EP1624eV is defined in the Appendix C and all the energies are in eV. One can further show that if we introduce additional inhomogeneous broadening (possibly important in QDs, but less so for doped ions), it will simply add up as roughly γγLorentz2+γinh.2 (Voigt profile), and one can still use the expressions (15) and (16). Thus in the end, the absorption cross-section depends mainly on the broadening. Finally, using (10) and (15) we obtain the required (i.e. for the an assumed 10dB extinction ratio) length of QD modulator as

LQD2.3neffteffπα0NQDγFcv(mc1m01)

3.2 Free carrier accumulation-depletion style modulator

Let us consider now a free electron gas in the conduction band of a semiconductor such as in Si, ITO, or some other material whose density is Ne(x,y). The schematics of this modulator case is shown in Fig. 2(d). The expression for the absorption cross-section is derived in Appendix D as

σfc(ω)=4πα0neffmcγω2+γ2=4πα0neff2m0(γeff)m0mc7.02×1017cm2(γeff)×m0mc
where the effective detuning is γeff=γ+ω2/γ. As one can see this expression is similar to the one for the QDs with one major difference – due to non-resonant character of the absorption the cross section for the free carriers is orders of magnitude lower than that for the resonant QDs. Also, we see that for the wavelength in the telecom range the cross-section actually scales with broadening caused by scattering γ. Therefore, as shown in the next section, ITO leads intrinsically to more modulation per unit charge than high-quality Silicon. Note, the maximum absorption is achieved at γ=ωwhen γeff=2ω and

σfc.max(ω)=4πα0neffmcω×12=3.53×1017cm21ωneffm0mc

3.3 Two-dimensional electron gas in semiconductor QWs

Let us consider a NQW number of quantum wells inside a waveguide, where each of the QWs is populated with the 2D carrier density n2D that are distributed according to Fermi-Dirac distribution fc(Ec)={1+exp[(EcEf)/kT]}1 (Fig. 2(b)). Since the position of the Fermi level, Ef changes with carrier density, δn2D so does the absorption. The expression for the absorption coefficient is obtained in Appendix E as

αQW=11+βvπα0neffWFNQWSeffFcvH(ωEg)[1fc]
where F is described by Appendix B, Eq. (53) and the effective thickness is teff=Seff/WF, same as (3); H is a Heaviside step function and effective mass ratio factor 0<βv<0.5 has been introduced. Next, we want to evaluate the change in absorption occurring when the 2D density of carriers changes. Differentiating (20) over the electron density results in
dαQWdn2D=αQWfcfcEfcdEfdn2D=σQW(ω)teff1
where the differential absorption cross-section is
σQW(ω)=Fcv1+βvπα0neffπ2mckTexp[(EcEf)/kT][1+exp(Ef/kT)]{1+exp[(EcEf)/kT]}2
and it reaches its maximum value when both the photon energy is equal to the bandgap and the Fermi level is also at the band-edge, i.e. Ec = Efc = 0, resulting in:
σQWmax(ω)=Fcv1+βvπα0neffπ22mckT2.75×1017cm21kTneffm0mcFcv1+βv
The result is nearly identical to (16) – with the only difference being that kT plays the role of broadening. Note, the result does not depend on the number of QWs. Then we can proceed to estimating the change of absorption with induced charge, and the absorption becomes ΔαQW=σQW(ω)δn2D/teff. This, however, will be an overestimation of the effect because we have linearized the dependence of absorption on density near Ef=0 in (21). Approaching the problem from a different angle by following discussion in section 3.1, the minimum transmission (maximum absorption) is achieved when no electrons are injected:
αQW,max(ω)L=Fcv1+βvπα0neffNQWLteff[1fc,min]=ln(10)2.302
And, similar to the 2-level case before, the maximum transmission (minimum absorption) is achieved when δn2Dcarriers are induced by the gate (injected).
αQW,min(ω)L=Fcv1+βvπα0neffNQWLteff[1fc,max]=ln(0.9)0.105
Now, let us assume that the material is intrinsic and Ef,minEgap/2, thereforefc,min(Ec=0)=[1+exp(Ef,min/kT)]10. The exact value of fc,min does not influence the modulation as long as it is small. Then we obtain from (24), Fcv1+βvπα0neffNQWLteff2.3. Substituting this into (25) we obtain fc,max(Ec=0)=[1+exp(Ef,max/kT)]10.96 and Ef,max3.15kT. Next, we can find n2D,max3.2NQWmckT/π2 while n2D,min0. Therefore, switching charge can be found as
QSW=eWL(n2D.maxn2D,min)=eW×2.2teffNQneffπα01+βvFcv×3.2mckTπ2NQW2.2eSeffσQW(ω)F
which is exactly the same as (8), as long as we can formally re-introduce the effective differential cross-section (23) as
σQW(ω)=Fcv1+βvπα0neffπ2mc3kT5.4×1017cm213kTneffm0mcFcv1+βv
Finally, one can combine the thermal broadening 3kT and the broadening γto an effective broadening, γeff=(γ)2+(3kT)2and modify (27) as
σQW(ω)=11+βvπ2α0neff2mcγeffFcv5.4×1017cm21γeffneffm0mc11+βvFcv
which has the same form as (15) producing similar results. However, when choosing the modulator length we now have less flexibility to assure that the maximum (off-state) absorption is satisfied according to
LQW2.3neffteffπα0NQW1+βvFcv
The only adjustable parameter is the number of QWs, which cannot be too large because the carriers will always tend to accumulate non-uniformly in the few QWs closest to the gate. In this respect, the Pauli-blocking type of modulator is inferior to quantum confined stark effect (QCSE) modulators in which no charge is stored. If we compare this with the result for QDs in (17), we can see that QD modulator would have the same length if the density of QDs is NQDγmc/2×1012cm2which is a bit too high for self-organized QDs – hence the QW modulator has the advantage of requiring a shorter length, which in turn increases the attainable speed but also the required switching voltage.

3.4 Graphene

The operating principle of graphene for modulation is similar to that of the QW modulator and shown in Fig. 2(b). Even though there have been many derivations of graphene’s optical absorption [10,11], it is instructive to re-derive the inter-band absorption in graphene from the first principle because it allows us to see how closely related it is to absorption by any other 2D structure whether there are any Dirac electrons involved in it. In fact, when the electrons involved in Pauli blocking are located at roughly 0.4 eV away from the Dirac point (assuming a wavelength of 1550 nm = 0.8 eV), all the peculiarity of graphene becomes irrelevant and as a result its performance as an electro-absorption modulator is conceptually no different from any other semiconductor material. The differential absorption cross-section for graphene obtained in Appendix F is

σgr(ω)=π2α0neff×1kTexp[(ω/2Efc)/kT]{1+exp[(ω/2Efc)/kT]}22vF22Ef
where vF~108cm/s is the Fermi velocity. This expression obviously peaks at Ef=ω/2, and we obtain
σgr(ω)=π2α0neff×1kT142vF2ω9.7×1017cm21neffkT
In accordance with the previous section, in order to account for the fact that the absorption does not change linearly with the Fermi level, and also for the additional broadening, the effective broadening is introduced as γeff=(γ)2+(3kT)2, and
σgr(ω)=π2α0na×1γeff142vF2ω9.7×1017cm21γeff
Comparing (32) with (28) we see that for a bandgap of ~0.8 eV the effective mass is about mc0.05m0. If we now assume that semiconductor has only one valence band and it is a light hole so that effective mass ratio parameter βv=1, the results are strikingly similar for graphene and QWs which is easy to understand, since graphene and many typical III-V semiconductors have roughly similar matrix transition elements, and for a given transition energy have similar joint densities of states.

3.5 Excitons in 2D semiconductors

We now turn our attention to another prospective medium for electro-absorption modulators, which has recently seen renewed interest – two dimensional (2D) excitons (Fig. 2(c)). Excitons in the 2D semiconductor QWs were considered back in 1980’s, mostly in the context of nonlinear optical devices [12]. But the binding energies in the III-V semiconductor QWs are comparable to room temperature thermal energy, hence excitons easily dissociate and have a broad absorption spectrum, which in the end made QW devices based on excitonic absorption impractical. Yet, in the last decade the interest has shifted to the 2D TMDs where the low dimensionality of the material increases the binding energy, mostly due to reduced screening, as compared to III-Vs. Thus, TMDs show increased absorption over QWs, and it was further suggested that these new ‘robust’ excitons can be used for efficient light modulation [13]. However a higher ‘robustness’ of the exciton should make it more difficult to change its absorption by any means, be that states saturation or screening. The effective cross section for the exciton obtained in Appendix G is

σex(ω)=2πα0mcγex3.53×1017cm21γex(m0mc1)
which is comparable to the QDs. Since the effective mass in TMDs is typically larger than in III-V semiconductors, it appears that using excitons does not change the fundamental fact that each time a single electron is injected inside the active layer a single transition is being blocked.

In this section we found comparable oscillator strengths for each allowed transitions independent of switching material used. We therefore expect the change of absorption with injected charge to be somewhat material independent, although the quality of material changes the degree of broadening and thus EAM performance.

4. Comparison of modulator characteristics for different materials

All differential absorption cross-sections for the four material classes are summarized in Table 1. We find, that for all materials operating with Pauli blocking (absorption saturation) show comparable values (σ~1014cm2at room temperature), whilst the free carriers offer a worse performance due to non-resonant character of absorption, since according to (18) for free carriers γeff=γ+ω2/γ>2ω. To verify these analytical results, obtained from essentially perturbative approach, we calculate the dependence of the absorption on the injected (induced by the gate) carriers n2D for all the material classes. For the QWs we obtain according to (20),

αQW=πα0neffteffFcv1+βvNQW([exp(π2n2DNQWmckT)1]eEckT+1)1
which is plotted in Fig. 3(a) in units of 1/nefftefffor NQW = 1 and 3, mc=0.06m0, EcωEg=50meV, Fcv=0.8, T=300K, βv=0.4. Similarly for graphene,
αgr=πα0neffteff1evFπn2Dω/2kT+1
For QDs according to (15), we estimate
αQD=πα0neffteffFcv2NQDm0kTkTγeff(m0mc1)(1n2DNQD)
The results are shown in Fig. 3(a) for the same effective mass and overlap as QWs, γ=kT, NQD=1012cm2. For the excitons,
αex(ω)=8α0neffteff2aex2m0kTkTγeffm0mc(1πaex2n2D/4)
The results are shown in Fig. 3(a) using exciton radius, aex=2nm and the conduction effective mass, mc=0.2m0. For the free carrier modulators, we use
αfc(ω)=4πα0neffteffmcγω2+γ2n2D
γ=1/τ is the carrier scattering rate i.e. collision frequency, electron mobility μ and τ are related by μ=|q|τ/mc. The conductivity effective mass, mc is taken as 0.26m0 [14]. μ is taken as 1100 cm2V−1s−1 at 1016 cm−3 carrier concentration level (i.e. electrons for Silicon) [15]. Unlike the doped silicon, ITO whose chemical composition is usually given as In2O3:SnO2 can be considered an alloy as concentration of tin relative to indium can be as high as 10%. Several previous studies have calculated the permittivity of ITO using the experimentally measured reflectance and transmittance, and we choose a fitting result of Michelotti et. al whereas γ depends on the deposition conditions, in our analysis we have taken γ = 1.8 × 1014 rad s−1 [16–20].

Tables Icon

Table 1. Summary of the differential absorption cross sections for different material classes. For parameter definitions refer to the main text.

 figure: Fig. 3

Fig. 3 Absorption modulation results for different material classes, for charge-driven active materials. (a) Normalized absorption, α’ = αneffteff as a function of carrier concentration, n2D (cm−2); (b-c) Optical absorption vs. (b) injected charge, Q' (pCμm−2); and (c) drive voltage, Vd (Volts); respectively. (d-j) Physical device performance parameters to obtain 10dB modulation; (d) Modulator length, L' = L/teff; (e) Switching charge, QSW (C/μm2); (f) Electrical device capacitance, C'g (fF/μm2); (g) Switching energy (energy-per-bit function), U'SW (fJ/μm2); (h) 3-dB modulation speed, f3-dB (THz. μm2); (i) Energy-bandwidth ratio, EBR' (fJ/(Thz. μm4)); and (j) Switching voltage, VSW (Volts) for investigated material classes including quantum dots (QD), single and 3-layer quantum well (SQW, 3QW), Graphene, a transition metal dichalcogenide (TMD) material (WSe2), Silicon, and Indium-Tin-Oxide (ITO). The spacing between the active layer and the gate is dgate = 100 nm and εeff = 10 assumed here.

Download Full Size | PPT Slide | PDF

Looking at the results (Fig. 3(a)), where the normalized absorption α'=αneffteff is shown, we notice that while the absolute values of absorption are different for all Pauli-blocking schemes, the slopes of the curves are rather similar, as is expected from the similarity of the differential absorption cross-sections in Table 1. Since it is the slope of absorption vs. density characteristics that is important for the modulator performance (i.e. slope steepness ER/Vbias), one shall expect the performance of all Pauli-blocking modulating schemes to be in the same range. Next, we find the length required to achieve ~10 dB absorption in units of teff i.e. L'=L/teff according to (10) (Fig. 3(d)). Furthermore, we evaluate the change of total absorption αL=α'L'/neffas a function of the injected charge per unit waveguide cross-sectionQ'=Q/Seff'=en2DL'teffW/Seff'=en2DL' (Fig. 3(b)). For graphene, we only show the AC charge Q'=e(n2Dn2D,0)L' where n2D,0=0.9×1013cm2 is the electron density that brings the Fermi level within 3kT from the 0.4eV. From Fig. 3(b), we can determine the switching charge necessary to obtain 10 dB on-off ratio – the values of switching charges corresponding to the material classes for 10 dB modulation is shown in Fig. 3(e). According to our simple perturbative estimation made in Section 3, all material cases (with the exception of free carrier schemes) are expected to lie within the range of Q'~2.2e/σ~10131012C/μm2, which appears accurate. The difference between graphene, QWs, QDs and TMDs is not significant considering that the exact amount of broadening is unknown. Thus, the required switching charge and voltage depends on the effective cross-section, and the only distinction between the various material classes is how easily they may be integrated into a small mode area waveguide.

Next, we calculate the capacitance per μm2 of the effective cross-section, Cg'=Cg/Seff'=ε0εeffL'/dgate (Fig. 3(f)). This allows us to obtain the drive voltage via Vd=Q/Cg=Q'/Cg' so that the absorption vs. drive voltage (Fig. 3(c)); and from there switching voltage can be obtained (Fig. 3(j)). The latter does not depend on the waveguide geometry, but only on the gate insulator thickness defining the electrostatics, similar to a transistor. In terms of switching voltage, the QD modulator appears superior, but at the expense of a larger capacitance caused by the low density of carriers in QDs. Now, one can finally determine the switching energy-per-bit per unit effective waveguide area, as Usw'=Usw/Seff'=12Qsw'Vsw=12Qsw'2/Cg' (Fig. 3(g)).

Further, we calculate the 3dB cut off frequency f3dB=1/2πRCg assuming R=50Ω (Fig. 3(h)). Such a low resistance may not be realistic for photonic bulk modes, where partial and selective doping has to be used in order to keep both the carrier density and hence optical loss low. In contrast, the metal deployed in plasmonics can also serve as a low resistance contact [21]. As such, the contact resistance may vary by one order of magnitude between photonic bulk designs, and plasmonic waveguide cases while keeping minimizing the respective insertion loss in mind. The requirement of a micrometer-tight integration of optoelectronic devices has also been mentioned recently as a viable path for attojoule-per-bit efficient devices [1,21]. In this context, single layer TMDs appear competitive, because the strong excitonic absorption allows one to use a very short path length, hence low capacitance with a tradeoff in the driving voltage as it is difficult to saturate this strong absorption (Fig. 3(c)). We note, however, that modal implications, in particular, in photonic waveguides, typically result in higher contact resistances than 50Ω [22]. Plasmonics-based devices allow defining the electrical capacitor with high spatial overlap to the actual device region [21].

The relevant figure of merit (FOM) for modulators, is the ratio of the switching energy and cut-off frequency (‘Energy Bandwidth Ratio’ or EBR),

EBR=USW/f3dB=πQSW2R
where evidently lower EBR is desired. In Fig. 3(i), we plot EBR'=EBR/Seff'2=πQSW'2Rin units of fJ/(THzμm4). We find that those materials that do not rely on off-resonant absorption of free carriers, that the EBR’ does not stray far from the same value of roughly 105fJ/(THzμm4). This is expected since the switching charges (Fig. 3(e)) are rather close in this range. Using the switching charge in (8), we find that
EBR=πQSW2R~πe2RSeff'2×(mcm0)2(γeff)2×2×1017μm45×104R50ΩSeff'2μm4×(mc0.067m0)2(γeff100meV)2fJ/THz
for approximately all materials that do not rely on free carrier absorption. This result can be considered the main conclusion of all the analysis up to this point. Note, within the constraints of (40), one can increase the bandwidth by increasing the thickness or dielectric constant of the insulator while also increasing the switching voltage and energy – in the same way how one would adjust the threshold voltage and speed of the field effect transistor. Indeed, it is important to include parasitic capacitances and (40) simply presents the fundamental upper bound of the FOM. Since the effective mass in the conduction band is determined by the bandgap (larger the bandgap, the larger the effective mass roughly), the only ‘intrinsic’ material property affecting device performance is the effective broadening, which for most systems cannot be reduced below few kT without external cooling. This only leaves the external parameter – effective cross-section of the waveguide as the main factor for consideration, which is capable of improving the FOM. We note that the intrinsic disadvantages of 2D materials being atomically thin, may be compensated by achieving smaller cross-sections using, for instance, plasmonic modes. Overall, according to (68) one can indeed achieve a fJ-level switching energy with 1THz bandwidth if the effective waveguide cross-section can be reduced to less than 10−2 μm2, and we explore this possibility in the following section.

5. Effective area for different modal structures

Here we explored a total of 14 waveguide-modes-material EAM options including photonic and plasmonic modes (Fig. 4(a-n)). Representative of the free carriers, we chose conventional Silicon (Si) and a transparent conductive oxide (TCO) emerging material, Indium Tin Oxide (ITO). We have included graphene as a unique 2D material, WSe2 representing TMDs, and InGaAs representing conventional III-V materials. In order to understand the impact on the effective area, we diversify photonic and plasmonic waveguide mode designs to include different mode structures, such as bulk, slot [23], and hybrid-photon-plasmon (HPP) [24,25], for the chosen materials – Si, ITO, graphene and WSe2. The Si, ITO and graphene mode structures are chosen similar to our previous work [26,27]. The WSe2 structures are the same as graphene ones with just the active material changed to WSe2. In principle, III-V QWs or QDs can also be placed inside the slot structure, but such designs are not considered in this work. As expected, bulk waveguide designs do not allow for small effective cross-sections. However, the actual improvement is not more than 100 × except for the Silicon slot case where the mode is highly squeezed due to the high index Si being below the slot air gap realizing the high E-field concentration. However such a miniscule effective area in this mode also presents tradeoff in terms of high insertion loss (IL) of ~27 dB. We note that the waveguide dimensions assumed in Fig. 4 are exemplary, but smaller effective cross-section are obtainable as well. Yet, a balance between insertion loss and shrinking the mode size should be considered from a photonic interconnect integration point of view [28]. Employing plasmonic structures in this regard can help the cause as plasmonic modes enable a few orders of magnitude smaller effective modal cross-section compared to photonic modes [29–36].

 figure: Fig. 4

Fig. 4 (a-n) Cross-sectional mode profiles for different structures and material classes using FEM analyses, normalized electric field intensity, |E|2 is shown. (o) Corresponding effective cross-sectional modal area, Seff; and (p) effective thickness, teff. The Si, ITO and graphene structures are chosen form our previous work [26,27]. WSe2 structures are the same in dimensions as graphene ones just changing the active material to WSe2, In0.52Ga0.48As QWs are chosen having 5 nm thickness and 470 nm width, with GaAs separate confinement heterostructure (SCH) and barrier layers.

Download Full Size | PPT Slide | PDF

6. Energy-per-bit function, speed and material broadening

The free carrier modulators operate far from resonance and are therefore not competitive with the other material structures. In fact, reducing the broadening will actually worsens their performance as an EAM, which is not the case for the electro-optic modulators (i.e. phase-shifting modulators). But the other transition blocking-based material systems do use resonant absorption, hence can benefit from reduced broadening as the transitions are sharper and a higher ER is possible in the same footprint. In case of QDs and TMDs the absorption linewidth contains homogeneous broadening, which is at least partially temperature-dependent (phonon scattering) and an inhomogeneous part, due to material variations (especially in QDs). In graphene and QWs, in addition to scattering, the main cause of broadening is associated with the Fermi-function spread on the scale of 3kT. For these materials the effective linewidth is γeff=(γhomo2+min{3kTorγinh}2)1/2, where γhomo is the material or homogeneous broadening and γinh is the inhomogeneous broadening. All the EAM performance parameters with respect to the effective broadening, effective thickness and effective cross-sectional area are calculated (Fig. 5).

 figure: Fig. 5

Fig. 5 (a) 10 dB absorption modulator length, L vs. effective thickness, teff for all the comparable material classes with different broadening. (b-g) Relevant device parameters vs. effective mode areas, S'eff for different effective material broadening, γeff (eV) for all the comparable material classes; (b) Switching charge, QSW (C); (c) Capacitance, C (fF); (d) Switching energy (E/bit function), USW (fJ); (e) 3-dB modulation bandwidth, f3-dB (THz); (f) Energy-bandwidth ratio, EBR (fJ/THz); and (g) Switching voltage, VSW (V). The varying amount of broadening is implicit by the materials shown in the legend corresponding to room temperature, i.e. 300 K, and thermal cooling down to 77 K. The corresponding teff and S'eff for the different modes from the previous section are also marked to aid comparing device performances. dgate = 100 nm. Lowering the gate oxide thickness will increase the energy efficiency through improved electrostatics, but also reduce the modulation speed via increased capacitance. All the different modes considered are marked in (a), whereas the different mode performances are scattered across in (b-g) as the markings correspond to the same x-value in all of them. Best EBR is found for graphene and TMD plasmonic slot waveguide-based modulators.

Download Full Size | PPT Slide | PDF

Next, we discuss different material classes to demonstrate the effect of effective material broadening and effective modal area variations on EAM performance (Fig. 5). Pauli blocking based graphene, band filling based QW modulators, narrow resonant QDs, and excitonic modulation based WSe2 are chosen to investigate effects of changing the effective broadening. Different free carrier based materials, namely Si and ITO, are also chosen to signify variation of effective material broadening in free carrier based schemes. Our results show monotonic modulator improvements with both reduced broadening and reduced effective modal area. The latter points to polaritonic modes where the field is squeezed into small (i.e. sub-diffraction limited) effective modal areas. Regarding broadening, almost 1-2 orders of magnitude improvements can be attained by operating at cryogenic temperatures, i.e. γeff<< 0.1eV. We used a nominal 77 K for our calculations corresponding to cryogenic temperature. However, beyond a broadening corresponding to room temperature, the effect declines. To study the dependence on the effective broadening, γeff for QWs and graphene, we change those device parameters that rely on operating temperature via a scaling factor, G = T/300 K. As such, the switching charge, QSW scales as G, while the capacitance, C, stays constant, and so does the 3-dB modulation bandwidth. The modulator length, L is unchanged from the variation in broadening; the switching voltage, VSW scales as G; switching energy, i.e. the energy-per-bit function, USW and energy-bandwidth ratio, EBR both scale as G2. The situation is different, however, for resonant narrow line emitters like QDs and WSe2. Since we used γ=kT in above discussion, we introduce the scaling factor, G=γ/kT to observe variations in changing γeff. Incidentally, a broader γeff means a longer device length needed to absorb. Therefore, switching charge QSW, capacitance C, modulator length L scales all with G; the switching voltage, VSW is constant (~QSW/C); switching energy, USW scales as G; and finally, energy-bandwidth ratio, EBR scales as G2.

As before, we select a resistance,R=50Ω and subsequently calculate the capacitance, C using C=ε0εeffWL/dgate=ε0εeffWteffL/dgateteff=(ε0εr/dgate)Seff'L'. However, we note that photonic-modes are sensitive to insertion losses, and require selective doping of the contact regions in order to reduce the resistance, setting a trade-off between added losses from doping versus lowering the contact resistance. This bottleneck is circumvented in plasmonic modulators, where the metal can be synergistically used as a contact ensuring 10’s of Ω low resistance. Our results indicate footprint reduction (i.e. scaling) of about one order of magnitude for 10 dB modulation in QDs and TMDs upon thermal cooling. Similar improvements can be noticed in terms of lowering the electrical capacitance and thence, increasing the 3-dB modulation bandwidth as well for QDs and TMDs, for reduced effective broadening. Also thermal cooling lowers the switching charge by about one order of magnitude for all the material classes considered, i.e. QWs, QDs, WSe2 and graphene. The energy– per–bit function, or switching energy, USW, can be further lowered by ~10 × – 15 × by improving the effective material broadening. Resonant narrow line emitters, i.e. QDs and WSe2 in this work, observe about one order of magnitude reduction in switching energy; whereas Pauli blocking enabled graphene and band filling based modulators using QWs results in about 15 × lower energy-per--bit for cryogenic operation. The switching voltage also can be decreased in graphene and QWs by employing cryogenic cooling by almost an order of magnitude. As some of the materials enable higher modulation speeds and some lower energy-per-bit functions upon reduction in effective broadening, the intended purpose and applications should be kept in mind when designing modulators and choosing the active material. Our deterministic energy-bandwidth ratio (EBR), in a way, helps to level the field as almost one order of magnitude improvement can be noticed for all of the material classes considered for variations in effective broadening.

As the 3-dB speed and energy-per-bit behave inversely with the effective modal area, our deterministic figure of merit, EBR decreases by several orders of magnitude; thus selecting a plasmonic slot waveguide with highest optical confinement can achieve high performing modulators withstanding higher IL. Exemplary of attainable EBR values from experimentally manifested devices include the notable graphene ring modulator, exhibiting an EBR of ~2.7 × 104 fJ/THz with 30 GHz bandwidth and ~800 fJ of switching energy [37]; all metallic plasmonic high-speed modulator attaining an EBR of 1.6 × 103 fJ/THz experimentally demonstrated with projected values down to ~500 fJ/THz [38]; and an all plasmonic modulator with χ(2) polymer reported values of ~350 fJ/THz [39]. We note that, the performance metrics reported in our analysis are for linear devices and can further be enhanced by factors of a few (~1 order of magnitude) employing cavity feedback with low-to-medium (100-1000) quality factor cavities that do not suppress the signal completely inside the cavity. Also, the gate oxide is somewhat large here (dgate = 100 nm), which worsens the energy per bit, but allows for high-speed devices via a low capacitance. For realistic switching speeds in the 10’s to maybe in the future 100’s GHz range, current modulators should be designed with a thin oxide to improve the energy consumption.

Highly confined modes are inherently accompanied by higher IL and tradeoffs must be made for performance benefits. For example, the slot graphene mode exhibits ~27 dB IL, and a larger (~57% higher teff) similar slot mode exhibits IL of ~18 dB trading in footprint (~61% larger L). WSe2 slot and hybrid modes exhibit IL of ~3 and ~14 dB, respectively. Note, WSe2 shows lower loss because the waveguide is shorter due to the maximum absorption being high. The required switching voltage is also higher. Furthermore, note that if multiple (say 5) monolayers of graphene is used instead of 1, the EBR and QSW will remain same, but L will be reduced by 5 and IL will also be reduced by a factor of 5. Of course, the switching voltage will increase but the bandwidth is wider as well.

The intricate interplay between EBR and IL will be the subject of our future work, but a certain conclusion can be made here; in general, for all the plasmon-assisted waveguides IL is the dominant consideration, hence the path to increasing EBR lies in reducing the length by increasing the absorption, using excitonic absorption in TMDs, multiple graphene layers, multiple QWs or high concentration of QDs. Unfortunately, that would also lead to a higher switching voltage and energy combined with the speeds that are too high to be practical (after all, what is the advantage of 2THz modulator in the absence of the electronic devices capable of driving it at that speed?). Therefore, given a fixed value of EBR for a given effective area of waveguide it is desirable to reduce the switching energy (and voltage) while also reducing the speed to whatever is necessary (say 100 GHz) for a particular application, which can be achieved by increasing the length, but would also result in the increased IL. That leaves us with only one feasible approach – increasing the gate capacitance, possibly using high-K dielectrics. It is remarkable that the path to miniaturization of EAMs follows exactly the path to miniaturization of field effect transistors! Then again both EAM and FET are charge control devices, and, as we have shown in this work, EAM borrows many FET characteristics such as accumulated charge, threshold voltage and gate capacitance, hence the route to EAM optimization is expected to follow the one blazed by FET development.

Prior to concluding, we should mention that while we only analyze electro-absorption modulators here, the main conclusions are also relevant to the electro-optic modulators; from the Kramers-Kronig relations between the real and imaginary parts of the refractive index it follows that the change in the refractive index is related to the change in absorption coefficient by about Δneff(ω)~(γeff/Δω)Δαλ/4π, where Δω is detuning from the frequency of maximum absorption change. Therefore the switching requirement for an electro-optic modulator operating in push-pull regime ΔneffL=λ/4 amounts to ΔαL~πΔω/γeff, which is the same as the EAM switching condition in (13) scaled by Δω/γeff. In order to avoid spurious absorption modulation one must maintain large detuning Δω>>γeffwhich explains why the electro-optic modulators have larger footprints than EAMs. However, other than this fact, all the relevant characteristics of EOMs follow the same dependences on the material differential absorption cross-section and waveguide effective area. We shall address performance metrics of EOMs in greater detail in our upcoming work.

7. Conclusions

We have carried out a holistic physical device analysis for waveguide-based electro-absorption modulators. In our analysis we have evaluated various performance characteristics, such as switching charge, voltage, energy-per-bit, and bandwidth, and also introduced the performance metric – the ratio of switching energy to the bandwidth. We have shown that other than insertion loss, the modulator performance is limited by just one fundamental material characteristic – differential absorption cross-section and one fundamental waveguide characteristic – its effective modal cross-section. We analyzed a variety of actively researched switching materials to include two-level absorbers such as quantum dots, free carrier accumulation or depletion modulators such as based on ITO or Silicon, Pauli blocking in graphene and III-V semiconductor quantum wells, and excitons in two-dimensional (2D) atomic layered materials found in transition metal dichalcogendies. Apart from free carrier modulators, all material classes have essentially the same absorption cross section, on the scale of 10−14 cm2; as the scale of the momentum matrix element scales inversely with the chemical bond length which does not change much from one material to another for the allowed transitions (this fact can be summarized as the oscillator sum rule). The only way to increase the absorption cross-section is to minimize broadening which is challenging as quantum dots typically exhibit broadening in excess of 100 meV, and in graphene and quantum wells, thermal broadening alone is about 75 meV at room temperature. Reduction of exciton broadening in 2D materials may bring some benefits but not by more than a factor of ~5. Beyond broadening, we considered waveguide designs with smaller effective cross-sections, and find that the effective modal cross-section is always accompanied by the increased insertion loss and hence increased power dissipation that may nullify the benefits of reduced switching energy. However, important is that, in principle, up to a few fJ switching energies (thin waveguide and larger gate oxide) are attainable at 100’s of Gbps speed with the known technologies, provided that the numerous fabrication-related issues, such as excessive insertion loss, poor coupling, parasitic capacitance and contact resistance, are solved. Taken together, the highest performing electro-absorptive modulators can be built by choosing multiple graphene layers or multiple QWs or a 2D material and interface it with a plasmonic slot waveguide incorporating high-K dielectric. With this, we hope this work will provide guidance to the community in developing next-generation high-performance modulators incorporating emerging materials.

Appendix A Power flow in the waveguide

To determine the effective area of the waveguide we consider electromagnetic wave propagating along the direction z with the propagation constantE=E(x,y)ei(βzωt)+c.c. The total power flow is then P=neffEa02Seff/2η0 where Ea0 is the magnitude of the transverse electric field in the middle of active layer (Fig. 1) and η0=377Ω is the impedance of free space. The effective index has been introduced as neff=βc/ω. To find the effective crosss-section, we fist determine the longitudinal component of the Poynting vector S=E×Hwhich can be found asSz(x,y)=EyHxExHy. According to Maxwell equationszHx=βHx=ωn2(x)ε0Ex and zHy=βHx=ωn2(x)ε0Ex. Thus, the time-averaged Poynting vector magnitude is S¯z(x,y)=ωn2(x,y)ε0(Ey2+Ex2)2β=n2(x,y)(Ey2+Ex2)2neffη0,. The total power flow is then

P=S¯z(x,y)dxdy=12neffη0n2(x,y)(Ex2+Ey2)dxdy=neffEa022η0Seff
where Ea0 is the magnitude of the transverse electric field in the middle of active layer (Fig. 1) from which Eq. (1) from the main text follows.

Appendix B Effective area of active region and absorption cross-section

Let us now estimate the absorption change induced by the injection (or depletion of carriers). We first consider two level absorbers, which can be atoms or quantum dots (QDs) having resonant frequency ω0 and density Na(x,y). The absorbers have Lorentzian line shape with linewidth (broadening) γ, characterized by the broadening function

g(ω)=1πγΔω2+γ2
where Δω=ωω0 is the detuning from the resonance. According to Fermi’s Golden rule the density of photons changes as
dNph(x,y)dt=2πe24Eeff2r122g(ω)Na(x,y)
where r12 is the transition matrix element of dipole, Eeff as the component of the electric field that is actually being absorbed (for many 2D structures it is the in-plane or TE component), and the factor of ¼ comes from the fact that only positive frequencies cause the transition. Then, the change of the energy density due to absorption in the active layer becomes
dU(x,y)dt=ωdNph(x,y)dt=e2r122Eeff2(x,y)2ωγγ2Δω2+γ2Na(x,y)
Integrating over the cross-section we obtain
dPdz=activeW/2W/2dUdtdxdy=e2r1222ωγγ2Δω2+γ2activeW/2W/2Na(x,y)Eeff2(x,y)dxdy
We now divide and multiply (45) by Ea02Na0 where Na0is the density of absorbing entities in the middle of the active region and use P=neffEa02Seff/2η0 to obtain
dPdz=e2r1222ωγγ2Δω2+γ2activeW/2W/2Na(x,y)Eeff2(x,y)dxdyNa0Ea02Na02η0P/Seffneff
Now, we can introduce the effective area of the active region as
Sa,eff=activeW/2W/2NaEeff2dxdy/Ea02Na0
where Na0 is the density of the absorbers in the middle of the active region. We have defined Eeff as the component of the electric field that is actually being absorbed (for many 2D structures it is the in-plane or TE component). The power flow over the cross section becomes
dPdz=e2r122η0neffωγγ2Δω2+γ2Sa,effSeffNa0P=σa(ω)Sa,effSeffNa0P
where r12 is the matrix element of the dipole transition between two levels and the absorption cross-section has been introduced as
σa(ω)=e2η0neffr122ωγγ2Δω2+γ2=4πα0neffr122ωγL(ω)
Here, α0 is the fine structure constant and L(ω)=γ2/(Δω2+γ2) represents a Lorentzian line shape that has maximum value at resonance equal to unity. The absorption coefficient is therefore
α(ω)=σa(ω)Sa,effSeffNa0
The significance of this expression is that the absorption is clearly separated into two factors – intrinsic (or material) the absorption cross-section, and the geometrical (or confinement) factor, Γ=Sa,eff/Seff.

Now, often the active layer is essentially two-dimensional, with a two-dimensional density of carriers, which is independent on the lateral direction, i.e. N2D=activeNa(x)dx. Then we can find effective active area (47) as

Sa,eff=N2DNa0WF
where the ‘uniformity function’ is
F=activeNa(x)Na0W/2W/2Eeff2(x,y)Ea02dydx/WactiveNa(x)Na0dx
Clearly, when the active layer is essentially a delta function, Na(x)=N2Dδ(xxa)
F=W1W/2W/2Eeff2(xa,y)Ea02dy
and if the field is uniform in the lateral direction, then F=Eeff2/Ea2=cos2θeff, where θeff is the angle between the dipole and electric field. Now we can write (50) as
α(ω)=σa(ω)WFSeffN2D=σa(ω)teffN2D
The effective thickness of the waveguide has been introduced as
teff=Seff/WF=Seff'/W
where Seff'=Seff/F. For the waveguides in which the field does not change much laterally, which is often the case,

teff1neff2n2(x)(Ex2+Ey2)dx/Ea02

Appendix C Evaluating absorption cross-section for two-level absorbers

Here we evaluate the absorption cross-section (49) for the two-level absorbers (QDs) using the relation between the dipole matrix element, r12 and the matrix element of the momentum for the interband transition, Pcv we get [40,41]

r12=Fcv2Pcvm0ω
where the first term includes the overlap between the ‘envelope’ wave-functions of the conduction and valence bands Fcv=|ψcψvdV|2<~1 and the factor of ½ is associated with specifics of the heavy hole wave-function involved in the transition. Furthermore, one can use the relation between the above momentum matrix element and the electron effective mass, mc as [42]
m0mc=1+2Pcv2m0EgEpEg
where for a wide range of direct bandgap semiconductors EP=2Pcv2/m01624eVand Egω is the bandgap energy. Then we obtain the expression for the absorption cross-section on resonance
σQD(ω)=πα0neffFcvγ(mc1m01)=πα0neffFcv2/m0γ(m0mc1)=1.75×1017cm2Fcvγneff(m0mc1)
where the energy broadening γ is given in electron volts (eV). This is Eq. (15) from the main text.

Appendix D Free carrier absorption cross-section

Here we derive the expression for the absorption cross-section of free electrons. Dielectric constant of free electron plasma in Drude approximation can be written as

εr(ω,x,y)=εNe(x,y)e2ε0mc1ω2+iωγ
where ε is the dielectric constant of the undoped semiconductor. The rate of absorption of electro-magnetic energy is proportional to the imaginary part of the dielectric constant, εr,im as
dU(x,y)dt=ωε0εim(ω,x)Eeff2(x)2=Ne(x,y)e2mcγω2+γ2E2(x,y)2
where effective electric field, Eeff is the same as the total field, E. This expression is similar to (44), thence we follow the previous steps leading to (50) with the effective absorption area described by (47) with Ne in place of Na, and absorption cross-section now can be defined as
σfc(ω)=4πα0neffmcγω2+γ2=4πα0neff2m0(γeff)m0mc7.02×1017cm2(γeff)×m0mc
where the effective detuning is γeff=γ+ω2/γ. This expression is Eq. (18) from the main text.

Appendix E Absorption coefficient in semiconductor QWs

Considering NQW number of quantum wells inside a waveguide, where each of the QWs is populated with the 2D carrier density n2D distributed according to Fermi-Dirac distribution fc(Ec)={1+exp[(EcEf)/kT]}1. The Fermi energy (relative to the bottom of conduction band) can be found as

Ef=kTln[exp(π2n2DNQWmckT)1]
which can be differentiated to obtain
dn2DdEf=NQWmcπ211+exp(Ef/kT)
Let us now evaluate the absorption rate of the carriers; following Fermi’s Golden rule for that we introduce the rate of absorption per unit area, analogous to (43),
dn2D(y)dt=2πe24Eeff2(xQW,y)rcv2ρ2D(ω)[1fc(Ec)]
Here, the joint density of states per unit of energy per unit of area is ρ2D(ω)=NQWmrπ2H(ωEg), where H is the step function, and the reduced mass mris found from mr1=mc1+mv1, and the value of energy in the conduction band (CB) is Ec=(ωEg)mv/mr. Following (57) switching from the dipole to momentum representation, we obtain
dn2D(y)dt=2πe24Eeff212Pcv2m02ω2FcvNQWmrπ2H(ωEg)[1fc]
Next, in QWs the effective mass of the electron is determined by (57) while the in-plane effective mass of hole is typically about 2-3 times larger, then one can write for the reduced mass mr1=(1+βv)×2Pcv2/m02ω where the effective mass ratio factor 0<βv<0.5. Upon substituting it into (66), we obtain
dn2D(y)dt=11+βve24Eeff22ωFcvNQWH(ωEg)[1fc]
Next, following (48) – (50), the expression for the absorption coefficient can be obtained as
αQW=11+βvπα0neffWFNQWSeffFcvH(ωEg)[1fc]
which is the Eq. (20) from the main text.

Appendix F Graphene absorption cross-section

In graphene, the matrix element of momentum between the valence and conduction band is Pcv,gr=m0vF, where vF~108cm/s is the Fermi velocity. The matrix element of Hamiltonian in the pA gauge then becomes Hcv=12evFE/ω. The Joint density of states can be found next, as

ρ2D(ω)=12πωvF2
where we have used the dispersion relation for the transition frequency, ω=2kvF and the fact that, in graphene, one deals with both spin and valley (K, K’) degeneracies. Substituting it all into Fermi’s golden rule we obtain:
dn2D(y)dt=2πe24Eeff212vF2ω212πωvF2[1fc]=e2Eeff282ω[1fc]
This expression is rather similar to (67), and thus following all the steps for QWs that have lead to (68) we obtain the expression for the graphene interband absorption in the waveguide:
αgr=πα0neffteff[1fc]
Next, we consider the changes in graphene absorption with density of electrons; since the most change in absorption occurs when the Fermi level approaches Ef=ω/2>>kT, the relation between density of electrons and Fermi level is n2DEf2/π2vF2 and differentiating it, we obtain dn2D/dEf2Ef/π2vF2. Now, following (21)
dαgrdn2D=αQWfcfcEfcdEfdn2D=σgr(ω)teff1
where the differential absorption cross-section is
σgr(ω)=π2α0neff×1kTexp[(ω/2Efc)/kT]{1+exp[(ω/2Efc)/kT]}22vF22Ef
This is Eq. (30) from the main text.

Appendix G Effective absorption cross-section for excitons in 2D semiconductors

The 2D material exciton is characterized by its 2D Bohr radius

aex=2πεeffε02e2mr
which is half as large as 3D exciton radius. The effective dielectric constant εeff in 2D materials approaches unity while the effective mass mr~0.25m0 is somewhat larger than in III-V semiconductors. Thus, the exciton Bohr radius in TMDs is on the order of only a few nanometers long [43], exhibiting exciton binding energy of Eex=2/2mraex2~0.5eV [44]. The absorption of the exciton can be easily obtained by using the value of the exciton envelope wave function at the origin, i.e. probability of finding electron and hole in the same spatial location 2|Φex(0)|2=4/πaex2 in place of two 2D density of atoms or QDs in (54) to obtain
αex(ω)=4σex(ω)/πaex2t'eff
where according to (49) and (15), operating on the excitonic resonance
σex(ω)=4πα0r122ωγ2πα0γ(mc1m01)
where we have used r122=Pcv2/m02ω2=/2mcω. The absorption is quite large (Fig. 3(a)) and therefore the length of the modulator, according to (10) can be small, Lex2.302teffaex2/4πσex(ω)10teff. Next, we inject free carriers into the TMDs; where three processes take place simultaneously: (i) state filling, (ii) bandgap renormalization and (iii) screening. Thus, excitons bleach as recently observed by Heinz who attributed it to Mott transition [43]. Mott transitions occur in 3D semiconductors when the screening radius becomes comparable to the exciton radius, i.e. when n2D~aex2. Strictly speaking the screening in 2D system saturates. Therefore, exciton bleaching most likely takes place because of state filling [12]. The exciton wave function can be considered a coherent superposition of the electron-hole-pair states with the wave vectors between 0 and roughly 1/aex. The density of these states (with spin and valley degeneracy) is roughly nbl4/πaex2. The exact dependence of excitonic absorption on the density of injected carriers may be quite complicated, however, for our order-of-magnitude analysis it can be linearized as
α(ω,n2D)=α(ω,0)×(1n2D/nbl)=8α0aex2t'effmcγ(1πaex2n2D/4)=8α0aex2teffmcγσex'n2D
As one can see, the exciton radius and binding energy do not play a role in the determination of the switching charge, which is still determined by (8) with the effective cross-section for the exciton as
σex(ω)=2πα0mcγex3.53×1017cm21γex(m0mc1)
which is Eq. (33) from the main text.

Funding

Army Research Office (ARO) (W911NF-16-2-0194); Air Force Office of Scientific Research (AFOSR) (FA9550-17-1-0377).

References and links

1. D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017). [CrossRef]  

2. V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012). [CrossRef]  

3. K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015). [CrossRef]  

4. K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016). [CrossRef]  

5. N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997). [CrossRef]  

6. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]  

7. I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987). [CrossRef]  

8. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014). [CrossRef]  

9. U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016). [CrossRef]  

10. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008). [CrossRef]  

11. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007). [CrossRef]  

12. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B Condens. Matter 32(10), 6601–6609 (1985). [CrossRef]   [PubMed]  

13. B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017). [CrossRef]   [PubMed]  

14. S. M. Sze, Physics of Semiconductor Devices, 2nd edition (Wiley, New York, 1981).

15. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001). [CrossRef]  

16. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 µm,” Opt. Lett. 34(6), 839–841 (2009). [CrossRef]   [PubMed]  

17. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011). [CrossRef]  

18. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013). [CrossRef]   [PubMed]  

19. Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015). [CrossRef]  

20. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013). [CrossRef]   [PubMed]  

21. V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018). [CrossRef]  

22. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef]   [PubMed]  

23. Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017). [CrossRef]  

24. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]  

25. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011). [CrossRef]  

26. R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017). [CrossRef]  

27. R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017). [CrossRef]  

28. S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015). [CrossRef]  

29. K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016). [CrossRef]   [PubMed]  

30. C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015). [CrossRef]  

31. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012). [CrossRef]  

32. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef]   [PubMed]  

33. Z. Ma, S. Khan, M. Tahersima, and V. J. Sorger, “Temperature dependence of a sub-wavelength compact graphene plasmon-slot modulator,” https://arXiv:1709.01465 (2017). [CrossRef]  

34. V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science 333(6043), 709–710 (2011). [CrossRef]   [PubMed]  

35. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009). [CrossRef]   [PubMed]  

36. N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015). [CrossRef]   [PubMed]  

37. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015). [CrossRef]  

38. M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017). [CrossRef]   [PubMed]  

39. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015). [CrossRef]  

40. E. N. Adams, “Motion of an electron in a perturbed periodic potential,” Phys. Rev. 85(1), 41–50 (1952). [CrossRef]  

41. Y. Yafet, “The g value in conduction electron spin resonance,” Phys. Rev. 106(4), 679–684 (1957). [CrossRef]  

42. E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1(4), 249–261 (1957). [CrossRef]  

43. A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015). [CrossRef]  

44. Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
    [Crossref]
  2. V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
    [Crossref]
  3. K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
    [Crossref]
  4. K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
    [Crossref]
  5. N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997).
    [Crossref]
  6. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  7. I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
    [Crossref]
  8. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
    [Crossref]
  9. U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
    [Crossref]
  10. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008).
    [Crossref]
  11. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
    [Crossref]
  12. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B Condens. Matter 32(10), 6601–6609 (1985).
    [Crossref] [PubMed]
  13. B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
    [Crossref] [PubMed]
  14. S. M. Sze, Physics of Semiconductor Devices, 2nd edition (Wiley, New York, 1981).
  15. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
    [Crossref]
  16. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 µm,” Opt. Lett. 34(6), 839–841 (2009).
    [Crossref] [PubMed]
  17. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
    [Crossref]
  18. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [Crossref] [PubMed]
  19. Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
    [Crossref]
  20. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  21. V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
    [Crossref]
  22. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  23. Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017).
    [Crossref]
  24. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  25. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [Crossref]
  26. R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
    [Crossref]
  27. R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
    [Crossref]
  28. S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
    [Crossref]
  29. K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
    [Crossref] [PubMed]
  30. C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
    [Crossref]
  31. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  32. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [Crossref] [PubMed]
  33. Z. Ma, S. Khan, M. Tahersima, and V. J. Sorger, “Temperature dependence of a sub-wavelength compact graphene plasmon-slot modulator,” https://arXiv:1709.01465 (2017).
    [Crossref]
  34. V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science 333(6043), 709–710 (2011).
    [Crossref] [PubMed]
  35. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009).
    [Crossref] [PubMed]
  36. N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015).
    [Crossref] [PubMed]
  37. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
    [Crossref]
  38. M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
    [Crossref] [PubMed]
  39. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
    [Crossref]
  40. E. N. Adams, “Motion of an electron in a perturbed periodic potential,” Phys. Rev. 85(1), 41–50 (1952).
    [Crossref]
  41. Y. Yafet, “The g value in conduction electron spin resonance,” Phys. Rev. 106(4), 679–684 (1957).
    [Crossref]
  42. E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1(4), 249–261 (1957).
    [Crossref]
  43. A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
    [Crossref]
  44. Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
    [Crossref] [PubMed]

2018 (1)

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

2017 (6)

Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
[Crossref]

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

2016 (3)

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
[Crossref]

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

2015 (8)

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015).
[Crossref] [PubMed]

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
[Crossref]

2014 (2)

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

2013 (2)

2012 (2)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

2011 (5)

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science 333(6043), 709–710 (2011).
[Crossref] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2009 (2)

2008 (2)

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

2001 (1)

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1997 (1)

N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997).
[Crossref]

1987 (1)

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

1985 (1)

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B Condens. Matter 32(10), 6601–6609 (1985).
[Crossref] [PubMed]

1957 (2)

Y. Yafet, “The g value in conduction electron spin resonance,” Phys. Rev. 106(4), 679–684 (1957).
[Crossref]

E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1(4), 249–261 (1957).
[Crossref]

1952 (1)

E. N. Adams, “Motion of an electron in a perturbed periodic potential,” Phys. Rev. 85(1), 41–50 (1952).
[Crossref]

Adams, E. N.

E. N. Adams, “Motion of an electron in a perturbed periodic potential,” Phys. Rev. 85(1), 41–50 (1952).
[Crossref]

Agarwal, R.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Aillerie, M.

N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997).
[Crossref]

Alexakis, G. E.

N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997).
[Crossref]

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Amin, R.

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Ayata, M.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

Badawy, A. H. A.

S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

Baeuerle, B.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Bahoura, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Bar-Joseph, I.

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

Barnakov, Y. A.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009).
[Crossref] [PubMed]

Berger, J. S.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Brongersma, M. L.

Cao, T.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Cardenas, J.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Chemla, D. S.

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B Condens. Matter 32(10), 6601–6609 (1985).
[Crossref] [PubMed]

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Chernikov, A.

A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
[Crossref]

Dalir, H.

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

Dalton, L. R.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Danz, N.

Descrovi, E.

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Dominici, L.

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Elder, D. L.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

El-Ghazawi, T.

S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fedoryshyn, Y.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fontana, M. D.

N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997).
[Crossref]

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Geim, A. K.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gu, L.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Haffner, C.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hafner, C.

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Hangyo, M.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Heinz, T. F.

A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
[Crossref]

Heni, W.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hill, H. M.

A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
[Crossref]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Hoessbacher, C.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Johnson, A. T. C.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Josten, A.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kane, E. O.

E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1(4), 249–261 (1957).
[Crossref]

Kang, J. H.

Khan, S.

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017).
[Crossref]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Khurgin, J. B.

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Klingshirn, C.

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

Koch, U.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Koren, U.

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Lee, B.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Lee, Y.-H. D.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Leuthold, J.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Li, N.

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015).
[Crossref] [PubMed]

Li, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Lipson, M.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Liu, K.

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Liu, X.

Livenere, J.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Louie, S. G.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Ma, Z.

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Majumdar, A.

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

Malek, S. C.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Menchini, F.

Michelotti, F.

Miller, B. I.

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
[Crossref]

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B Condens. Matter 32(10), 6601–6609 (1985).
[Crossref] [PubMed]

Morikawa, O.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Mundle, R.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Narayana, V.

S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

Nashima, S.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Naylor, C. H.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Niegemann, J.

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Noginov, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

O’Brien, K.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Park, J.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

Peres, N. M. R.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008).
[Crossref]

Phare, C. T.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Podolskiy, V. A.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Pradhan, A.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Rigosi, A. F.

A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
[Crossref]

Ruppert, C.

A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
[Crossref]

Sadana, D. K.

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015).
[Crossref] [PubMed]

Salamin, Y.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Sarpkaya, I.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B Condens. Matter 32(10), 6601–6609 (1985).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Soref, R. A.

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

Sorger, V. J.

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015).
[Crossref] [PubMed]

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science 333(6043), 709–710 (2011).
[Crossref] [PubMed]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Stauber, T.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008).
[Crossref]

Suer, C.

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Sun, S.

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

Tahersima, M. H.

Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017).
[Crossref]

Takata, K.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

Theofanous, N. G.

N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Vasudev, A. P.

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, Y.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yafet, Y.

Y. Yafet, “The g value in conduction electron spin resonance,” Phys. Rev. 106(4), 679–684 (1957).
[Crossref]

Yao, J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009).
[Crossref] [PubMed]

Ye, C.

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Ye, C. R.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Ye, Z.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yin, X.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Zahner, M.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science 333(6043), 709–710 (2011).
[Crossref] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhu, G.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

Zhu, H.

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

K. Liu, N. Li, D. K. Sadana, and V. J. Sorger, “Integrated nanocavity plasmon light sources for on-chip optical interconnects,” ACS Photonics 3(2), 233–242 (2016).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[Crossref]

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50(15), 1010–1012 (1987).
[Crossref]

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett. 79(24), 3923–3925 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Z. Ma, M. H. Tahersima, S. Khan, and V. J. Sorger, “Two-dimensional material-based mode confinement engineering in electro-optic modulators,” IEEE J. Sel. Top. Quantum Electron. 23(1), 81–88 (2017).
[Crossref]

IEEE Photonics J. (2)

S. Sun, A. H. A. Badawy, V. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 4800813 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

V. J. Sorger, R. Amin, J. B. Khurgin, Z. Ma, H. Dalir, and S. Khan, “Scaling vectors of attoJoule per bit modulators,” J. Opt. 20(1), 014012 (2018).
[Crossref]

J. Phys. Chem. Solids (1)

E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1(4), 249–261 (1957).
[Crossref]

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Laser Photonics Rev. (1)

K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

MRS Bull. (1)

V. J. Sorger, R. F. Oulton, R. M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(8), 728–738 (2012).
[Crossref]

Nano Lett. (2)

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009).
[Crossref] [PubMed]

Nanophotonics (4)

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance,” Nanophotonics 7(2), 455–472 (2017).
[Crossref]

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Nat. Mater. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Nat. Photonics (5)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, “Population inversion and giant bandgap renormalization in atomically thin WS2 layers,” Nat. Photonics 9(7), 466–470 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Nature (2)

Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, “Probing excitonic dark states in single-layer tungsten disulphide,” Nature 513(7517), 214–218 (2014).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (2)

E. N. Adams, “Motion of an electron in a perturbed periodic potential,” Phys. Rev. 85(1), 41–50 (1952).
[Crossref]

Y. Yafet, “The g value in conduction electron spin resonance,” Phys. Rev. 106(4), 679–684 (1957).
[Crossref]

Phys. Rev. B (1)

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B Condens. Matter 32(10), 6601–6609 (1985).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

N. G. Theofanous, M. Aillerie, M. D. Fontana, and G. E. Alexakis, “A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3,” Rev. Sci. Instrum. 68(5), 2138–2143 (1997).
[Crossref]

Sci. Rep. (2)

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

N. Li, K. Liu, V. J. Sorger, and D. K. Sadana, “Monolithic III–V on silicon plasmonic nanolaser structure for optical interconnects,” Sci. Rep. 5(1), 14067 (2015).
[Crossref] [PubMed]

Science (2)

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358(6363), 630–632 (2017).
[Crossref] [PubMed]

V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science 333(6043), 709–710 (2011).
[Crossref] [PubMed]

Solid-State Electron. (1)

R. Amin, C. Suer, Z. Ma, I. Sarpkaya, J. B. Khurgin, R. Agarwal, and V. J. Sorger, “A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance,” Solid-State Electron. 136, 92–101 (2017).
[Crossref]

Other (2)

Z. Ma, S. Khan, M. Tahersima, and V. J. Sorger, “Temperature dependence of a sub-wavelength compact graphene plasmon-slot modulator,” https://arXiv:1709.01465 (2017).
[Crossref]

S. M. Sze, Physics of Semiconductor Devices, 2nd edition (Wiley, New York, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the waveguide structure with a biasing scheme to the active region (drive voltage, Vd and current (charge) flow into the active layer, Id), the charge -Q in the active layer and + Q in the gate is induced, and propagation direction (indicated with blue arrow, βeff). The associated electric field in the y-direction is shown. da is the width of the active region and teff is the effective thickness. The relevant coordinate system used in this work is also included to accompany the text.
Fig. 2
Fig. 2 Schematics of different absorption modulation mechanisms considered in this work for the OFF and ON states are for the attenuated and non-attenuated modulator output powers, respectively (a) quantum dot (QD), (b) quantum well (QW) or graphene, (c) excitons in transition metal dichalcogenides (TMDs), and (d) free carrier based modulation schemes (e.g. Si, ITO).
Fig. 3
Fig. 3 Absorption modulation results for different material classes, for charge-driven active materials. (a) Normalized absorption, α’ = αneffteff as a function of carrier concentration, n2D (cm−2); (b-c) Optical absorption vs. (b) injected charge, Q' (pCμm−2); and (c) drive voltage, Vd (Volts); respectively. (d-j) Physical device performance parameters to obtain 10dB modulation; (d) Modulator length, L' = L/teff; (e) Switching charge, QSW (C/μm2); (f) Electrical device capacitance, C'g (fF/μm2); (g) Switching energy (energy-per-bit function), U'SW (fJ/μm2); (h) 3-dB modulation speed, f3-dB (THz. μm2); (i) Energy-bandwidth ratio, EBR' (fJ/(Thz. μm4)); and (j) Switching voltage, VSW (Volts) for investigated material classes including quantum dots (QD), single and 3-layer quantum well (SQW, 3QW), Graphene, a transition metal dichalcogenide (TMD) material (WSe2), Silicon, and Indium-Tin-Oxide (ITO). The spacing between the active layer and the gate is dgate = 100 nm and εeff = 10 assumed here.
Fig. 4
Fig. 4 (a-n) Cross-sectional mode profiles for different structures and material classes using FEM analyses, normalized electric field intensity, |E|2 is shown. (o) Corresponding effective cross-sectional modal area, Seff; and (p) effective thickness, teff. The Si, ITO and graphene structures are chosen form our previous work [26,27]. WSe2 structures are the same in dimensions as graphene ones just changing the active material to WSe2, In0.52Ga0.48As QWs are chosen having 5 nm thickness and 470 nm width, with GaAs separate confinement heterostructure (SCH) and barrier layers.
Fig. 5
Fig. 5 (a) 10 dB absorption modulator length, L vs. effective thickness, teff for all the comparable material classes with different broadening. (b-g) Relevant device parameters vs. effective mode areas, S'eff for different effective material broadening, γeff (eV) for all the comparable material classes; (b) Switching charge, QSW (C); (c) Capacitance, C (fF); (d) Switching energy (E/bit function), USW (fJ); (e) 3-dB modulation bandwidth, f3-dB (THz); (f) Energy-bandwidth ratio, EBR (fJ/THz); and (g) Switching voltage, VSW (V). The varying amount of broadening is implicit by the materials shown in the legend corresponding to room temperature, i.e. 300 K, and thermal cooling down to 77 K. The corresponding teff and S'eff for the different modes from the previous section are also marked to aid comparing device performances. dgate = 100 nm. Lowering the gate oxide thickness will increase the energy efficiency through improved electrostatics, but also reduce the modulation speed via increased capacitance. All the different modes considered are marked in (a), whereas the different mode performances are scattered across in (b-g) as the markings correspond to the same x-value in all of them. Best EBR is found for graphene and TMD plasmonic slot waveguide-based modulators.

Tables (1)

Tables Icon

Table 1 Summary of the differential absorption cross sections for different material classes. For parameter definitions refer to the main text.

Equations (78)

Equations on this page are rendered with MathJax. Learn more.

S eff = 1 n eff 2 n 2 (x,y)( E x 2 + E y 2 )dxdy / E a0 2
α(ω)= σ a (ω) WF S eff N 2D = σ a (ω) t eff N 2D
t eff = S eff /WF= S eff ' /W
t eff 1 n eff 2 n 2 (x)( E x 2 + E y 2 )dx / E a0 2
α max (ω)L=σ(ω) N 2D L/ t eff =ln(10)2.302
α min (ω)L=σ(ω)( N 2D δ n 2D )L/ t eff =ln(0.9)0.105
δ n 2D L2.2 t eff /σ(ω)
Q sw =eWLδ n 2D =2.2eW t eff /σ(ω)=2.2e S eff /σ(ω)F
V sw = d gate eδ n 2D ε 0 ε eff =2.2 e ε 0 ε eff t eff L d gate σ(ω) e ε 0 ε eff N 2D d gate
L2.302 t eff / N 2D σ(ω)
C= ε 0 ε eff WL/ d gate =2.3 ε 0 ε eff d gate W t eff N 2D σ a =2.3 ε 0 ε eff d gate S eff N 2D σ a F
f 3dB =1/2πRC d gate ε 0 ε eff N 2D σ a F 14.5 S eff R
U sw = 1 2 Q SW V SW e 2 d gate ε 0 ε eff N 2D S eff σ a (ω)F
EBR= U SW / f 3dB 14.5 e 2 R S eff 2 σ a 2 (ω) F 2
σ QD (ω)= π α 0 n eff F cv γ ( m c 1 m 0 1 )= π α 0 n eff F cv 2 / m 0 γ ( m 0 m c 1 )=1.75× 10 17 c m 2 F cv γ n eff ( m 0 m c 1 )
σ QD (ω)= π α 0 n eff F cv E P ω 2 / m 0 γ 3.5× 10 16 c m 2 F cv ( γ )( ω ) n eff
L QD 2.3 n eff t eff π α 0 N QD γ F cv ( m c 1 m 0 1 )
σ fc (ω)= 4π α 0 n eff m c γ ω 2 + γ 2 = 4π α 0 n eff 2 m 0 ( γ eff ) m 0 m c 7.02× 10 17 c m 2 ( γ eff ) × m 0 m c
σ fc.max (ω)= 4π α 0 n eff m c ω × 1 2 =3.53× 10 17 c m 2 1 ω n eff m 0 m c
α QW = 1 1+ β v π α 0 n eff WF N QW S eff F cv H(ω E g )[1 f c ]
d α QW d n 2D = α QW f c f c E fc d E f d n 2D = σ QW (ω) t eff 1
σ QW (ω)= F cv 1+ β v π α 0 n eff π 2 m c kT exp[ ( E c E f )/kT ][ 1+exp( E f /kT) ] { 1+exp[ ( E c E f )/kT ] } 2
σ QWmax (ω)= F cv 1+ β v π α 0 n eff π 2 2 m c kT 2.75× 10 17 c m 2 1 kT n eff m 0 m c F cv 1+ β v
α QW, max (ω)L= F cv 1+ β v π α 0 n eff N QW L t eff [1 f c,min ]=ln(10)2.302
α QW, min (ω)L= F cv 1+ β v π α 0 n eff N QW L t eff [1 f c,max ]=ln(0.9)0.105
Q SW =eWL( n 2D.max n 2D,min )=eW×2.2 t eff N Q n eff π α 0 1+ β v F cv ×3.2 m c kT π 2 N QW 2.2e S eff σ QW (ω)F
σ QW (ω)= F cv 1+ β v π α 0 n eff π 2 m c 3kT 5.4× 10 17 c m 2 1 3kT n eff m 0 m c F cv 1+ β v
σ QW (ω)= 1 1+ β v π 2 α 0 n eff 2 m c γ eff F cv 5.4× 10 17 c m 2 1 γ eff n eff m 0 m c 1 1+ β v F cv
L QW 2.3 n eff t eff π α 0 N QW 1+ β v F cv
σ gr (ω)= π 2 α 0 n eff × 1 kT exp[ (ω/2 E fc )/kT ] { 1+exp[ (ω/2 E fc )/kT ] } 2 2 v F 2 2 E f
σ gr (ω)= π 2 α 0 n eff × 1 kT 1 4 2 v F 2 ω 9.7× 10 17 c m 2 1 n eff kT
σ gr (ω)= π 2 α 0 n a × 1 γ eff 1 4 2 v F 2 ω 9.7× 10 17 c m 2 1 γ eff
σ ex (ω)=2π α 0 m c γ ex 3.53× 10 17 c m 2 1 γ ex ( m 0 m c 1 )
α QW = π α 0 n eff t eff F cv 1+ β v N QW ( [ exp( π 2 n 2D N QW m c kT )1 ] e E c kT +1 ) 1
α gr = π α 0 n eff t eff 1 e v F π n 2D ω/2 kT +1
α QD = π α 0 n eff t eff F cv 2 N QD m 0 kT kT γ eff ( m 0 m c 1 )( 1 n 2D N QD )
α ex (ω)= 8 α 0 n eff t eff 2 a ex 2 m 0 kT kT γ eff m 0 m c ( 1π a ex 2 n 2D /4 )
α fc (ω)= 4π α 0 n eff t eff m c γ ω 2 + γ 2 n 2D
EBR= U SW / f 3dB =π Q SW 2 R
EBR=π Q SW 2 R~π e 2 R S eff '2 × ( m c m 0 ) 2 ( γ eff ) 2 ×2× 10 17 μ m 4 5× 10 4 R 50Ω S eff '2 μ m 4 × ( m c 0.067 m 0 ) 2 ( γ eff 100meV ) 2 fJ/THz
P= S ¯ z (x,y)dxdy = 1 2 n eff η 0 n 2 (x,y)( E x 2 + E y 2 )dxdy = n eff E a0 2 2 η 0 S eff
g(ω)= 1 π γ Δ ω 2 + γ 2
d N ph (x,y) dt = 2π e 2 4 E eff 2 r 12 2 g(ω) N a (x,y)
dU(x,y) dt =ω d N ph (x,y) dt = e 2 r 12 2 E eff 2 (x,y) 2 ω γ γ 2 Δ ω 2 + γ 2 N a (x,y)
dP dz = active W/2 W/2 dU dt dxdy = e 2 r 12 2 2 ω γ γ 2 Δ ω 2 + γ 2 active W/2 W/2 N a (x,y) E eff 2 (x,y)dxdy
dP dz = e 2 r 12 2 2 ω γ γ 2 Δ ω 2 + γ 2 active W/2 W/2 N a (x,y) E eff 2 (x,y)dxdy N a0 E a0 2 N a0 2 η 0 P/ S eff n eff
S a,eff = active W/2 W/2 N a E eff 2 dxdy / E a0 2 N a0
dP dz = e 2 r 12 2 η 0 n eff ω γ γ 2 Δ ω 2 + γ 2 S a,eff S eff N a0 P= σ a (ω) S a,eff S eff N a0 P
σ a (ω)= e 2 η 0 n eff r 12 2 ω γ γ 2 Δ ω 2 + γ 2 = 4π α 0 n eff r 12 2 ω γ L(ω)
α(ω)= σ a (ω) S a,eff S eff N a0
S a,eff = N 2D N a0 WF
F= active N a (x) N a0 W/2 W/2 E eff 2 (x,y) E a0 2 dydx /W active N a (x) N a0 dx
F= W 1 W/2 W/2 E eff 2 ( x a ,y) E a0 2 dy
α(ω)= σ a (ω) WF S eff N 2D = σ a (ω) t eff N 2D
t eff = S eff /WF= S eff ' /W
t eff 1 n eff 2 n 2 (x)( E x 2 + E y 2 )dx / E a0 2
r 12 = F cv 2 P cv m 0 ω
m 0 m c =1+ 2 P cv 2 m 0 E g E p E g
σ QD (ω)= π α 0 n eff F cv γ ( m c 1 m 0 1 )= π α 0 n eff F cv 2 / m 0 γ ( m 0 m c 1 )=1.75× 10 17 c m 2 F cv γ n eff ( m 0 m c 1 )
ε r (ω,x,y)= ε N e (x,y) e 2 ε 0 m c 1 ω 2 +iωγ
dU(x,y) dt =ω ε 0 ε im (ω,x) E eff 2 (x) 2 = N e (x,y) e 2 m c γ ω 2 + γ 2 E 2 (x,y) 2
σ fc (ω)= 4π α 0 n eff m c γ ω 2 + γ 2 = 4π α 0 n eff 2 m 0 ( γ eff ) m 0 m c 7.02× 10 17 c m 2 ( γ eff ) × m 0 m c
E f =kTln[ exp( π 2 n 2D N QW m c kT )1 ]
d n 2D d E f = N QW m c π 2 1 1+exp( E f /kT)
d n 2D (y) dt = 2π e 2 4 E eff 2 ( x QW ,y) r cv 2 ρ 2D (ω)[1 f c ( E c )]
d n 2D (y) dt = 2π e 2 4 E eff 2 1 2 P cv 2 m 0 2 ω 2 F cv N QW m r π 2 H(ω E g )[1 f c ]
d n 2D (y) dt = 1 1+ β v e 2 4 E eff 2 2ω F cv N QW H(ω E g )[1 f c ]
α QW = 1 1+ β v π α 0 n eff WF N QW S eff F cv H(ω E g )[1 f c ]
ρ 2D (ω)= 1 2π ω v F 2
d n 2D (y) dt = 2π e 2 4 E eff 2 1 2 v F 2 ω 2 1 2π ω v F 2 [1 f c ]= e 2 E eff 2 8 2 ω [1 f c ]
α gr = π α 0 n eff t eff [1 f c ]
d α gr d n 2D = α QW f c f c E fc d E f d n 2D = σ gr (ω) t eff 1
σ gr (ω)= π 2 α 0 n eff × 1 kT exp[ (ω/2 E fc )/kT ] { 1+exp[ (ω/2 E fc )/kT ] } 2 2 v F 2 2 E f
a ex = 2π ε eff ε 0 2 e 2 m r
α ex (ω)=4 σ ex (ω)/π a ex 2 t ' eff
σ ex (ω)=4π α 0 r 12 2 ω γ 2π α 0 γ ( m c 1 m 0 1 )
α(ω, n 2D )=α(ω,0)×(1 n 2D / n bl )= 8 α 0 a ex 2 t ' eff m c γ ( 1π a ex 2 n 2D /4 )= 8 α 0 a ex 2 t eff m c γ σ ex ' n 2D
σ ex (ω)=2π α 0 m c γ ex 3.53× 10 17 c m 2 1 γ ex ( m 0 m c 1 )

Metrics