Abstract

Solar wind magnetosphere ionosphere link explorer (SMILE) scientific satellite is dedicated to observe solar wind-magnetosphere coupling. The key payload, soft X-ray imager (SXI), is designed to map the location, shape, and motion of dayside magnetospheric boundaries by Angel-type lobster-eye optical system. Contrast to traditional Wolter-type X-ray telescope with very narrow field-of-view, the lobster-eye-type optics has a unique capability of providing wide field of view for panoramic imaging with moderate spatial resolution in soft X-ray band. Since the lobster-eye optics focus X-ray by reflecting of the inner walls of the micro-channel array shaped in spherical surface, traditional optical design tools can’t well match to the requirements of simulation for SXI. In this paper, a 3D Angel-type lobster-eye model is designed for simulation of lobster-eye optics and its capability is demonstrated for the applying scenarios including the imaging of point light source, surface light source with uniform and non-uniform intensity distribution. The simulation results are well consistent with those of theoretical estimate.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel joint space mission between European Space Agency (ESA) and Chinese Academy of Sciences (CAS). It is dedicated to observe solar wind-magnetosphere coupling via simultaneous in situ solar/magnetosphere plasma and magnetic field measurements, X-Ray images of the magnetosheath and magnetic cusps, and UV auroral images of global auroral distributions defining system-level consequences (www.mssl.ucl.ac.uk/SMILE). Contrast to previous in situ instruments on solar wind observatories which only provide precise local measurements [1-2], SMILE will achieve panoramic imaging of earth’s magnetosphere for the first time in a highly-inclined, high-apogee elliptical Molniya-type orbit. Soft X-ray Imager (SXI) is one key payload on SMILE. It is a wide field lobster-eye telescope equipped with X-ray sensitive CCD detectors at the focal plane, providing a large spatial coverage and good energy resolution. The SXI’s scientific goal is to observe location, shape, and motion of dayside magnetospheric boundaries, including the bow shock, magnetopause, and cusps in soft X-ray band. X-ray emission results from solar wind charge exchange (SWCX) mechanism [3, 4]. The detectable energy range of SXI is 0.2-5keV. For its application scenario, the field of view must be approximately 5 Earth radii (RE) in size, centred on the dayside boundaries. The spatial resolution should be sufficient to track boundary motion (~6 arcmin). The sensitivity should be sufficient to distinguish magnetosphere, cusps, magnetosheath.

The SXI adopts Angel-type lobster-eye optical system. This optical structure came from reflective eyes of macruran crustaceans like lobsters [5, 6] which consist of numerous square micro-channel arranged over a spherical surface, with each axes of mic-channel pointing to a common center of curvature. It was first proposed to apply in X-ray telescope by Angel in 1979 [7]. Contrast to traditional Wolter-type X-ray telescope with narrow field of view [8], the lobster-eye optics doesn’t have preferred optical axis, meaning same focusing ability in all directions, the FOV can be 360 × 360 degrees in theory. Chapman et al published detailed theoretical treatment to characterize the properties of curved square arrays [9]. Initial demonstrations were made based on flat square channel arrays [10, 11], Peele et al obtained the X-ray focal spot approaching the theory in 1996 [10]. Brunton et al described a Monte Carlo ray-tracing model of non-ideal micro-channel plate [12]. Putkunz et al incorporated orbital motion of the satellite into ray trace [13]. In order to simulate performance of the lobster-eye optics more accurately, many manufacturing errors were considered [14, 15]. Irving et al described many common defects of square micro-channel such as translation, tilt, taper, rotation, twist, non-square and rough walls [14]. Willingale et al introduced significant aberrations that limit the spatial resolution of curved lobster-eye lenses from three aspects: the intrinsic aberrations of geometric structure, intrinsic slumping errors and imperfect manufacturing process [15]. For huge advantage in wide field of view, along with moderate spatial resolution, the lobster-eye optics has been applied to many space mission [16–19]. The flied of view of X-ray imaging all-sky monitor (ASM) on the International Space Station is 162° × 22.5°, using six lobster-eye modules to map almost the complete sky every 90 minute ISS orbit [16]. The lobster-eye optics on MIXS-C performs as a collimator on Bepicolombo which will measure fluorescent X-ray emission from the surface of Mercury [17]. Einstein Probe (EP) is dedicated to time-domain astrophysics working in Soft X-ray band, and the payload Wide-field X-ray Telescope (WXT) consists of 8 lobster-eye modules to provide a FOV of 60° × 60° [19].

SXI will continuously image the region where solar wind encounters the Earth’s magnetosphere and describe the dynamic change of bow shock, the motion of the magnetopause in soft X-ray band. In order to accurately determine the performance of SXI, the analysis of imaging quality of lobster-eye optics is essential. The complex geometrical configuration of lobster-eye optics and constrain of grazing-incidence reflection condition make the traditional optical design tools no longer applicable. In this paper, we build an ideal lobster-eye mathematical model. The reflectivity in X-ray range is relatively high only when the incident angle is close to 90 degrees. Thus only reflection effect is considered for grazing-incidence X-rays in our model. The structure parameters including radius of curvature, size of micro-channel (width, length and thickness), supporting frame, reflective material and surface roughness are considered. Each parameter can be freely adjusted for later imaging quality analysis and parameters optimization. A geometrical ray-tracing method is presented based on this model shown in Section 2. Compare to previous simulations [19, 20], besides the final location and energy distribution on image plane, the reflection information of rays is also retained. A general focusing efficiency of micro-channel is simulated based on reflection information. In addition, the maximum number of reflection that rays suffer in micro-channel is not limited in our simulation to comprehensively reflect the imaging principle of lobster-eye optics. The validation of established lobster-eye model and ray-tracing method are shown in Section 3 by imaging simulation of point and surface light source, and important parameters such as effective area, angular resolution and field of view are discussed. Then we demonstrate preliminary application of SXI, taking two MHD images as input which describe the different solar wind conditions in a magnetic storm event. We end the paper with conclusion in Section 4.

2. Theory and method

2.1 Imaging principle of Angel-type lobster-eye optical system

The Angel-type lobster-eye optical model consists of a large number of micro-channels arranged over a spherical surface as is shown in Fig. 1(a), reflecting grazing-incidence X-rays to image surface. The imaging principle has been discussed a number of times [7, 9, 19]. When X-rays pass through the lobster-eye model, a cross-shaped image is formed on image surface as is shown in Fig. 1(b). The point S represents a point light source. There are three classes of rays on image surface: rays who suffer both odd-time reflections on horizontal and vertical wall (like ray OO) form true focal spot in the center region of the cross, rays reflected odd-time in one direction and even-time in its vertical direction (like rays OE and EO) form two arms, other rays with both even-time reflections (like ray OO) form the background.

 figure: Fig. 1

Fig. 1 (a) The structure of Angel-type lobster-eye optics. (b) The imaging principle of Angel-type lobster-eye optical system.

Download Full Size | PPT Slide | PDF

The relationship between object distance ls and the image distance li was derived as below [9, 23].

1li1ls=1f=2R,
where f is the focal length of system which is equal to half of the radius of curvature R. The distance ls and li are defined as positive when the light source is in front of the model and the image surface is behind the model as is shown in Fig. 2(a). The imaging principles for multiple light sources with finite and infinite object distance are shown in Fig. 2. According to Eq. (1), rays coming from different directions will focus on a sphere, the radius of curvature of image surface is equal to R/2 when the object distance is infinite like in parallel light source [Fig. 2(b)].

 figure: Fig. 2

Fig. 2 One-dimensional schematic diagram of lobster-eye optics for multiple point light sources in (a) finite object distance and (b) infinite object distance.

Download Full Size | PPT Slide | PDF

The transverse magnification of the image can be calculated from Fig. 2(a).

M=CDAB=RliR+ls=lils.
The image distance li is less than the object distance ls according to Eq. (1). So the transverse magnification is less than 1 and the image we finally get is erected, shrunken and real.

Lobster-eye optics is a device for grazing-incidence optical system. For most incident angles, the reflectivity in soft x-ray band is very low. The value become much larger when the incidence angle is close to 90 degrees because of the total reflection. Figure 3 shows a parallel beam of light illuminating the lobster-eye model in the horizontal direction. The line AO is an optical axis. R is the radius of curvature of lobster-eye model, θc is the grazing-incidence critical angle, l and w are the length and width of each micro-channel respectively.

 figure: Fig. 3

Fig. 3 One-dimensional schematic diagram of geometric collection area and the angle range of rays with 0-time reflection.

Download Full Size | PPT Slide | PDF

In Fig. 3, the grazing-incidence angle increases gradually as the incident ray moves away from the optical axis. Once the angle is greater than grazing-incidence critical angle θc, the reflective efficiency will drop sharply. In this paper, we only consider the area where the grazing-incidence angle is less than θc. The area is called geometric collection area Sgeo and it can be calculated as below.

Sgeo=Leff2=[2(R+l2)sinθc]2.

The probability of rays which pass through the model with no reflection is smaller and smaller as the grazing-incidence angle increases. On image surface, these rays (green lines) will distribute in an angle range from –Φ0 to Φ0. This angle range can be calculated as below.

ϕ0arcsin{R+l/2R/2sin[arctan(wl)arctan(wR+l/2)]},
where R is the radius of curvature of lobster-eye system, l and w represent the length and width of micro-channel respectively.

The effective area Aeff is an important parameter in lobster-eye optics which can comprehensively reflect the collection and transmission capabilities of rays. For a given reflective material, the effective area of spherical Angel-type lobster-eye model can be calculated as [23],

Aeff={2[0w/llRθw+tRreflectivitydθ+w/l2w/l(2wlθ)Rw+tRreflectivitydθ]}2,
where t is the thickness of micro-channel and Rreflectivity is reflectivity. In X-ray band, the grazing-incidence critical angle θc and reflectivity Rreflectivity are described as below [24].
θc=2δ.
Rreflectivity=(θA)2+B2(θ+A)2+B2e(4πσsinθλ)2,
where A=((θ2θc2)2+(2β)2)1/2+θ2θc22, B=((θ2θc2)2+(2β)2)1/2(θ2θc2)2. And θ is the grazing-incidence angle, λ is wavelength of incident ray, σ is roughness factor of reflective material and δ, β are scattering factors which can be accessed online (www.cxro.lbl.gov). In simulation, the effective area can be defined as multiplication of geometrical illuminated area of model and amount ratio of focal rays on image surface to total incident rays.

The spatial resolution of lobster-eye optics characterizes the smallest spatial distance of two sources that a telescope can distinguish. For SXI, the spatial resolution should be sufficient to track boundary motion of magnetopause. The spatial resolution is decided by the width of focal spot on image surface. It is basically the same as the width of micro-channel [21, 23], but with finite channel length, the value is greater [21].

SXI will observe the location, shape and motion of dayside magnetospheric boundries, including the bow shock, magnetopause, and cusps. The field of view (FOV) of instrument is required to be approximately 5 Earth radii (RE) in size, centred on the dayside boundaries. The field of view is determined by the angle between the corner micro-channel.

2.2 Method of ray tracing

2.2.1 The establishment of Angel-type lobster-eye model

Traditional optical design tool such as ZEMAX is not adopted because of the following reasons: (a) The complex configuration of lobster-eye optics. A 40mm × 40mm lobster-eye optics contains about millions of micro-channels with width of 20μm; (b) Traditional optical software have defects in the simulation of grazing-incidence optical system. (c) Setting of complex light source. We need customized light source with complex shape and intensity distribution as input conditions for imaging simulation, such as the 'smile' surface light source [Fig. 12], images that SXI expected to obtain.

Thus we build an ideal Angel-type lobster-eye mathematical model. The system coordinate is shown in Fig. 4.

 figure: Fig. 4

Fig. 4 The coordinate system diagram of Angel-type lobster-eye model.

Download Full Size | PPT Slide | PDF

The z axis goes through the center of spherical lobster-eye model and spherical image plane. The lobster-eye model and image surface are both on negative axis of the z axis, symmetrical around the x axis and y axis. They have same center of curvature which is coincident with the origin of the coordinates. The whole Angel-type lobster-eye model can be seen as an orthogonal combination of horizontal and vertical reflective mirror arrays. Each point on incident surface can be easily described as is shown in Fig. 5.

 figure: Fig. 5

Fig. 5 The angular coordinate of intersection point of the incident ray and the micro channel.

Download Full Size | PPT Slide | PDF

A is the intersection point of the incident ray and the spherical surface. Its coordinate can be described by three surface: the red surface which is the plane with the angular position θx, rotated by vertical plane YOZ around the y axis, the blue surface with angular position θy, rotated by horizontal plane XOZ around the x axis and the virtual spherical shell that all micro-channels arranged on. Therefore, the angular coordinate (θx, θy) can give an accurate location for point A. The angular position θx is defined positive when the reflective wall is on the left of the vertical plane YOZ and negative when it is on the right. The angular position θy is defined positive when the reflective wall is above the horizontal plane XOZ and negative when it is below the plane.

We make a coordinate (i, j) for each micro channel. The letter i represents the number of row of the micro-channel in one lobster-eye lens. From top to bottom, i equals 1, 2, 3… respectively. The letter j represents the number of column of the micro-channel. From left to right, j equals 1, 2, 3… respectively. Each micro channel defines an angle range from θhmin (j) to θhmax (j) in horizontal direction and from θvmin (i) to θvmax (i) in vertical direction by the method expressed in Fig. 5. Then each micro-channel can be located by these angle ranges.

In practice, several lobster-eye lenses need to be put together to obtain wider field of view. The lobster-eye lenses are amounted on a spherical frame. The thickness of supporting frame is also considered in our model. We make a coordinate (I, J) for each lobster-eye lens using similar numbering rules for micro-channel and corresponding angle range θHmin (J), θHmax (J), θVmin (I) and θVmax (I) can be similarly calculated. The light source and image plane are respectively set front and behind the lobster-eye model. The relationship of object distance and image distance follows Eq. (1).

2.2.2 Process of ray-tracing

Here, we present main ray-tracing process in Fig. 6.

 figure: Fig. 6

Fig. 6 The flow chart for geometrical ray-tracing.

Download Full Size | PPT Slide | PDF

There are two key steps in this process. The first step is to determine which specific micro- channel that the incident ray goes into. As method shown in Subsection 2.2.1, we can calculate the angular coordinate of intersection point of the incident ray and the spherical surface (θx, θy). Based on pre-calculated angle range of lobster-eye lens, we can look for the number of lobster-eye lens (I, J) that incident ray arrives at by inequalities (8).

{θHmin(J)θxθHmax(J)θVmin(I)θyθVmax(I)
If all lobster-eye lenses do not satisfy inequalities (8), it indicates the ray doesn’t go into the range of model or is absorbed by supporting frame. It will be discarded in our simulation. After finding the lobster-eye lens, specific number of micro-channel (i, j) can be determined by inequalities (9).
{θhmin(j)θxθhmax(j)θvmin(i)θyθvmax(i).
If there is no micro-channel that satisfies the above judgement, the incident ray is absorbed by the opaque region between two adjacent micro-channels and it will be discarded.

The other key step is to clarify the number of reflection that incident ray suffers in micro-channel. First, we need to determine if the incident ray will pass through the micro-channel directly.

As is shown in Figs. 7(a), an incident ray goes into a micro-channel (i, j). We respectively calculate four angular coordinates of intersection points (θx’, θy) of the incident ray and four reflective walls including their extended surface and the distance from the four intersection points to the origin of the coordinates dcross as is shown in Fig. 7(b). Then the incident ray will be judged by inequalities (10).

{θhmin(j)θx'θhmax(j)θvmin(i)θy'θvmax(i)Rl/2dcrossR+l/2.
The first two conditions show that the angular coordinate of intersection point (θx’, θy) should meet the angle range of the micro channel (i, j). The third shows the incident ray must be reflected in the inner wall of the micro-channel. If no wall satisfies the inequality group (10), it indicates the incident ray passes through the micro-channel directly and we record its information on image surface. Once the wall is found, the reflectivity is considered to determine if the ray will be reflected finally. We generate a random number between 0 and 1 and compare it with the reflectivity. If the latter is greater, the ray will be reflected, keeping the energy constant and updating the information of ray after reflection including direction and starting coordinate. Then we determine once again whether the reflected ray will be reflected again by other walls. The judgment circulates until the ray goes out of the micro channel. If the random number is greater, the ray will be discarded.

 figure: Fig. 7

Fig. 7 Reflective process of incident rays in the micro-channel.

Download Full Size | PPT Slide | PDF

Based on established lobster-eye model and the ray-tracing method, the complete reflection information of each incident ray such as location and number of reflection can be saved. The parameters that affect imaging quality such as radius of curvature and size of micro-channel can be controlled freely, and complex light sources can be input. Thanks to the parallel design of codes, simulation efficiency can be greatly improved. In addition, for a relatively simple lobster-eye structure, the Schmidt-type [25], the presented ray-tracing method is also available with some changes in reflection judgement process.

3. Simulation

3.1 Verification of ray tracing method

3.1.1 Ideal point light source imaging

Basic parameters of the Angel-type lobster-eye optical model are shown in Table 1.

Tables Icon

Table 1. Parameters of Angel-type lobster-eye model

To verify the feasibility of the ray-tracing method described in Subsection 2.2, the field of view is set to 30° × 30° in our simulation to totally cover the geometrical collection area. Limited by current manufacturing technology, we need to put 81 pieces of lobster-eye lenses together in nine rows and nine columns to meet the requirement of the field of view. The width of each lobster-eye lens is about 40 mm and its thickness is 1 mm. The reflective material is Iridium (Ir) with surface roughness of 0.5nm. The energy of each ray is 1 keV. With these parameters, the grazing-incidence critical angle is 3.9677 degrees calculated by Eq. (6) and the geometrical collection area Sgeo is 103.86 × 103.86 mm2 calculated by Eq. (3).

An ideal monochromatic point light source is set on the negative z axis, 10 km away from the model, emitting 1e + 6 rays. The illumination area is set to 120 × 120 mm2 to ensure all geometric collection region can be covered. The image distance li is 374.986 mm calculated by Eq. (1). Thus the radius of the image surface Rimage is 375.014 mm. Because the image surface is spherical, we record the final location information of rays by angular coordinate. The simulation results for point light source imaging are shown in Fig. 8.

 figure: Fig. 8

Fig. 8 The simulation results of an ideal point light source imaging. (a) The scatter diagram of rays on image surface with reflection information. (b) The larger version of center region in Fig. 8(a), showing more details of the focal spot. (c) The energy distribution on image surface. The z-axis represents the counts of rays per 0.5° × 0.5° pixel. (d) The counts statistics per 0.01° × 0.01° pixel in the directions x = 0 and y = 0.

Download Full Size | PPT Slide | PDF

The scatter diagram on image plane is shown in Fig. 8(a). Each dot represents a ray. Different color represents different number of reflection that rays suffer in micro-channels. The rays with different number of reflection are reflected to different regions. The maximum number of reflection is 4 under the conditions in Table 1. We can clearly see a cross-shaped image. Two arms are formed by rays with 1-time (green) and 3-time (blue) reflections in the micro-channel. The rays with 2-time reflections (red) and 4-time reflections (purple) distribute in several regions. Some of them form true focal spot which suffer both odd number of reflections in micro-channel. The focal rays with 4-time reflections distribute outside of focal rays with 2-time as is shown in Fig. 8(b) which is the larger version of center region of Fig. 8(a). Other rays with 2-time and 4-time reflection form a part of background, these rays are reflected both even times in horizontal and vertical walls. The rays with 0-time reflection distribute in the black region which is gradually sparse from the center to the outside. The horizontal angle range of black region is −2.272 degrees to 2.231 degrees, and the vertical angle range is −2.252 degrees to 2.243 degrees. The ranges are well consistent with the theoretical results, −2.2905 degrees to 2.2905 degrees, calculated by Eq. (4). In addition, we notice that there are two horizontal and two vertical stripes in Fig. 8(a), they represent the thickness of splicing lobster-eye lenses. In this angle range, the incident rays will be absorbed. In Fig. 8(c), we show the energy distribution of the image surface with pixel of 0.5 × 0.5 degrees. We can obviously see the amount of rays in focal region is much greater than that in other regions. To more intuitively compare the intensity of two arms and the focal point, we record the number of rays in pixel of 0.01 × 0.01 degrees in the directions x = 0 and y = 0 respectively as is shown in Fig. 8(d). The amount of rays in focal region is three orders of magnitude higher than that of two arms. We can also note that the amount of rays with 3-time reflections is comparable to amount of rays with 1-time reflection, about a third less. This indicates that these rays shouldn’t be ignored and they are helpful for image reconstruction.

The focusing efficiency is a basic factor for studying lobster-eye system [22]. Based on the scatter diagram with reflection information of each ray, the true focal rays can be easily selected from Fig. 8(a). Then a general focusing efficiency of micro-channel with different position can be quickly mapped by coordinates of these focal rays on incident surface as is shown in Fig. 9. Figure. 9(a) is the scatter diagram of all focal rays on incident surface. The focal rays distribute in four regions due to the symmetrical structure of lobster-eye optics. The degree of concentration of these rays is shown in Fig. 9(b) after normalization. It can generally characterize the focusing efficiency of micro-channel. The shape and distribution are generally consistent with theoretical calculation [19, 22].

 figure: Fig. 9

Fig. 9 (a) Scatter diagram of focal rays on incident surface. (b) The focusing efficiency of micro-channels.

Download Full Size | PPT Slide | PDF

The effective area of focal spot is related to some parameters such as radius of curvature, duty ratio of micro-channel and ratio of length to width. To compare with theoretical results [Eq. (5)], we simulate the effective area using one lobster-eye lens under the parameters of micro-channel in Table 1. In Fig. 10(a), we show the effective area varying with energy of incident X-ray from 0.2keV to 5keV. The simulation results are well consistent with the theoretical calculations. As the energy of incident ray increases, the effective area gradually decreases. This is because the reflectivity decrease with increasing photon energy.

 figure: Fig. 10

Fig. 10 (a) The comparison of effective area in simulation and theory. (b) The width of focal spot varies with ratio of length to width of micro-channel.

Download Full Size | PPT Slide | PDF

The spatial resolution is decided by width of focal spot. And the focal spot is mainly affected by ratio of length to width of micro channel. Thus we simulate imaging of a same point light source and record the width of focal spot under different ratio of length to width as is shown in Fig. 10(b). The width of micro-channel is keeping constant (20 μm for red line and 40 μm for blue line) while the ratio is from 20 to 200. The results shown in Fig. 10(b) indicate that the greater the ratio of length to width is, the smaller the width of focal spot is. When the ratio is about greater than 120, the width of focal spot is almost same as the width of micro-channel. The width of focal spot is 154.7 μm based on parameters of Table 1 with a ratio of 50:1, giving an angular resolution 1.4 arc minutes.

3.1.2 “Hello” shaped surface light source with uniform intensity distribution

Based on the simulation results of single point light source, we extend the light source to a ‘Hello’ shaped surface with uniform intensity distribution as is shown in Fig. 11(a). The source ‘Hello’ is on a plane P which is vertical to z axis and symmetrical both on x axis and y axis. The plane P is also 10 kilometers away from the lobster-eye model. The angle range of ‘Hello’ is from −0.9341 degrees to 0.9911 degrees in horizontal direction and from −0.3393 degrees to 0.5182 degrees in vertical direction. The red region is the surface light source. We generate ten thousand dots in this region and regard each red dot as a point light source. Therefore, the surface light source imaging is transformed to a collection of point light sources imaging. In red region, each dot emits two hundred rays as the way shown in Fig. 2(a). The energy of each ray is still 1keV and the illumination area of each dot is 120 × 120 mm2 on model. The image distance is 374.986 mm calculated by Eq. (1). The size of each pixel on image surface is 0.01° × 0.01°. The parameters of lobster-eye model are still following the Table 1.

 figure: Fig. 11

Fig. 11 Imaging simulation of ‘Hello’ surface light source with uniform intensity distribution. (a) shows light source surface. (b) shows the counts statistics of rays per 0.01° × 0.01° pixel on image surface.

Download Full Size | PPT Slide | PDF

In Fig. 11(b), we show intensity distribution of image surface with pixel of 0.01 × 0.01 degrees. We can clearly see an erected ‘Hello’ there. Because we the angular coordinate is used, the angle range of ‘Hello’ on image surface and light source surface should be the same. The angle range of ‘Hello’ on image surface is −0.93 degrees to 0.99 degrees in horizontal direction and −0.34 degrees to 0.52 degrees in vertical direction. The image results are well consistent with the light source and prove the ray-tracing method is correct and effective for surface light source image.

3.2 Preliminary simulation of SXI

Based on imaging simulations of point light source and surface light source shown above, we do some preliminary simulations for SXI. In Fig. 12, we present two MHD simulation images which describe X-ray intensity distribution of dayside magnetosphere for a magnetic storm event occurred on September 12, 2014. They are the images that SXI expected to obtain. The solar wind blows from right and interacts with the Earth’s dayside magnetosphere. Figure. 12(a) describes the X-ray intensity when solar wind just encounters the earth’s magnetosphere. The X-ray radiation is weak at this moment. The MHD simulation conditions at this time include: solar wind speed Vx = 420.41 km/s, and Vy = Vz = 0; interplanetary magnetic field (IMF) Bx = 0, By = 8.56 nT and Bz = −0.07 nT; Plasma number density Nsw 4.54 cm−3. As the solar wind travels, the magnetopause was rapidly compressed toward earth and the intensity of X-ray radiation increases obviously. Figure 12(b) described the X-ray intensity when interplanetary magnetic field (IMF) turns from northward to southward. In this process, the magnetopause is closer to earth due to the magnetic reconnected in dayside magnetopause and the X-ray intensity in magnetosheath and cusps increase. The MHD simulation conditions at this time include: solar wind speed Vx = 641.12 km/s, and Vy = Vz = 0; interplanetary magnetic field (IMF) Bx = 0, By = 5.48 nT and Bz = −11.68 nT; plasma number density Nsw 23.74 cm−3. The integration time of two images are both 300 seconds.

 figure: Fig. 12

Fig. 12 MHD simulation images describing the soft X-ray intensity distribution in a magnetic storm event with different solar wind conditions. The angle range is −30 to 30 degrees both in x-axis and y-axis. The size of each pixel is 0.5 × 0.5 degrees. (a) The X-ray intensity distribution when the solar wind is weak. (b) The X-ray intensity distribution when the solar wind is strong.

Download Full Size | PPT Slide | PDF

We regard the two images as two surface light sources with non-uniform intensity distribution and input them to the lobster-eye model. The image looks like a smiling face and thus we call it “smile” surface light source. The ‘mouth’ represents the location of the bow shock and two ‘eyes’ represent the magnetospheric cusps. The coordinate of satellite and observation position are respectively (8.58 RE, 5.16 RE, 17.03 RE) and (8.48 RE, 0, 0) in the Geocentric Solar-Ecliptic (GSE) coordinate system (RE is the radius of Earth). The intensity values in Fig. 12(a) and 12(b) are simulated every 0.5 degrees both in horizontal and vertical directions. There are 121 × 121 intensity values in total. Each intensity value represents the intensity of a grid with a size of 0.5 × 0.5 degrees. In our simulation, we regard each grid as a point light source, and the monochromatic soft X-rays are emitted from the center position of the grid. The whole surface consists of 121 × 121 point light sources, symmetrically distributed around the x direction and y direction.

The number of rays, N, emitted from each point light source, can be calculated as below:

N=IpointSpointTΩE0,
where Ipoint and Spoint respectively represent the intensity and area of each grid, T is total integration time, E0 is the energy of each ray, and Ω is the solid angle of emitting X-rays for each point light source which cover the geometrical collection area of the lobster-eye model in our simulation.

The light source surface is 17.7984 RE away from the model calculated by the coordinates of satellite and observation position. It is so far from the model that the image distance we set is 375 mm according to Eq. (1). The energy of each ray is 1keV. The simulation results are shown in Fig. 13.

 figure: Fig. 13

Fig. 13 The ‘smile’ surface light source imaging. Figure 13(a) and Fig. 13(c) show the intensity distribution per 1° × 1° pixel on image surface. (b) The comparison of intensity distribution on Fig. 13(a) and Fig. 12(a) in the directions x = 0 and y = 0 after intensity normalization. Similarly, Fig. 13(d) corresponds to the comparison of Fig. 13(c) and Fig. 12(b) in the directions x = 0 and y = 0.

Download Full Size | PPT Slide | PDF

In Fig. 13 have shown the simulation results of ‘smile’ surface light source imaging under weak and strong solar wind conditions. Overall, the location, shape and intensity distribution on image surface [Fig. 13(a) and 13(c)] and light source surface [Fig. 12(a) and 12(b)] are respectively in good agreement. The amount of rays at the edge of image surface is much less. That is because the lobster-eye model can only collect part of rays emitted by the marginal point light source. To see more details, we normalize the intensity distribution on image surface and light source surface, and compare them in directions x = 0 and y = 0 as are shown in Fig. 13(b) and 13(d). The blue lines represent the intensity of simulation results and the red lines represents that of light source surface. We can see they are basically consistent with each other. The agreement of blue line and red line is better in Fig. 13(d) than that in Fig. 13(b), this is because when radiation is stronger, the lobster-eye optical model can collect more rays.

4. Conclusion

The payload Soft X-ray Imager (SXI) on SMILE will map the location, shape, and motion of dayside magnetospheric boundaries by lobster-eye optics. To characterize the performance of SXI, we build an ideal 3-D Angel-type lobster-eye model. Each reflective wall of micro-channel can be accurately described by an angle range. All geometrical parameters such as radius of curvature and size of micro-channel (width, length and thickness) can be freely adjusted for performance analysis. A geometrical ray-tracing method with no limitation on maximum number of reflection is proposed based on this model. Complete reflection information of each ray is saved in whole imaging process to show more details of imaging principle of lobster-eye optics. For validation, the imaging simulation for an ideal point light source is done. The results including scatter diagram, intensity distribution, general focusing efficiency of micro-channel with position, effective area with energy of x-ray and spatial resolution are given. They show good agreement with theory. The simulation method is also applied to simulation surface light source with uniform intensity (‘Hello’ source) and non-uniform intensity (‘smile’ source). The shape, location and energy distribution on image surfaces are well consistent with those on corresponding light source surfaces. The studies presented in this paper are essential for better understanding of SXI and lay a solid foundation for imaging performance analysis and parameter optimization later. However, there are still some factors need to be considered such as non-monochromatic light source and manufacturing errors of micro-channel to more accurately characterize the imaging quality of SXI in the future.

Funding

Strategic Priority Research Program of Chinese Academy of Sciences (XDA04050101); National Key Scientific Instrument and Equipment Development Project (2012YQ13012509).

References and links

1. C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013). [CrossRef]  

2. E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008). [CrossRef]  

3. T. E. Cravens, “X-ray emission from comets,” Science 296(5570), 1042–1045 (2002). [CrossRef]   [PubMed]  

4. T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).

5. K. Vogt, “Zur Optik des Flusskrebsauges,” Z. Naturforsch., C, Biosci. 30(5), 691 (1975). [PubMed]  

6. M. F. Land, “Animal eyes with mirror optics,” Sci. Am. 239(6), 126–134 (1978). [CrossRef]  

7. J. R. P. Angel, “Lobster Eyes As X-Ray Telescopes,” Astrophys. J. 233(1), 364–373 (1979). [CrossRef]  

8. H. Wolter, “Mirror systems with grazing incidence as image-forming optics for X-rays,” Ann. Phys. 10(6), 94–114 (1975).

9. H. N. Chapman, K. A. Nugent, and S. W. Wilkins, “X-ray focusing using square channel-capillary arrays,” Rev. Sci. Instrum. 62(6), 1542–1561 (1991). [CrossRef]  

10. A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt. 35(22), 4420–4425 (1996). [CrossRef]   [PubMed]  

11. G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

12. A. N. Brunton, G. W. Fraser, J. E. Lees, and I. C. E. Turcu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36(22), 5461–5470 (1997). [CrossRef]   [PubMed]  

13. C. T. Putkunz and A. G. Peele, “Detailed simulation of a Lobster-eye telescope,” Opt. Express 17(16), 14156–14165 (2009). [CrossRef]   [PubMed]  

14. T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001). [CrossRef]  

15. R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

16. G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002). [CrossRef]  

17. G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010). [CrossRef]  

18. M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015). [CrossRef]   [PubMed]  

19. D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

20. D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

21. A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998). [CrossRef]  

22. L. Su, W. Li, M. Wu, Y. Su, C. Guo, N. Ruan, B. Yang, and F. Yan, “Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength,” Appl. Opt. 56(22), 6267–6271 (2017). [CrossRef]   [PubMed]  

23. V. Tichy, R. Hudec, and M. Barbera, “Analytical description of lobster eye and similar multi-foil optics,” Proc. SPIE 9510, 95100 (2015).

24. A. G. Peele, “Investigation of etched silicon wafers for lobster-eye optics,” Rev. Sci. Instrum. 70(2), 1268–1273 (1999). [CrossRef]  

25. W. K. H. Schmidt, “A proposed X-ray focusing device with wide field of view for use in X-ray astronomy,” Nucl. Instrum. Methods 127(2), 285–292 (1975). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
    [Crossref]
  2. E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008).
    [Crossref]
  3. T. E. Cravens, “X-ray emission from comets,” Science 296(5570), 1042–1045 (2002).
    [Crossref] [PubMed]
  4. T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).
  5. K. Vogt, “Zur Optik des Flusskrebsauges,” Z. Naturforsch., C, Biosci. 30(5), 691 (1975).
    [PubMed]
  6. M. F. Land, “Animal eyes with mirror optics,” Sci. Am. 239(6), 126–134 (1978).
    [Crossref]
  7. J. R. P. Angel, “Lobster Eyes As X-Ray Telescopes,” Astrophys. J. 233(1), 364–373 (1979).
    [Crossref]
  8. H. Wolter, “Mirror systems with grazing incidence as image-forming optics for X-rays,” Ann. Phys. 10(6), 94–114 (1975).
  9. H. N. Chapman, K. A. Nugent, and S. W. Wilkins, “X-ray focusing using square channel-capillary arrays,” Rev. Sci. Instrum. 62(6), 1542–1561 (1991).
    [Crossref]
  10. A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt. 35(22), 4420–4425 (1996).
    [Crossref] [PubMed]
  11. G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).
  12. A. N. Brunton, G. W. Fraser, J. E. Lees, and I. C. E. Turcu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36(22), 5461–5470 (1997).
    [Crossref] [PubMed]
  13. C. T. Putkunz and A. G. Peele, “Detailed simulation of a Lobster-eye telescope,” Opt. Express 17(16), 14156–14165 (2009).
    [Crossref] [PubMed]
  14. T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001).
    [Crossref]
  15. R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).
  16. G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
    [Crossref]
  17. G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
    [Crossref]
  18. M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
    [Crossref] [PubMed]
  19. D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).
  20. D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).
  21. A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
    [Crossref]
  22. L. Su, W. Li, M. Wu, Y. Su, C. Guo, N. Ruan, B. Yang, and F. Yan, “Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength,” Appl. Opt. 56(22), 6267–6271 (2017).
    [Crossref] [PubMed]
  23. V. Tichy, R. Hudec, and M. Barbera, “Analytical description of lobster eye and similar multi-foil optics,” Proc. SPIE 9510, 95100 (2015).
  24. A. G. Peele, “Investigation of etched silicon wafers for lobster-eye optics,” Rev. Sci. Instrum. 70(2), 1268–1273 (1999).
    [Crossref]
  25. W. K. H. Schmidt, “A proposed X-ray focusing device with wide field of view for use in X-ray astronomy,” Nucl. Instrum. Methods 127(2), 285–292 (1975).
    [Crossref]

2017 (2)

L. Su, W. Li, M. Wu, Y. Su, C. Guo, N. Ruan, B. Yang, and F. Yan, “Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength,” Appl. Opt. 56(22), 6267–6271 (2017).
[Crossref] [PubMed]

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

2016 (1)

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

2015 (3)

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).

V. Tichy, R. Hudec, and M. Barbera, “Analytical description of lobster eye and similar multi-foil optics,” Proc. SPIE 9510, 95100 (2015).

2014 (1)

D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

2013 (1)

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

2010 (1)

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

2009 (1)

2008 (1)

E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008).
[Crossref]

2002 (1)

T. E. Cravens, “X-ray emission from comets,” Science 296(5570), 1042–1045 (2002).
[Crossref] [PubMed]

2001 (1)

T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001).
[Crossref]

1999 (1)

A. G. Peele, “Investigation of etched silicon wafers for lobster-eye optics,” Rev. Sci. Instrum. 70(2), 1268–1273 (1999).
[Crossref]

1998 (1)

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

1997 (1)

1996 (1)

1993 (1)

G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

1991 (1)

H. N. Chapman, K. A. Nugent, and S. W. Wilkins, “X-ray focusing using square channel-capillary arrays,” Rev. Sci. Instrum. 62(6), 1542–1561 (1991).
[Crossref]

1979 (1)

J. R. P. Angel, “Lobster Eyes As X-Ray Telescopes,” Astrophys. J. 233(1), 364–373 (1979).
[Crossref]

1978 (1)

M. F. Land, “Animal eyes with mirror optics,” Sci. Am. 239(6), 126–134 (1978).
[Crossref]

1975 (3)

H. Wolter, “Mirror systems with grazing incidence as image-forming optics for X-rays,” Ann. Phys. 10(6), 94–114 (1975).

K. Vogt, “Zur Optik des Flusskrebsauges,” Z. Naturforsch., C, Biosci. 30(5), 691 (1975).
[PubMed]

W. K. H. Schmidt, “A proposed X-ray focusing device with wide field of view for use in X-ray astronomy,” Nucl. Instrum. Methods 127(2), 285–292 (1975).
[Crossref]

Anand, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Angel, J. R. P.

J. R. P. Angel, “Lobster Eyes As X-Ray Telescopes,” Astrophys. J. 233(1), 364–373 (1979).
[Crossref]

Anttila, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Ashcroft, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Bannister, N. P.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Barbera, M.

V. Tichy, R. Hudec, and M. Barbera, “Analytical description of lobster eye and similar multi-foil optics,” Proc. SPIE 9510, 95100 (2015).

Benkoff, J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Black, K.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Bland, P.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Borozdin, K. N.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Bowyer, A.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Bradley, A.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Bridges, J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Brown, C.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Brumby, S. P.

T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001).
[Crossref]

Brunton, A. N.

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

A. N. Brunton, G. W. Fraser, J. E. Lees, and I. C. E. Turcu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36(22), 5461–5470 (1997).
[Crossref] [PubMed]

G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Bulloch, C.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Bunce, E. J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Carpenter, J. D.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Carter, J. A.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Chapman, H. N.

H. N. Chapman, K. A. Nugent, and S. W. Wilkins, “X-ray focusing using square channel-capillary arrays,” Rev. Sci. Instrum. 62(6), 1542–1561 (1991).
[Crossref]

Chiao, M. P.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Chornay, D. J.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Christense, U.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Collier, M. R.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Cravens, T. E.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

T. E. Cravens, “X-ray emission from comets,” Science 296(5570), 1042–1045 (2002).
[Crossref] [PubMed]

Deines-Jones, P.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Eckersley, S.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Escoubet, C. P.

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

Evans, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Fabian, A. C.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Fairbend, R.

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Feasey, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Feldman, C. H.

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

Feller, W. B.

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

Fraser, G. W.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

A. N. Brunton, G. W. Fraser, J. E. Lees, and I. C. E. Turcu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36(22), 5461–5470 (1997).
[Crossref] [PubMed]

G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Friis-Christensen, E.

E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008).
[Crossref]

Gabel, K.

Galeazzi, M.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Giannini, F.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Goldstein, M. L.

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

Guo, C.

Haagmans, R.

E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008).
[Crossref]

Hapgood, M.

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

Hermann, S.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Hesse, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Hilchenbach, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Hudec, R.

V. Tichy, R. Hudec, and M. Barbera, “Analytical description of lobster eye and similar multi-foil optics,” Proc. SPIE 9510, 95100 (2015).

Hunter, S. D.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Huovelin, J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Irving, T. H.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Irving, T. H. K.

T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001).
[Crossref]

Jahoda, K.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Jorden, T.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Joy, K.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Kaipiainen, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Keller, J. W.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Kitchingman, I.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Knudsen, D.

E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008).
[Crossref]

Koutroumpa, D.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Kujawski, J.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Kuntz, K.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Laakso, H.

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

Land, M. F.

M. F. Land, “Animal eyes with mirror optics,” Sci. Am. 239(6), 126–134 (1978).
[Crossref]

Lawrence, A.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Lechner, P.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Lee, J. E.

G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

Lees, J. E.

Li, H.

D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

Li, W.

Ling, Z.

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

Lühr, H.

E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008).
[Crossref]

Lutz, G.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Malkki, A.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Martin, A. R.

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

Martindale, A.

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Masson, A.

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

McHardy, I. M.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Muinonen, K.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Naranen, J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Nugent, K.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Nugent, K. A.

T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001).
[Crossref]

A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt. 35(22), 4420–4425 (1996).
[Crossref] [PubMed]

H. N. Chapman, K. A. Nugent, and S. W. Wilkins, “X-ray focusing using square channel-capillary arrays,” Rev. Sci. Instrum. 62(6), 1542–1561 (1991).
[Crossref]

O’Brien, P. T.

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Osborne, J. P.

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

Parmar, A.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Pearson, J. F.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Peele, A.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Peele, A. G.

C. T. Putkunz and A. G. Peele, “Detailed simulation of a Lobster-eye telescope,” Opt. Express 17(16), 14156–14165 (2009).
[Crossref] [PubMed]

T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001).
[Crossref]

A. G. Peele, “Investigation of etched silicon wafers for lobster-eye optics,” Rev. Sci. Instrum. 70(2), 1268–1273 (1999).
[Crossref]

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

A. G. Peele, K. A. Nugent, A. V. Rode, K. Gabel, M. C. Richardson, R. Strack, and W. Siegmund, “X-ray focusing with lobster-eye optics: a comparison of theory with experiment,” Appl. Opt. 35(22), 4420–4425 (1996).
[Crossref] [PubMed]

Petit, S.

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

Petre, R.

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

Porter, F. S.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Portin, P.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Price, S.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Priedhorsky, W. C.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Prydderch, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Putkunz, C. T.

Read, A. M.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Renouf, I.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Richardson, M. C.

Rideout, R. M.

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

Robertson, I. P.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Rode, A. V.

Rothery, D. A.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Ruan, N.

San Juan, J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Schmidt, W. K. H.

W. K. H. Schmidt, “A proposed X-ray focusing device with wide field of view for use in X-ray astronomy,” Nucl. Instrum. Methods 127(2), 285–292 (1975).
[Crossref]

Schyns, E.

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Sclater, E.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Sembay, S.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).

Sibeck, D. G.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Siegmund, W.

Smith, M.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Snowden, S. L.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Stevenson, T.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Stevenson, T. J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Strack, R.

Struder, L.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Su, L.

Su, Y.

Sun, T.

T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).

Syrjasuo, M.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Talboys, D.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Taylor, M. G. G. T.

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

Thomas, N.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Thomas, P.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Tichy, V.

V. Tichy, R. Hudec, and M. Barbera, “Analytical description of lobster eye and similar multi-foil optics,” Proc. SPIE 9510, 95100 (2015).

Treis, J.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Turcu, I. C. E.

Uprety, Y.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Uttley, P.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Vestrand, T.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Vogt, K.

K. Vogt, “Zur Optik des Flusskrebsauges,” Z. Naturforsch., C, Biosci. 30(5), 691 (1975).
[PubMed]

Volpp, J.

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

Walsh, B. M.

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

Wang, C.

T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).

Ward, M. J.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Warwick, B.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Watson, D. J.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Wei, F.

T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).

White, N.

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

White, N. E.

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

Whitehead, S.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Whitford, C.

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Wilkins, S. W.

H. N. Chapman, K. A. Nugent, and S. W. Wilkins, “X-ray focusing using square channel-capillary arrays,” Rev. Sci. Instrum. 62(6), 1542–1561 (1991).
[Crossref]

Willingale, R.

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

Wolter, H.

H. Wolter, “Mirror systems with grazing incidence as image-forming optics for X-rays,” Ann. Phys. 10(6), 94–114 (1975).

Wu, M.

Yan, F.

Yang, B.

Yuan, W.

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

Zhang, C.

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

Zhang, S.

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

Zhao, D.

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

Adv. Space Res. (1)

E. Friis-Christensen, H. Lühr, D. Knudsen, and R. Haagmans, “Swarm – An Earth Observation Mission investigating Geospace,” Adv. Space Res. 41(1), 210–216 (2008).
[Crossref]

Ann. Geophys. (1)

C. P. Escoubet, M. G. G. T. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. L. Goldstein, “Dynamical processes in space: Cluster results,” Ann. Geophys. 31(6), 1045–1059 (2013).
[Crossref]

Ann. Phys. (1)

H. Wolter, “Mirror systems with grazing incidence as image-forming optics for X-rays,” Ann. Phys. 10(6), 94–114 (1975).

Appl. Opt. (3)

Astrophys. J. (1)

J. R. P. Angel, “Lobster Eyes As X-Ray Telescopes,” Astrophys. J. 233(1), 364–373 (1979).
[Crossref]

Exp. Astron. (1)

D. Zhao, C. Zhang, W. Yuan, S. Zhang, R. Willingale, and Z. Ling, “Geant4 simulations of a wide-angle x-ray focusing telescope,” Exp. Astron. 43(2), 1–17 (2017).

J. Geophys. Res-Space (1)

T. Sun, C. Wang, F. Wei, and S. Sembay, “X-ray imaging of Kelvin-Helmholtz waves at the magnetopause,” J. Geophys. Res-Space 120(1), 266–275 (2015).

Nucl. Instrum. Methods (1)

W. K. H. Schmidt, “A proposed X-ray focusing device with wide field of view for use in X-ray astronomy,” Nucl. Instrum. Methods 127(2), 285–292 (1975).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

G. W. Fraser, A. N. Brunton, J. E. Lee, J. F. Pearson, and W. B. Feller, “X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure,” Nucl. Instrum. Methods Phys. Res., Sect. A 324(1–2), 404–407 (1993).

Opt. Express (1)

Planet. Space Sci. (1)

G. W. Fraser, J. D. Carpenter, D. A. Rothery, J. F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E. J. Bunce, U. Christense, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T. J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whitford, and S. Whitehead, “The mercury imaging X-ray spectrometer (MIXS) on bepicolombo,” Planet. Space Sci. 58(1), 79–95 (2010).
[Crossref]

Proc. SPIE (5)

T. H. K. Irving, A. G. Peele, K. A. Nugent, and S. P. Brumby, “Faster, better, cheaper metrology of lobster-eye (square-pore) optics,” Proc. SPIE 4145, 209–218 (2001).
[Crossref]

R. Willingale, A. Martindale, C. H. Feldman, R. Fairbend, E. Schyns, S. Petit, J. P. Osborne, and P. T. O’Brien, “Aberrations in square pore micro-channel optics used for X-ray lobster eye telescope,” Proc. SPIE 9905, 99050 (2016).

V. Tichy, R. Hudec, and M. Barbera, “Analytical description of lobster eye and similar multi-foil optics,” Proc. SPIE 9510, 95100 (2015).

A. G. Peele, G. W. Fraser, A. N. Brunton, A. R. Martin, R. M. Rideout, N. E. White, R. Petre, and W. B. Feller, “Recent studies of lobster-eye optics,” Proc. SPIE 3444, 404–415 (1998).
[Crossref]

D. Zhao, C. Zhang, R. Willingale, H. Li, and S. Zhang, “Ray tracing simulation for the wide-field x-ray telescope of the Einstein Probe mission based on Gent4 and XRTG4,” Proc. SPIE 9144, 91440 (2014).

Rev. Sci. Instrum. (3)

A. G. Peele, “Investigation of etched silicon wafers for lobster-eye optics,” Rev. Sci. Instrum. 70(2), 1268–1273 (1999).
[Crossref]

M. R. Collier, F. S. Porter, D. G. Sibeck, J. A. Carter, M. P. Chiao, D. J. Chornay, T. E. Cravens, M. Galeazzi, J. W. Keller, D. Koutroumpa, J. Kujawski, K. Kuntz, A. M. Read, I. P. Robertson, S. Sembay, S. L. Snowden, N. Thomas, Y. Uprety, and B. M. Walsh, “Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results,” Rev. Sci. Instrum. 86(7), 071301 (2015).
[Crossref] [PubMed]

H. N. Chapman, K. A. Nugent, and S. W. Wilkins, “X-ray focusing using square channel-capillary arrays,” Rev. Sci. Instrum. 62(6), 1542–1561 (1991).
[Crossref]

Sci. Am. (1)

M. F. Land, “Animal eyes with mirror optics,” Sci. Am. 239(6), 126–134 (1978).
[Crossref]

Science (1)

T. E. Cravens, “X-ray emission from comets,” Science 296(5570), 1042–1045 (2002).
[Crossref] [PubMed]

Z. Naturforsch., C, Biosci. (1)

K. Vogt, “Zur Optik des Flusskrebsauges,” Z. Naturforsch., C, Biosci. 30(5), 691 (1975).
[PubMed]

Other (1)

G. W. Fraser, A. N. Brunton, N. P. Bannister, J. F. Pearson, M. J. Ward, T. Stevenson, D. J. Watson, B. Warwick, S. Whitehead, P. T. O’Brien, N. White, K. Jahoda, K. Black, S. D. Hunter, P. Deines-Jones, W. C. Priedhorsky, K. N. Borozdin, T. Vestrand, A. C. Fabian, K. Nugent, A. Peele, T. H. Irving, S. Price, S. Eckersley, I. Renouf, M. Smith, A. Parmar, I. M. McHardy, P. Uttley, and A. Lawrence, “LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station. International Symposium on Optical Science and Technology,” Proc. SPIE, 4497 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) The structure of Angel-type lobster-eye optics. (b) The imaging principle of Angel-type lobster-eye optical system.
Fig. 2
Fig. 2 One-dimensional schematic diagram of lobster-eye optics for multiple point light sources in (a) finite object distance and (b) infinite object distance.
Fig. 3
Fig. 3 One-dimensional schematic diagram of geometric collection area and the angle range of rays with 0-time reflection.
Fig. 4
Fig. 4 The coordinate system diagram of Angel-type lobster-eye model.
Fig. 5
Fig. 5 The angular coordinate of intersection point of the incident ray and the micro channel.
Fig. 6
Fig. 6 The flow chart for geometrical ray-tracing.
Fig. 7
Fig. 7 Reflective process of incident rays in the micro-channel.
Fig. 8
Fig. 8 The simulation results of an ideal point light source imaging. (a) The scatter diagram of rays on image surface with reflection information. (b) The larger version of center region in Fig. 8(a), showing more details of the focal spot. (c) The energy distribution on image surface. The z-axis represents the counts of rays per 0.5° × 0.5° pixel. (d) The counts statistics per 0.01° × 0.01° pixel in the directions x = 0 and y = 0.
Fig. 9
Fig. 9 (a) Scatter diagram of focal rays on incident surface. (b) The focusing efficiency of micro-channels.
Fig. 10
Fig. 10 (a) The comparison of effective area in simulation and theory. (b) The width of focal spot varies with ratio of length to width of micro-channel.
Fig. 11
Fig. 11 Imaging simulation of ‘Hello’ surface light source with uniform intensity distribution. (a) shows light source surface. (b) shows the counts statistics of rays per 0.01° × 0.01° pixel on image surface.
Fig. 12
Fig. 12 MHD simulation images describing the soft X-ray intensity distribution in a magnetic storm event with different solar wind conditions. The angle range is −30 to 30 degrees both in x-axis and y-axis. The size of each pixel is 0.5 × 0.5 degrees. (a) The X-ray intensity distribution when the solar wind is weak. (b) The X-ray intensity distribution when the solar wind is strong.
Fig. 13
Fig. 13 The ‘smile’ surface light source imaging. Figure 13(a) and Fig. 13(c) show the intensity distribution per 1° × 1° pixel on image surface. (b) The comparison of intensity distribution on Fig. 13(a) and Fig. 12(a) in the directions x = 0 and y = 0 after intensity normalization. Similarly, Fig. 13(d) corresponds to the comparison of Fig. 13(c) and Fig. 12(b) in the directions x = 0 and y = 0.

Tables (1)

Tables Icon

Table 1 Parameters of Angel-type lobster-eye model

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1 l i 1 l s = 1 f = 2 R ,
M = C D A B = R l i R + l s = l i l s .
S g e o = L e f f 2 = [ 2 ( R + l 2 ) sin θ c ] 2 .
ϕ 0 arc sin { R + l / 2 R / 2 sin [ arc tan ( w l ) arc tan ( w R + l / 2 ) ] } ,
A e f f = { 2 [ 0 w / l l R θ w + t R r e f l e c t i v i t y d θ + w / l 2 w / l ( 2 w l θ ) R w + t R r e f l e c t i v i t y d θ ] } 2 ,
θ c = 2 δ .
R r e f l e c t i v i t y = ( θ A ) 2 + B 2 ( θ + A ) 2 + B 2 e ( 4 π σ sin θ λ ) 2 ,
{ θ H min ( J ) θ x θ H max ( J ) θ V min ( I ) θ y θ V max ( I )
{ θ h min ( j ) θ x θ h max ( j ) θ v min ( i ) θ y θ v max ( i ) .
{ θ h min ( j ) θ x ' θ h max ( j ) θ v min ( i ) θ y ' θ v max ( i ) R l / 2 d c r o s s R + l / 2 .
N = I p o int S p o int T Ω E 0 ,

Metrics