Abstract

Abstract: In this paper gold nanorings (NRs) are applied as particularly well-suited sensing elements for mapping the radially symmetric electric fields in the high numerical aperture focus of cylindrical vector beams. The optical properties of gold nanorings are analyzed by a combination of extinction and single particle dark field spectroscopy as well as confocal photoluminescence (PL) imaging. The results are compared to numerical calculations. The in-plane components in the focus of the cylindrical vector beams are estimated through the PL intensity distributions of the NRs. The optimum overlap between the structure and excitation is visualized by a narrow centre spot in the far-field PL scan.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Manipulating and confining electromagnetic fields with metallic nanostructures is a priority direction in plasmonics [1]. Furthermore focusing to sub-diffraction limits is highly important in a variety of applications, such as surface enhanced Raman spectroscopy (SERS) [2], biochemical sensing [3], scanning near-field optical microscopy (SNOM) [4–6], nano-light sources [7], meta-materials [8], or nonlinear optics [9]. In most of these applications the interaction of light with metallic nanostructures is used for the excitation of (localized) surface plasmon-polaritons. The excitation of plasmons is accompanied by a resonantly enhanced electromagnetic near-field in the active area of the nanostructures. For particles with different shapes, such as nanorods [10, 11], nanocones [12], nanodiscs [13], nano-shells [14], triangular structures [15], bowtie nano-antennas [16], nanorings [17], symmetry broken rings [18], and many more the plasmon response has been thoroughly researched.

Over the last two decades, metallic annular nanostructures have been investigated in many experimental as well as theoretical publications. Nanorings (NRs) feature a variety of optical phenomena due to their axial symmetry and their unique electric and magnetic field distribution [19, 20]. Different dipolar and multipolar plasmon resonances may be excited when the ring structures are placed within an external electromagnetic field of a particular polarization [21]. The wavelengths of the plasmon resonances depend on the size, shape and chemical composition of the nanostructure and can be tuned over a wide range in the visible and near-infrared regimes [22]. The simple tuneability of the resonance wavelength opens applications for NRs in various scientific fields ranging from micromagnetics to nanoscaled photonics, biosensing, waveguiding, nanomedicine, and to nano-emitters [23–27].

The most common processes for the fabrication of NR arrays are colloidal lithography [28–30], nanoimprint lithography [31], chemical synthesis [32, 33], and electron beam lithography (EBL) [34, 35], however there are also more unconventional fabrication techniques such as annealing of gold nanoclusters, stretched imprinting, or printing via carbon nanotube templates [36–38]. Depending on the application and fabrication method, metal rings of various materials, such as Au [17], Ag [33], Al [39], or Co [40], and chemical composition [41–43], as well as a wide range of sizes from few nanometres [37] up to several micrometers [23, 44] have been produced over the years.

In recent articles the plasmonic properties of annular nanostructures have been described as an electromagnetic interaction between the nanodisc and the nanohole plasmon resulting in two resonances of bonding and antibonding modes [17, 24, 45, 46]. The surface charge distribution of the bonding mode exhibits the same signs on the inner and outer walls of the ring, leading to a resonance in the near-infrared. The surface plasmon resonance in the visible spectrum can be explained through coupling between the surface charges on the inner and outer walls of the ring (antibonding mode) and is therefore determined by the ring width rather than the ring diameter. An additional out-of-plane resonance is expected in the visible range if the NR is excited by axially oriented field components, which was only rarely discussed in previous references.

In most studies, either non-polarized or linearly polarized light was used as the excitation field [24, 47]. In a theoretical investigation, the properties of NRs were studied in focused Gaussian beams as well as in cylindrically polarized vector beams (CVBs) [45].

The higher order doughnut-shaped modes of CVBs are polarized purely in the plane transversal to the direction of propagation for parallel (collimated) beams. The laser modes exhibit rotationally symmetric arrangements of the electric field components. The spatially dependent field vectors feature linear polarization at each point within the beam profile, which is oriented parallel to the radial vector for radially polarized beams, and perpendicular to the radial vector for azimuthally polarized beams. When the CVBs are tightly focused, the electric field distribution of the azimuthally polarized beams remains purely transversal, while the radially polarized beams exhibit an additional strong longitudinal component in the direction of propagation. In the plane of propagation, the polarization has been shown to feature elliptical polarization [48], while the polarization in the transversal plane shows locally changing linear orientations depending on the beam type, numerical aperture of the focusing element, and spatial position [12, 49–53]. By choosing between tightly focused azimuthally or radially polarized CVBs, one can thus switch between an electric field distribution that is oriented exclusively in-plane, or predominantly out-of-plane. These features make them particularly attractive for imaging and spectroscopy of individual nano-objects, being able to distinguish between in-plane vs. out-of-plane excitation without the mode mixing present e.g. in tightly focused linearly polarized beams. A review on using CVBs to determine the 3D orientation of individual nano-objects can be found in [54]. Wherever such CVBs are applied, suitable test structures are required to determine the intensity distribution in the focal plane. The ring-shape of the transversal electrical field components in the focus suggests that ring-shaped nanostructures are particularly well-suited to perform a size-dependent electrical field mapping. The photoluminescence (PL) [55] intensity distribution of NRs when scanned through the focus of a CVB can be explained by the spatial overlap conditions between the ring and the individual components of the field in the focal spot.

Full information on the electric field and phase distribution in the focal plane is a prerequisite for fully understanding light-matter-interaction in the focus. In previous studies, strong efforts have been made to develop techniques for the mapping of electric vector field or overall intensity distributions in the focal plane of differently polarized and tightly focused laser beams. For example, 1D projections and cross-sections through the electric energy density distribution in the focus can be precisely mapped using the knife-edge technique [56–58]. Mappings of the overall 2D intensity distribution in the focus have been achieved by scanning fluorescently marked polystyrene spheres through the focus in a confocal scanning setup. Here the isotropic emitters do not discern between vectorial field components, but give a clear size mapping of the focus through the overall field intensity [59]. Pioneering publications have shown that single dye molecules in a laser focus act as point-like dipoles. The characteristic patterns of their fluorescence images can be attributed to the dipole orientation of the molecules relative to the local polarization of the electric field [60]. This way, also the presence of longitudinal field components could be verified [51,61]. An alternative approach for mapping longitudinal mode distributions was outlined by looking at surface deformations of photopolymers upon illumination [62]. The dipole mapping technique offers a powerful analytical tool for monitoring transition dipole moments of molecules or quantum dots as well as molecular dynamics or tautomerism processes at the single molecule level [59, 63]. Hence, given a known orientation of the dipoles, one could vice versa deduce the local three-dimensional orientation of the electric field. Similar studies were shown using single metal nanorods as the point-like dipoles and monitoring the gold luminescence or scattered light [11, 64]. Likewise, it has been shown by the authors that the out-of-plane components can be mapped by vertical nanocone structures [12, 51, 65]. Still, preparing single emitters with a known orientation of the dipole remains a challenging task. Also, for mapping the full electrical field distribution in a focus, the dipolar pattern needs to be evaluated at each point of an image scan, with the emitter being optically and rotationally stable for the entire time of the scan [66].

Thorough mappings of CVB field distributions were also performed in the near-field using tapered fibers, scattering near-field scanning optical microscopy, or photoinduced force microscopy [67–71]. In these cases, the interactions of sharp probe tips with the focus fields are recorded. These methods are technically more demanding than using confocal far-field scanning microscopy, and artefacts can be induced by the influence of the tip shape. By using independent polarization detectors, the three-dimensional local field polarization vectors could be reconstructed [69, 70].

As will be demonstrated in this study, gold NRs open the possibility of mapping the in-plane components of the intensity distribution by measuring the far-field PL in a comparably simple confocal scanning microscope configuration. We discuss the case of light interaction with metallic NRs when their dimension is on the order of the focus diameter. The optical behaviour of gold NRs with variable geometries is investigated under different illumination conditions. The plasmon resonances are determined, and the in-plane electric field distribution in the focus of CVBs is mapped by the PL scan patterns of the NRs. The vectorial nature of the electrical field comes into play as strong PL signal is observed when, and only when, the local electrical field is oriented perpendicular to the gold NR, i.e. resonantly exciting localized plasmons along the width of the NR. Combining the information on the position of the laser focus relative to the center of the nanoring with this information, one does not just obtain information on the presence of the electric field, but also on its field component perpendicular to the ring structure. Plotting the positions of high intensity where the PL signal appears, one could reconstruct the distribution of the radial and azimuthal in-plane field vectors. The out-of-plane field components do not resonantly excite the NR in the present case. The NRs thus enable the experimental determination of the in-plane focus dimensions, which play a crucial role in the interaction with the sample during any kind of optical measurements. A precise knowledge of the focus properties may be imperative for meaningful data interpretation. This technique uses stable gold nanostructures that do not suffer from bleaching with time. A simple test sample containing a variation of gold NRs can be prepared and reused before each new experiment using CVBs to calibrate the scanning table via the defined 2D spacing of the ring structures in an array structure, and probe the quality of the CVB focus. Due to the rotationally symmetric structures, any beam asymmetry would lead to systematic deviations in the PL scan images. If the beam is not tightly focused, this will be apparent from the focus size evaluation. Clearly the geometry of the sample first needs to be independently validated by other means, such as scanning electron or atomic force microscopy. The general concept of using the resonant overlap of specific electric field components with suitably shaped gold nanostructures could be expanded to different higher order laser beams by adapting the nanostructure shape to mimic the field distribution in the focus, or even to nonlinear (second harmonic generation) imaging, as was recently demonstrated by the authors [72]. Conceptually, the local electric field distribution can be reconstructed from the fact that high signal intensity (PL, SHG or otherwise) is observed whenever the local electric field vector coincides with a resonant feature of the plasmonic gold nanostructure [52, 72, 73]. Since the distance between the centers of the focus and of the nanostructure are known at each scan position, the distance of the respective electric field vector from the focus center can be reconstructed. If other, non-resonant vector components were simultaneously present, they would lead to additional signal at different focus positions. Thus the in-plane electric field distribution may be reconstructed from the observed scanning images.

Any imperfections in the nanofabrication could lead to intensity variations of the PL patterns. For this reason, a redundancy in the nanostructures, i.e. preparing arrays of nominally identical structures, is helpful, since variations from pattern to pattern may be attributed to nanoscale variations in the structures, whereas systematically occurring features point towards the CVB as the source. The relative alignment of the focus and nanostructure can be evaluated with high precision from the centrosymmetric patterns forming an array structure. If instead of the radially symmetric nanostructures single isotropic gold particles were used, the vectorial information would be lost in the present technique.

An elegant method for reconstructing the full amplitude and phase information of the electrical vector field based on the scanning of a simple gold nanosphere was recently demonstrated in [74]. Here the scattering signal interfering with the reflected light was recorded as a back focal plane image for each position. By suitable post-processing, integrating over different angular ranges, the respective squared electric field components and relative phases in the focal plane could be mapped with high precision. In comparison, the approach presented here does not reach the same level of precision and does not access the vertical field components. However, it provides a simple straight-forward practical test of CVBs that does not require any post-processing beyond reading out the PL images.

2. Experimental

Arrays of gold NRs in square lattices are fabricated on a glass substrate coated with a homogeneous film of indium tin oxide (ITO) to avoid charge accumulation effects during EBL. In this work two different schemes for the fabrication of gold NR arrays are introduced, see Figs. 1(a) and (b).

 figure: Fig. 1

Fig. 1 The processing steps of the ring fabrication: (a) using HSQ negative resist and an etch-mask transfer, (b) using PMMA positive resist and a lift-off, and (c) schematic of NR array.

Download Full Size | PPT Slide | PDF

In the first case, a gold layer is deposited by thermal evaporation directly on ITO/glass without any adhesion layer and spin-coated with a hydrogen silsesquioxane (HSQ) negative resist layer. The HSQ is pattered into NR arrays by EBL (Philips XL 30 SEM, 30 kV accelerating voltage) with periodicity p, various ring centre diameters d and average widths w, see Fig. 1(c). The thickness of the gold layer determines the height h of the structures. After a development process (in tetramethylammonium hydroxide solution) cross-linked HSQ acts as an etch mask for the gold. In a subsequent Ar ion milling process (Roth & Rau Unilab) both layers are dry-etched until the etch mask and uncovered Au layer are simultaneously removed. During the ion milling process the angle of incidence of the ion beam is tilted by 30° with respect to the surface normal, and the sample is continuously rotated, which allows us to obtain homogenous smooth nanostructures with vertical sidewalls [75]. The processing steps are shown schematically in Fig. 1(a).

In the second case, ITO/glass is spin-coated with a polymethyl methacrylate (PMMA) positive resist layer. The NR arrays are defined in the PMMA layer by EBL. After the development process (in methyl isobutyl ketone:isopropanol mixture), oxygen plasma cleaning is applied to the sample in order to remove potential residues within the patterned shapes. The gold layer is deposited by thermal evaporation, while the gold thickness is chosen according to the desired height h of the nanostructures. The PMMA layer is fully removed by a lift-off process that yields a periodic array of well-defined gold NRs on the substrate. The processing steps are shown schematically in Fig. 1(b).

Using these fabrication processes, gold NR arrays with variable geometries from high and narrow rings (mostly by means of scheme 1(a)) to low and wide rings (mostly by means of scheme 1(b)) can be achieved. In all cases the glass substrate is coated with a layer of ITO with a thickness of 50 nm, and the periodicity of the NRs p is fixed at 2 µm. Rings with diameters d from 250 to 850 nm, heights h of 50 nm, and average widths w of 50 nm are produced using both fabrication processes and show no obvious differences of their optical properties. The results shown in this paper mostly refer to rings fabricated by means of scheme 1(b).

Dark field scattering spectra of NRs are measured by using an inverted dark field microscope (Nikon Eclipse Ti-U). The sample with gold NR arrays is illuminated with a non-polarized white light source (halogen lamp) at large angles from above through a dark-field condenser (NA 0.80-0.95). The collection angle of the 100x objective (NA 0.33) is smaller than that of the dark-field condenser. The directly transmitted light is blocked and the scattered signal is spatially filtered by a pinhole in the image plane, such that signal from a sample area of about 2 µm in diameter is detected by the spectrometer (Ocean Optics QE 65000). Scattering spectra of single nanostructures are obtained by dividing the background-corrected scattering signal by the background-corrected lamp spectrum.

In the visible spectral range, both in-plane and out-of-plane collective oscillations of the electrons can be excited in the rings. The plasmonic modes are selectively addressed and spectrally identified by performing extinction measurements in transmission mode using long working distance objectives. Illumination with a white light source takes place through a weakly focusing 20x objective (NA 0.28), while a second objective (50x, NA 0.42) is used for detection. Spatial filtering by a 200 µm diameter fiber ensures that signal from a sample area (array) of about 15 µm in diameter is collected by the spectrometer (Ocean Optics QE 65000). The NRs are pointing towards the detection side. Two parallel oriented linear polarizers are inserted in the illumination and detection paths and rotated by 90° for measurement with either transverse electric (TE) or transverse magnetic (TM) polarization. Owing to the long working distance, the sample can be gradually tilted from normal incidence up to about 60° relative to the incident beam. That way, TE polarized light can be employed to excite only the mode(s) in the sample plane, while TM polarized light gives a superposition of the in-plane (base) mode and the out-of-plane (axial) mode, with changing weights for an increasing tilt angle. The spectra show the logarithm of the background-corrected lamp spectrum divided by the background-corrected transmitted signal (absorbance).

To analyze the behaviour of the plasmon modes in differently polarized electromagnetic fields the experimental dark field and extinction spectra of gold NRs are compared with simulations. The plasmon modes of the NRs in the visible arise mainly from the excitation of the ring cross section (width and height). The closed ring does not have a finite lateral aspect ratio, therefore the cross section-related NR resonances can be approximated by modelling an infinite nanorod with the width and height chosen to match the cross section of the fabricated NRs. The gold rod with slightly rounded edges is modelled with COMSOL Multiphysics. The refractive index nAu of gold is taken from Johnson and Christy [76], and the refractive index nITO of ITO from the Refractive Index Database [77]. As the excitation source electromagnetic fields with two perpendicular polarizations across the rod, corresponding to the base mode and axial mode (as indicated in the inset of Fig. 2(e), and frequencies over the visible and near-infrared range (480 nm to 800 nm) are used. The intensity scattered from the nanostructure is integrated in the far-field for each frequency.

 figure: Fig. 2

Fig. 2 (a) Top-view SEM images of gold NRs with periodicity p = 2 µm, height h = 50 nm, average width w = 50 nm and nominal centre diameters d of 250, 450, 650 and 850 nm; (b) normalized scattering dark-field spectra of single gold NRs as imaged in (a); (c) and (d) normalized extinction spectra of gold NRs (d = 450 nm, h = 50 nm, w = 50 nm) with TE and TM polarization of the incident light and the sample normal tilted by 0°, 30° and 60° relative to the incident beam. (e) Simulated scattering spectra of an infinite gold nanorod on ITO (h = 50 nm, w = 50 nm) excited by electromagnetic field components polarized perpendicular and parallel to the substrate (inset: polarization direction of the excitation fields).

Download Full Size | PPT Slide | PDF

The PL properties of gold NRs are investigated in a home-built inverted confocal microscope. Higher order doughnut-shaped laser modes (HeNe laser, λ = 632.8 nm) are obtained by passing a linearly polarized Gaussian laser beam through a mode converter. The converter consists of four half-wave plates arranged in four quadrants similar to [57], with subsequent filtering by a pin-hole to remove higher spatial frequencies [11,59], see also Appendix A. The sample is illuminated from below using an index-matched oil immersion objective (NA 1.25). The gold nanostructures are positioned in the upper half-space in air. The electric field distribution in the focal plane of the AP laser mode is oriented purely transversal (Exy(AP) perpendicular to the optical axis), while the electric field distribution of the RP laser mode contains longitudinal (Ez(RP) along the optical axis) and transversal (Exy(RP)) components that result in a Gaussian-like total intensity distribution, see Appendix A, Fig. 5. In this paper, the PL images are obtained by raster scanning of NR arrays through the diffraction limited focus of an either RP or AP beam. The position-dependent PL intensity signal generated in the focus is collected from below, i.e. from the illumination side, and detected in the far-field by a single-photon counting avalanche photodiode (APD), while the elastically scattered laser light is cut off by an optical long pass filter. The general working principle is e.g. illustrated in [59]. This way, purely the luminescence created at the location of the gold nanostructures by resonant interaction with the electrical field of the CVBs is collected, while the background at positions without any overlap with gold structures remains dark. Compared to e.g. evaluating scattering images as in Ref [11,74], where the signal intensity is determined by interference between the laser light reflected from the interface and the scattered light, these images may be more straightforward to interpret.

3. Results and discussion

Periodic arrays of gold NRs are fabricated using EBL and characterized by scanning electron microscopy (SEM). The NRs with an average width of w = 50 nm and various centre diameters are established in a reproducible and well-controlled manner (see Experimental). The variation of the width is estimated to be ± 5 nm. Typical SEM images of NRs with nominal centre diameters d = 250, 450, 650 and 850 nm are shown in Fig. 2(a).

According to published theoretical and experimental results gold NRs exhibit two main optical resonances in the visible to near-infrared region. The plasmon resonance modes can be characterized as the antibonding and bonding modes [17]. In order to find the correlation between the ring shapes and their plasmonic resonance, the NRs were investigated using single particle dark field spectroscopy. Due to the spectral limitation of the spectroscopy setup (maximum wavelength ~900 nm) it was only possible to measure the antibonding mode of the NR plasmon resonance. Identical resonance peaks for NRs with equal ring widths were observed independent of the ring diameter. Measured scattering dark-field spectra of gold NRs with d = 250, 450, 650 and 850 nm are shown in Fig. 2(b). The NR with 250 nm centre diameter was slightly narrower (w = 46 nm) than the rest. The shift of the respective resonance peak (from 618 nm to 606 nm) confirms the ring width dependency of the plasmon antibonding mode. The weak shoulder in the spectra between 400 nm and 500 nm is attributed to interband transitions in gold.

The main peak in the scattering measurement in Fig. 2(b) corresponds to the dipolar resonance of the in-plane (or base) plasmon mode [78]. Additionally, an axial component of the plasmon mode can occur in the visible due to plasmon coupling between the upper and lower surfaces of the NR. To address this mode, the NRs were investigated by means of their angle-dependent extinction spectra. Extinction spectra of gold NRs (d = 450 nm, h = 50 nm, w = 50 nm) that were measured with TE and TM polarization of the incident light, while the sample was tilted from normal incidence up to about 60° relative to the incident beam, are shown in Figs. 2(c) and 2(d), respectively. The spectral weight of the two components of the plasmon mode can be varied by changing the polarization. With the purely in-plane polarized TE polarized light, only the base mode at ~600 nm is excited, see Fig. 2(c), while TM polarized light with both in-plane and out-of-plane electric field components results in a superposition of the base mode and the axial mode (appearing at ~535 nm), with changing weights for an increasing tilt angle, see Fig. 2(d).

To verify the spectral positions of the base and axial plasmon modes, the experimental spectra are compared with Finite Element Method simulations as described in the Experimental section. The simulated spectra of an infinite nanorod with the same cross-section as the NRs under electromagnetic field excitations polarized perpendicular or parallel to the substrate are shown in Fig. 2(e). This separation of the base and axial plasmon modes in a rod is just an approximation, but the simulation supports our interpretation of the plasmon components and helps to understand how the individual components can be excited effectively. The simulated axial plasmon mode is resonant at 535 nm and is 2.25 times weaker than the base plasmon mode, which is resonant at 607 nm. The simulations are in good agreement with the scattering and extinction measurements.

The photoluminescence intensity distributions of gold NRs that are excited by cylindrical vector beams are investigated using an inverted confocal microscope. The results are shown in Fig. 3. Typical examples of NRs with centre diameters from 369 nm to 751 nm, 50 nm width and 50 nm height are shown in Fig. 3(c). The RP and AP laser modes of a He-Ne-laser (632.8 nm) beam are used as the excitation source. More information on higher order laser modes can be found in Appendix A. The electric field distribution in the focus of the RP laser mode consists in a superposition of doughnut-shaped transversal Exy(RP) and strong spot-shaped longitudinal Ez(RP) components. However, according to the measurements and simulation in Fig. 2, the base plasmon mode of the gold NRs resonant at 607 nm is much better matched to the laser wavelength than the axial component. The electric field distribution in the focus of the AP laser mode consists of purely transversal Exy(AP) components parallel to the substrate. The near-resonant excitation of the base cross section of NRs with the transversal component Exy(RP) and Exy(AP) leads to strong PL intensity, whereas the axial mode resonant at 535 nm is not visibly excited with the 632.8 nm laser beam. PL signal is thus efficiently generated when the in-plane electric field in the focus of the laser beam is polarized normal to the ring.

 figure: Fig. 3

Fig. 3 Correlation between ring diameter und PL intensity distribution under excitation with AP and RP laser modes. (a) and (b) Individually normalized PL images and line cuts through the PL images of NRs excited with AP laser mode, as well as with (d) and (e) RP laser mode. (c) Top-view SEM images of measured gold NRs with increasing center diameters from 369 nm to 751 nm. The scale bar applies to (c). The center-to-center distances in (b), (c) and (d) correspond to 2 μm. Occasional artefacts in the shape of short bright lines appear in some of the PL images, which may result from intermittent local contaminations on the NRs.

Download Full Size | PPT Slide | PDF

The PL mappings of gold NRs under excitation with AP and RP laser modes are shown in Figs. 3(b) and 3(d), respectively, next to the top-view SEM images of the corresponding rings in Fig. 3(c).

Line cuts through the normalized PL images of NRs excited using AP and RP laser beams, centered individually for clarity, are illustrated in Figs. 3(a) and 3(e), respectively. The far-field PL signal scans of annular nanostructures using the AP laser mode display ring shapes. The diameter of these PL rings increases with that of the NR. The far-field PL signal using the RP laser mode is generated whenever the electric field Exy polarized normal to the ring overlaps with the ring width. The PL signal intensity can be maximized when the focus is centred within the NR, depending on the spatial overlap between the focus and the ring.

For the AP mode, the distance from the ring centre to the maxima of PL intensity RPL,A can be calculated as RPL,A2 = Rr2 + RAPLM2, with Rr the NR radius and RAPLM (using RAPLM = 190 nm from beam simulations, see Appendix A, Fig. 5) the radius of the intensity maximum of the AP laser mode in the focus, in a simple geometrical model, see Appendix B, Fig. 6. The diameter of the ring-shaped PL patterns was experimentally determined for single NRs by fitting the line cuts through the normalized PL with two Gaussian functions, see Fig. 4(a). The diameters of the PL patterns (DPL,A = 2* RPL,A), averaged over up to 9 NRs for each size, are plotted versus the ring centre diameters (d = 2*Rr) in Fig. 4(a). The error bars show the standard deviations of the measurements. It can be observed that the measured PL diameters are systematically smaller than the values from the geometric calculation with RAPLM = 190 nm, shown in Fig. 4(a) as “calculation”. If the corresponding curve DPL,A = (d2 + 4RAPLM2)1/2 is fitted to the measured data using RAPLM as a free parameter instead, the value RAPLM = 152 ± 9 nm is obtained, which clearly underestimates the value expected from the beam simulations. If however instead of the central diameter the inner edge of the NR (at Rr - w/2) is inserted, a value of RAPLM = 191 ± 8 nm can be extracted. These results may indicate either that the strongest signal for the azimuthal case in fact originates from overlap with the inner edge of the NRs, or that the simulation overestimates the real focus size. This discrepancy requires further investigation.

 figure: Fig. 4

Fig. 4 (a) and (b) Calculation (based on a beam radius of 190 nm from beam simulations) and measurement of the average diameters of the ring-shaped PL patterns under excitation with (a) AP and (b) RP laser beams versus ring centre diameter. (c) Calculation and measurement of the average FWHM of the PL maximum or double peak inside the ring under excitation with RP laser mode versus ring centre diameter.

Download Full Size | PPT Slide | PDF

For the radial mode the excitation field Exy(RP) in the focus polarized normal to the ring forms more complex patterns of the PL intensity, consisting in an outer ring and an inner peak or ring. The outer ring is created when the focus is located outside the NR and overlaps with one side of the NR. For the inner structure the focus is located and overlapping with the NR from within the NR. The distance from the ring centre to the outer maxima of PL intensity RPL,R can be calculated as the sum of the ring radius Rr and the radius at the intensity maximum of the transversal doughnut-shaped field of the RP laser mode in the focus RRPLM: RPL,R = Rr + RRPLM, see Appendix B, Fig. 6. The measured average diameters of the PL patterns are evaluated in an analogous manner as for the azimuthal mode. The measured average diameters of the outer PL maximum (DPL,R = 2* RPL,R) versus the ring centre diameters (d = 2*Rr) plotted in Fig. 4(b) are in good accordance with the calculations (using RRPLM = 190 nm from beam simulations). In reverse, the actual in-plane electric field distribution in the focus of the RP beam, i.e. the experimental intensity maximum of the RP laser mode RRPLM, can be determined by fitting the measured values of RPL,R and Rr. Thus RRPLM = 185 nm ± 14 nm is extracted, very well confirming the value of 190 nm assumed from the beam simulations.

The distance from the ring centre to the inner maxima of PL intensity for the beam located within the nanostructure, see Appendix B, Fig. 6, can be calculated as the difference between the ring radius Rr and the radius RRPLM: RPL,Rinside = |Rr - RRPLM|. This ring-shaped pattern can only be observed for the biggest ring with 738 nm diameter. In the case where the NR exactly matches the transversal doughnut-shaped field of the RP laser mode, Rr ≈RRPLM, and thus RPL,Rinside ≈0, the PL signal creates a narrow spot-like pattern in the centre of the intensity scan, thus directly indicating the focus diameter through the spot with the smallest FWHM (full-width-at–half-maximum). By fitting the line cuts through the inner spot- or ring-like PL intensity with Gaussian functions we determined the FWHM of the inner feature FWHMPL,Rinside, which should be equal to: FWHMPL,Rinside = 2*RPL,Rinside + FWHMRPLM, where FWHMRPLM is the FWHM of the doughnut-shaped intensity distribution of the RP laser mode in the focus (see Appendix A). The FWHM of the PL intensity for the beam positioned inside the NR was averaged over 9 single nanostructures for each ring size. The calculation (for RRPLM = 190 nm, FWHMRPLM = 190 nm) and measurements of the FWHM of the inner PL maximum under excitation with an RP mode versus the ring centre diameter are plotted in Fig. 4(c). The error bars show the standard deviation of the measurements.

The far-field PL signal is maximized at the centre of the PL distribution and the FWHM is minimized when the diameter of the gold NRs is matched to the focus size of the RP laser beam. This condition is observed for the smallest rings, which is in good agreement with the simulated focus diameter of 380 nm. In a future study, the range around the expected minimum could be further monitored by means of more closely spaced diameter values. By the independent evaluation of the outer and inner features of the RP PL intensity patterns, two strategies are available for the determination of the radial focus dimensions.

In summary, periodic arrays of gold nanorings with different diameters are created in a reproducible and well-controlled manner and characterized by scanning electron microscopy. Their optical features are investigated in connection to PL signal generation from NRs with different sizes. The localized surface plasmon resonances of NRs in the visible range are dominated by the antibonding mode. In this work, additionally a second cross-sectional plasmonic mode, the axial plasmon mode of the gold NRs, is identified in extinction experiments, and both modes are verified in simulations. The spectral separation of the plasmon modes allows for the dominant excitation of the NR base mode for PL mapping by choosing a suitable excitation wavelength, leading to a selectivity of excitation with in-plane electric field components.

When a NR is scanned through a laser focus, the resulting photoluminescence intensity distribution is governed by the polarization of the incident beam and the overlap conditions between the ring and the individual field components in the focus. The near-resonant in-plane excitation of NRs using the transversal component Exy(RP) of radially or Exy(AP) of azimuthally polarized laser beams leads to strong PL excitation. The PL distributions can be interpreted by geometric considerations. The PL scans of NRs through the focus of an azimuthally polarized laser beam display rings, the diameter of which increases with that of the NR. The PL scans through the focus of a radially polarized laser beam show two concentric rings with a dip at the centre for bigger NRs. The inner ring can be contracted into one narrow spot when the NR dimensions match the in-plane focus size and their centers coincide. This allows for a direct read-out of the focus dimensions simply by looking at the confocal PL scan image of NRs with a size variation. Knowing the focus size and the electric field distribution in the focus is invaluable for the interpretation of nano-optical measurements. To a certain extent one can rely on beam calculations for simulating the expected focus, however under experimental conditions the values may differ considerably from the ideal case. With the strategies presented in this work the in-plane components of the electric field distribution in the focus of CVBs can be determined by means of the PL response of NRs, thus no longer having to rely on focus simulations only.

Appendix A Formation of higher order laser modes

Higher order doughnut-shaped laser modes are obtained by passing a linearly polarized Gaussian laser beam through a mode converter (four-quadrant half-wave plates oriented at 45° to each other). Rotating these plates by 90°, either a radially polarized (RP) or an azimuthally polarized (AP) cylindrical vector beam (CVB) is generated. In Fig. 5(a) the formation of RP and AP doughnut modes is described schematically [57]. After the half-wave plates, the beams still contain higher spatial frequencies due to the non-continuous junctions between the wave plates. Therefore, a pin-hole is added in the beam path for spatial filtering after the mode converter to obtain the beam profiles as in Fig. 5(a) [11, 59]. While the electric field distribution in the focal plane of the AP laser mode is purely transversal (Exy(AP) perpendicular to the optical axis), the electric field distribution of the RP laser mode in the focus contains a longitudinal (Ez(RP) along the optical axis) and a transversal (Exy(RP)) component that result in a Gaussian-like total intensity distribution. Fig. 5(b) shows the calculated intensity profiles of RP and AP laser modes for a HeNe laser (632.8 nm wavelength) in the focus of a high numerical aperture (NA = 1.25) objective. The calculations are based on the angular spectrum representation of focal vector beams [79, 80]. They were performed following the method outlined in Refs [53, 68, 81], using the program “PMCalc” by M. Sackrow, a modified version of the program “Focused Fields” developed by M. A. Lieb and A. J. Meixner. The same glass-air interface as in the experiments was taken into account. The full-width-at-half-maximum (FWHM) of the longitudinal field intensity distribution of a focused RP beam amounts to about 235 nm. The diameter at the intensity maximum for the transversal doughnut-shaped field of either RP or AP beams at 632.8 nm wavelength amounts to 380 nm (corresponding to the radii of the intensity maxima of the AP and RP laser modes in the focus RAPLM = RRPLM = 190 nm in the manuscript). The FWHM of the doughnut-shaped intensity distribution is 190 nm.

 figure: Fig. 5

Fig. 5 (a) Formation of (upper row) RP and (lower row) AP laser modes from a linearly polarized mode; arrows denote the orientation of the electric field vector, black lines indicate the fast axis of the four λ/2 wave plates. After the mode converter, a pin-hole is used for spatial filtering (not shown). (b) Calculated intensity profiles of (left) RP and (right) AP doughnut modes for a 632.8 nm laser beam in the focus of an objective with an NA of 1.25: Ez2 (dotted line) is the longitudinal, Exy2 (dashed line) is the transversal and E2 (solid lines) is the total electric field strength squared. For AP modes, E2 = Exy2.

Download Full Size | PPT Slide | PDF

Appendix B Photoluminescence imaging of gold nanorings

By illumination of gold nanorings (NRs) with RP and AP CVBs different photoluminescence (PL) scan patterns are obtained depending on the ring diameters and polarization of the excitation source. The PL patterns can be explained by the respective spatial overlap between the gold ring and the individual electric field components in the focal spot. Using an either AP or RP HeNe laser beam, in the present case the in-plane plasmon mode of the NRs is excited more effectively. The PL signal is generated when the electric field Exy polarized normal to the ring overlaps with the ring width. In order to explain the non-uniform PL scan images of gold NRs, the generation of the PL signal is schematically illustrated in Fig. 6. Here the signal formation for the PL mappings using the AP laser mode, see Figs. 6(a) and 6(b), and RP laser mode, see Figs. 6(c) and (d), are discussed by the example of the largest gold NRs with a centre diameter of 751 nm, see Figs. 6(a) and 6(c), and the smallest gold NRs with a centre diameter of 369 nm, see Figs 6(b) and 6(d). The arrows indicate the orientation of the electric field Exy in the focus. The black arrows do not contribute to PL signal generation, while the yellow arrows illustrate the part of the excitation field in the focus which contributes to PL signal generation when the laser beam is centered in the mapping position marked by a red dot.

 figure: Fig. 6

Fig. 6 Generation of PL signal for gold NRs of width w = 50 nm using (a) and (b) focused AP laser modes and (c),(d) focused RP laser modes centered at the positions of the red dots for NR diameters (a) and (c) d = 751 nm and (b), (d) d = 369 nm. The arrows indicate the in-plane electric field orientation in the focus plane, with components marked in yellow leading to PL. The black and green lines mark the ring radius Rr and radius of the intensity maximum of Exy2, respectively, and the red arrows mark the distance from the ring centre to the maxima of PL intensity RPL.

Download Full Size | PPT Slide | PDF

For the azimuthal mode the distance from the ring centre to the maxima of PL intensity RPL,A, red arrow in Fig. 6(a), can be simply calculated as the hypotenuse of a right-angled triangle: RPL,A2 = Rr2 + RAPLM2, with Rr the ring radius, black line in Fig. 6(a), and RAPLM the radius of the intensity maximum of the transversal doughnut-shaped field of the AP laser mode, green line in Fig. 6(a). Note that the maxima of PL intensity always appear when the centre of the beam is located outside of the nanostructure, see Figs. 6(a) and 6(b).

For the radial mode the excitation field Exy(RP) in the focus, which is polarized normal to the ring width, forms more complex patterns of PL intensity. The maxima appear when the transversal doughnut-shaped field Exy(RP) centered at the mapping positions marked by a red dot (inside of the structure as well as outside) overlaps with the ring, leading to two maxima per side (two concentric rings). The distance from the ring centre to the maxima of PL intensity outside the ring RPL,R, red arrow in Fig. 6(c), can be calculated as a sum of the ring radius Rr, black line in Fig. 6(c), and the radius at the intensity maximum of the transversal doughnut-shaped field of the RP laser mode RRPLM, green line in Fig. 6(c): RPL,R = Rr + RRPLM. The distance from the ring centre to the maxima of PL intensity for the beam located inside of the nanostructure can be calculated as the difference between the ring radius Rr and the radius RRPLM, see black and green lines in Fig. 6(c): RPL,Rinside = |Rr - RRPLM|. In the case Rr ≈ RRPLM, the ring diameter is matched to the transversal doughnut-shaped field of the RP laser mode, and RPL,Rinside ≈ 0. The PL signal forms a narrow spot-like pattern in the centre of the outer ring pattern, see center sketch Fig. 6(d). For the bigger ring radii with Rr >> RRPLM the spot-like pattern of the PL signal expands to form an inner concentric ring, see Fig. 6(c).

Funding

German-Israeli Foundation for Scientific Research and Development (Young Scientists’ Program); Carl Zeiss Stiftung (Nachwuchsförderprogramm 2012); “Kompetenznetz Funktionelle Nanostrukturen” of the Baden-Württemberg Stiftung; Région Champagne-Ardenne (Expertise de Chercheurs Invités); European COST Action MP1302 Nanospectroscopy; Deutsche Forschungsgemeinschaft (DFG); Open Access Publishing Fund of University of Tübingen

Acknowledgements

Valuable input at the revision stage by Kai Braun as well as support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of University of Tübingen is gratefully acknowledged.

References and links

1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008). [CrossRef]  

2. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]  

3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef]   [PubMed]  

4. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006). [CrossRef]   [PubMed]  

5. M. Fleischer, “Near-field scanning optical microscopy nanoprobes,” Nanotechnol. Rev. 1(4), 313–338 (2012). [CrossRef]  

6. M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008). [CrossRef]   [PubMed]  

7. M. Consonni, J. Hazart, and G. Lérondel, “Fabry–Pérot-type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94(5), 051105 (2009). [CrossRef]  

8. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008). [CrossRef]  

9. L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75(20), 205401 (2007). [CrossRef]  

10. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009). [CrossRef]   [PubMed]  

11. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006). [CrossRef]   [PubMed]  

12. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008). [CrossRef]  

13. S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009). [CrossRef]   [PubMed]  

14. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. B 113(8), 3041–3045 (2009).

15. B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010). [CrossRef]   [PubMed]  

16. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008). [CrossRef]   [PubMed]  

17. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011). [CrossRef]   [PubMed]  

18. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express 17(4), 2906–2917 (2009). [CrossRef]   [PubMed]  

19. M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007). [CrossRef]  

20. Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009). [CrossRef]   [PubMed]  

21. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008). [CrossRef]  

22. C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013). [CrossRef]  

23. F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003). [CrossRef]  

24. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007). [CrossRef]   [PubMed]  

25. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009). [CrossRef]   [PubMed]  

26. C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016). [CrossRef]   [PubMed]  

27. M. Toma, K. Cho, J. B. Wood, and R. M. Corn, “Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing,” Plasmonics 9(4), 765–772 (2014). [CrossRef]  

28. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef]   [PubMed]  

29. J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010). [CrossRef]   [PubMed]  

30. T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011). [CrossRef]  

31. S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006). [CrossRef]   [PubMed]  

32. F. Yan and W. A. Goedel, “Preparation of Mesoscopic Gold Rings Using Particle Imprinted Templates,” Nano Lett. 4(7), 1193–1196 (2004). [CrossRef]  

33. L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009). [CrossRef]  

34. J. Stern, “Silver nanorings: Nanofabrication and optical Properties,” Process & Characterization, NNIN REU Research Accomplishments (2006), http://www.nnin.org/sites/default/files/files/NNINreu06Stern.pdf.

35. H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010). [CrossRef]  

36. F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011). [CrossRef]  

37. Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012). [CrossRef]   [PubMed]  

38. S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013). [CrossRef]   [PubMed]  

39. Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008). [CrossRef]  

40. D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008). [CrossRef]   [PubMed]  

41. J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006). [CrossRef]  

42. Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008). [CrossRef]  

43. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 Nanoring Plasmon Waveguides at Optical Communication Band,” J. Lightwave Technol. 25(9), 2757–2765 (2007). [CrossRef]  

44. H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009). [CrossRef]  

45. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef]   [PubMed]  

46. J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009). [CrossRef]   [PubMed]  

47. R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012). [CrossRef]   [PubMed]  

48. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015). [CrossRef]  

49. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009). [CrossRef]  

50. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef]   [PubMed]  

51. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008). [CrossRef]   [PubMed]  

52. S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013). [CrossRef]   [PubMed]  

53. M. Lieb and A. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8(7), 458–474 (2001). [CrossRef]   [PubMed]  

54. T. Züchner, A. V. Failla, and A. J. Meixner, “Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects,” Angew. Chem. Int. Ed. Engl. 50(23), 5274–5293 (2011). [CrossRef]   [PubMed]  

55. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003). [CrossRef]  

56. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16(7), 1971–1974 (1977). [CrossRef]   [PubMed]  

57. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef]   [PubMed]  

58. C. Huber, S. Orlov, P. Banzer, and G. Leuchs, “Corrections to the knife-edge based reconstruction scheme of tightly focused light beams,” Opt. Express 21(21), 25069–25076 (2013). [CrossRef]   [PubMed]  

59. A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011). [CrossRef]   [PubMed]  

60. B. Sick, B. Hecht, and L. Novotny, “Orientational Imaging of Single Molecules by Annular Illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000). [CrossRef]   [PubMed]  

61. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef]   [PubMed]  

62. T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006). [CrossRef]   [PubMed]  

63. A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011). [CrossRef]   [PubMed]  

64. T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009). [CrossRef]  

65. P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014). [CrossRef]   [PubMed]  

66. B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001). [CrossRef]   [PubMed]  

67. S. K. Rhodes, K. A. Nugent, and A. Roberts, “Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe,” J. Opt. Soc. Am. A 19(8), 1689–1693 (2002). [CrossRef]   [PubMed]  

68. C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003). [CrossRef]   [PubMed]  

69. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007). [CrossRef]  

70. J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009). [CrossRef]   [PubMed]  

71. J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018). [CrossRef]  

72. G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018). [CrossRef]   [PubMed]  

73. F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013). [CrossRef]  

74. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013). [CrossRef]  

75. M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010). [CrossRef]   [PubMed]  

76. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

77. “Refractive Index Database”, retrieved Jan. 01, 2012, <http://refractiveindex.info>.

78. C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013). [CrossRef]   [PubMed]  

79. E. Wolf, “Electromagnetic diffraction in optical systems-I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959). [CrossRef]  

80. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]  

81. M. A. Lieb, Mikroskopie mit Parabolspiegeloptik: Theorie, Aufbau und Charakterisierung eines kombinierten konfokalen und nahfeld-optischen Mikroskops für die Einzelmolekül-Spektroskopie bei tiefen Temperaturen (BoD–Books on Demand, 2002).

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
    [Crossref]
  2. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  4. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
    [Crossref] [PubMed]
  5. M. Fleischer, “Near-field scanning optical microscopy nanoprobes,” Nanotechnol. Rev. 1(4), 313–338 (2012).
    [Crossref]
  6. M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008).
    [Crossref] [PubMed]
  7. M. Consonni, J. Hazart, and G. Lérondel, “Fabry–Pérot-type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94(5), 051105 (2009).
    [Crossref]
  8. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [Crossref]
  9. L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75(20), 205401 (2007).
    [Crossref]
  10. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009).
    [Crossref] [PubMed]
  11. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
    [Crossref] [PubMed]
  12. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
    [Crossref]
  13. S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
    [Crossref] [PubMed]
  14. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. B 113(8), 3041–3045 (2009).
  15. B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
    [Crossref] [PubMed]
  16. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  17. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
    [Crossref] [PubMed]
  18. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express 17(4), 2906–2917 (2009).
    [Crossref] [PubMed]
  19. M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007).
    [Crossref]
  20. Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
    [Crossref] [PubMed]
  21. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
    [Crossref]
  22. C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013).
    [Crossref]
  23. F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
    [Crossref]
  24. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [Crossref] [PubMed]
  25. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
    [Crossref] [PubMed]
  26. C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
    [Crossref] [PubMed]
  27. M. Toma, K. Cho, J. B. Wood, and R. M. Corn, “Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing,” Plasmonics 9(4), 765–772 (2014).
    [Crossref]
  28. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [Crossref] [PubMed]
  29. J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010).
    [Crossref] [PubMed]
  30. T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
    [Crossref]
  31. S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
    [Crossref] [PubMed]
  32. F. Yan and W. A. Goedel, “Preparation of Mesoscopic Gold Rings Using Particle Imprinted Templates,” Nano Lett. 4(7), 1193–1196 (2004).
    [Crossref]
  33. L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
    [Crossref]
  34. J. Stern, “Silver nanorings: Nanofabrication and optical Properties,” Process & Characterization, NNIN REU Research Accomplishments (2006), http://www.nnin.org/sites/default/files/files/NNINreu06Stern.pdf .
  35. H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
    [Crossref]
  36. F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011).
    [Crossref]
  37. Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012).
    [Crossref] [PubMed]
  38. S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
    [Crossref] [PubMed]
  39. Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
    [Crossref]
  40. D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
    [Crossref] [PubMed]
  41. J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
    [Crossref]
  42. Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
    [Crossref]
  43. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 Nanoring Plasmon Waveguides at Optical Communication Band,” J. Lightwave Technol. 25(9), 2757–2765 (2007).
    [Crossref]
  44. H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
    [Crossref]
  45. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  46. J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
    [Crossref] [PubMed]
  47. R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
    [Crossref] [PubMed]
  48. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
    [Crossref]
  49. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  50. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  51. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008).
    [Crossref] [PubMed]
  52. S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
    [Crossref] [PubMed]
  53. M. Lieb and A. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8(7), 458–474 (2001).
    [Crossref] [PubMed]
  54. T. Züchner, A. V. Failla, and A. J. Meixner, “Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects,” Angew. Chem. Int. Ed. Engl. 50(23), 5274–5293 (2011).
    [Crossref] [PubMed]
  55. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
    [Crossref]
  56. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16(7), 1971–1974 (1977).
    [Crossref] [PubMed]
  57. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  58. C. Huber, S. Orlov, P. Banzer, and G. Leuchs, “Corrections to the knife-edge based reconstruction scheme of tightly focused light beams,” Opt. Express 21(21), 25069–25076 (2013).
    [Crossref] [PubMed]
  59. A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
    [Crossref] [PubMed]
  60. B. Sick, B. Hecht, and L. Novotny, “Orientational Imaging of Single Molecules by Annular Illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
    [Crossref] [PubMed]
  61. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  62. T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
    [Crossref] [PubMed]
  63. A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
    [Crossref] [PubMed]
  64. T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009).
    [Crossref]
  65. P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
    [Crossref] [PubMed]
  66. B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001).
    [Crossref] [PubMed]
  67. S. K. Rhodes, K. A. Nugent, and A. Roberts, “Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe,” J. Opt. Soc. Am. A 19(8), 1689–1693 (2002).
    [Crossref] [PubMed]
  68. C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003).
    [Crossref] [PubMed]
  69. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
    [Crossref]
  70. J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
    [Crossref] [PubMed]
  71. J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
    [Crossref]
  72. G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
    [Crossref] [PubMed]
  73. F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
    [Crossref]
  74. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
    [Crossref]
  75. M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
    [Crossref] [PubMed]
  76. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  77. “Refractive Index Database”, retrieved Jan. 01, 2012, < http://refractiveindex.info >.
  78. C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
    [Crossref] [PubMed]
  79. E. Wolf, “Electromagnetic diffraction in optical systems-I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
    [Crossref]
  80. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  81. M. A. Lieb, Mikroskopie mit Parabolspiegeloptik: Theorie, Aufbau und Charakterisierung eines kombinierten konfokalen und nahfeld-optischen Mikroskops für die Einzelmolekül-Spektroskopie bei tiefen Temperaturen (BoD–Books on Demand, 2002).

2018 (2)

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

2016 (1)

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

2015 (1)

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

2014 (2)

2013 (7)

C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013).
[Crossref]

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
[Crossref]

C. Huber, S. Orlov, P. Banzer, and G. Leuchs, “Corrections to the knife-edge based reconstruction scheme of tightly focused light beams,” Opt. Express 21(21), 25069–25076 (2013).
[Crossref] [PubMed]

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

2012 (3)

R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
[Crossref] [PubMed]

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012).
[Crossref] [PubMed]

M. Fleischer, “Near-field scanning optical microscopy nanoprobes,” Nanotechnol. Rev. 1(4), 313–338 (2012).
[Crossref]

2011 (6)

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011).
[Crossref]

T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
[Crossref]

T. Züchner, A. V. Failla, and A. J. Meixner, “Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects,” Angew. Chem. Int. Ed. Engl. 50(23), 5274–5293 (2011).
[Crossref] [PubMed]

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
[Crossref] [PubMed]

2010 (4)

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[Crossref]

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[Crossref] [PubMed]

2009 (13)

S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express 17(4), 2906–2917 (2009).
[Crossref] [PubMed]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[Crossref] [PubMed]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. B 113(8), 3041–3045 (2009).

M. Consonni, J. Hazart, and G. Lérondel, “Fabry–Pérot-type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94(5), 051105 (2009).
[Crossref]

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
[Crossref] [PubMed]

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009).
[Crossref]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

2008 (11)

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008).
[Crossref] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008).
[Crossref] [PubMed]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

2007 (5)

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007).
[Crossref]

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75(20), 205401 (2007).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 Nanoring Plasmon Waveguides at Optical Communication Band,” J. Lightwave Technol. 25(9), 2757–2765 (2007).
[Crossref]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

2006 (5)

J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
[Crossref]

T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
[Crossref] [PubMed]

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
[Crossref] [PubMed]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
[Crossref] [PubMed]

2004 (1)

F. Yan and W. A. Goedel, “Preparation of Mesoscopic Gold Rings Using Particle Imprinted Templates,” Nano Lett. 4(7), 1193–1196 (2004).
[Crossref]

2003 (6)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

2002 (1)

2001 (3)

B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

M. Lieb and A. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8(7), 458–474 (2001).
[Crossref] [PubMed]

2000 (2)

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational Imaging of Single Molecules by Annular Illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

1977 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems-I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Ahn, J. S.

Aiello, A.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Albooyeh, M.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Altbir, D.

J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. B 113(8), 3041–3045 (2009).

Babayan, Y.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Bahiana, M.

J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
[Crossref]

Banzer, P.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

C. Huber, S. Orlov, P. Banzer, and G. Leuchs, “Corrections to the knife-edge based reconstruction scheme of tightly focused light beams,” Opt. Express 21(21), 25069–25076 (2013).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
[Crossref]

Bär, S.

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
[Crossref] [PubMed]

Bauer, T.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
[Crossref]

Bautista, G.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. B 113(8), 3041–3045 (2009).

Borghs, G.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[Crossref] [PubMed]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

Bozhevolnyi, S. I.

Braun, K.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

Brown, T.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Cabrini, S.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

Cai, Y.

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012).
[Crossref] [PubMed]

Cao, L.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75(20), 205401 (2007).
[Crossref]

Capolino, F.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Castaño, F. J.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

Chan, C.-F.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Chang, K.-H.

C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013).
[Crossref]

Chang, Y.-T.

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Charraut, D.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007).
[Crossref]

Chen, S.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[Crossref] [PubMed]

Chen, S. Y.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Chen, Y.-F.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Chen, Z.

Chizhik, A. I.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
[Crossref] [PubMed]

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

Chizhik, A. M.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
[Crossref] [PubMed]

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

Cho, B. K.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Cho, K.

M. Toma, K. Cho, J. B. Wood, and R. M. Corn, “Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing,” Plasmonics 9(4), 765–772 (2014).
[Crossref]

Choi, D.-G.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
[Crossref] [PubMed]

Choi, S. B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Choi, S. M.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, C. K.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Consonni, M.

M. Consonni, J. Hazart, and G. Lérondel, “Fabry–Pérot-type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94(5), 051105 (2009).
[Crossref]

Corn, R. M.

M. Toma, K. Cho, J. B. Wood, and R. M. Corn, “Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing,” Plasmonics 9(4), 765–772 (2014).
[Crossref]

Courjon, D.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007).
[Crossref]

T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
[Crossref] [PubMed]

Cremer, P. S.

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012).
[Crossref] [PubMed]

Crupi, I.

F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011).
[Crossref]

d’Albuquerque e Castro, J.

J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
[Crossref]

Davis, T. J.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Debus, C.

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003).
[Crossref] [PubMed]

Dereux, A.

Dmitriev, A.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[Crossref] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Drechsler, A.

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003).
[Crossref] [PubMed]

Dreser, C.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Duan, J.

R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
[Crossref] [PubMed]

Ehlich, R.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

Eilez, A.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

El-Sayed, M.

R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
[Crossref] [PubMed]

Eng, L. M.

Escrig, J.

J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
[Crossref]

Failla, A. V.

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

T. Züchner, A. V. Failla, and A. J. Meixner, “Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects,” Angew. Chem. Int. Ed. Engl. 50(23), 5274–5293 (2011).
[Crossref] [PubMed]

T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009).
[Crossref]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
[Crossref] [PubMed]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Firester, A. H.

Fischer, H.

Fleischer, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
[Crossref] [PubMed]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

M. Fleischer, “Near-field scanning optical microscopy nanoprobes,” Nanotechnol. Rev. 1(4), 313–338 (2012).
[Crossref]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. B 113(8), 3041–3045 (2009).

Frandsen, C.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

Fu, X.-F.

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Fulmes, J.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

Funston, A. M.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Galarreta, B. C.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Gérard, D.

T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
[Crossref]

Giessen, H.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

Gil, D.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

Goedel, W. A.

F. Yan and W. A. Goedel, “Preparation of Mesoscopic Gold Rings Using Particle Imprinted Templates,” Nano Lett. 4(7), 1193–1196 (2004).
[Crossref]

Gollmer, D. A.

P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
[Crossref] [PubMed]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

Gong, H.-M.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Gray, S. K.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Grimaldi, M. G.

F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011).
[Crossref]

Grosjean, T.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007).
[Crossref]

T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
[Crossref] [PubMed]

Guclu, C.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Gunnarsson, L.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[Crossref] [PubMed]

Häffner, M.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Han, M.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Hanack, M.

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Hao, F.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Hao, Z.-H.

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Harté, E.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[Crossref] [PubMed]

Hartschuh, A.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
[Crossref] [PubMed]

Hazart, J.

M. Consonni, J. Hazart, and G. Lérondel, “Fabry–Pérot-type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94(5), 051105 (2009).
[Crossref]

Hecht, B.

B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational Imaging of Single Molecules by Annular Illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

Heeren, A.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

Heller, M. E.

Hentschel, M.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

Hille, A.

Holmgaard, T.

Hörber, J. K. H.

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

Horneber, A.

Horrer, A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

Hsiao, J. H.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Huang, F.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Huber, C.

Humphrey, F. B.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

Hung, T.-H.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Jäger, R.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

Jäger, S.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

Jeong, H.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Jiang, H.

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[Crossref]

Jiang, Y.-W.

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jung, G. Y.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Jung, H.-T.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
[Crossref] [PubMed]

Jung, J.-M.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
[Crossref] [PubMed]

Jung, K.-Y.

Käll, M.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[Crossref] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Kauranen, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Kern, A. M.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

Kern, D. P.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
[Crossref] [PubMed]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

Khoptyar, D.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
[Crossref] [PubMed]

Kiang, Y. W.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Kihm, H. W.

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kihm, J. E.

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, D. S.

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Kim, J. G.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Kim, S.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
[Crossref] [PubMed]

Kim, W. B.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Krotkov, R. V.

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

Lagae, L.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[Crossref] [PubMed]

Lagugné-Labarthet, F.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[Crossref] [PubMed]

Landeros, P.

J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
[Crossref]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Lee, B.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Lee, K. G.

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Lee, P.-T.

C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Lee, S.-C.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Lerond, T.

T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
[Crossref]

Lérondel, G.

M. Consonni, J. Hazart, and G. Lérondel, “Fabry–Pérot-type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94(5), 051105 (2009).
[Crossref]

Leuchs, G.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

C. Huber, S. Orlov, P. Banzer, and G. Leuchs, “Corrections to the knife-edge based reconstruction scheme of tightly focused light beams,” Opt. Express 21(21), 25069–25076 (2013).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, S.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Li, Y.

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012).
[Crossref] [PubMed]

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

Lieb, M.

Lieb, M. A.

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008).
[Crossref] [PubMed]

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003).
[Crossref] [PubMed]

Lienau, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Lin, J.-W.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Liu, S. D.

Liu, S.-D.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Lu, S.-P.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Lyubimtsev, A.

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

Mack, H.-G.

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

Maes, G.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[Crossref] [PubMed]

Markey, L.

Marquestaut, N.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[Crossref] [PubMed]

Martin, O. J. F.

McMahon, J. M.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Meixner, A.

Meixner, A. J.

P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
[Crossref] [PubMed]

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

T. Züchner, A. V. Failla, and A. J. Meixner, “Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects,” Angew. Chem. Int. Ed. Engl. 50(23), 5274–5293 (2011).
[Crossref] [PubMed]

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
[Crossref] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009).
[Crossref]

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008).
[Crossref] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008).
[Crossref] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
[Crossref] [PubMed]

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003).
[Crossref] [PubMed]

Mihaljevic, J.

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Mulvaney, P.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Near, R.

R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
[Crossref] [PubMed]

Neugebauer, M.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

Nordlander, P.

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012).
[Crossref] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Norton, P. R.

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[Crossref] [PubMed]

Novo, C.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational Imaging of Single Molecules by Annular Illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

Nugent, K. A.

Odom, T. W.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Orlov, S.

C. Huber, S. Orlov, P. Banzer, and G. Leuchs, “Corrections to the knife-edge based reconstruction scheme of tightly focused light beams,” Opt. Express 21(21), 25069–25076 (2013).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
[Crossref]

Osgood, R. M.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75(20), 205401 (2007).
[Crossref]

Pachter, R.

R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
[Crossref] [PubMed]

Panoiu, N. C.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75(20), 205401 (2007).
[Crossref]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Park, D. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Park, J.-W.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Park, Q. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
[Crossref]

Plain, J.

T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Proust, J.

T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
[Crossref]

Qian, H.

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
[Crossref] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
[Crossref] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Reano, R. M.

Redjdal, M.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

Reichenbach, P.

Rhodes, S. K.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Roberts, A.

Ropers, C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Ross, C. A.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

Ruffino, F.

F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011).
[Crossref]

Russell, T. P.

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

Sabarinathan, J.

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[Crossref]

Sackrow, M.

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008).
[Crossref] [PubMed]

Schäfer, C.

P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
[Crossref] [PubMed]

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

Schatz, G. C.

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

Schuck, P. J.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Sheng, P.

Sick, B.

B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational Imaging of Single Molecules by Annular Illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

Simone, F.

F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011).
[Crossref]

Singh, D. K.

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

Smith, H. I.

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

Stade, F.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

Stadler, J.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008).
[Crossref] [PubMed]

Stanciu, C.

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008).
[Crossref] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008).
[Crossref] [PubMed]

Stranick, S. J.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

Stupperich, C.

Su, X.-R.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Suarez, M. A.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007).
[Crossref]

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Svedendahl, M.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[Crossref] [PubMed]

Tabor, C.

R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
[Crossref] [PubMed]

Teixeira, F. L.

Toma, M.

M. Toma, K. Cho, J. B. Wood, and R. M. Corn, “Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing,” Plasmonics 9(4), 765–772 (2014).
[Crossref]

Tsai, C.-Y.

C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Tseng, P. H.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Tu, Y. C.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Tuominen, M. T.

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

Tzuang, D.-C.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Van Dorpe, P.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Veysi, M.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Wackenhut, F.

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009).
[Crossref]

Wang, Q. Q.

Wang, Q.-Q.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Weber-Bargioni, A.

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

Wickramasinghe, H. K.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Wild, U. P.

B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical systems-I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Wood, J. B.

M. Toma, K. Cho, J. B. Wood, and R. M. Corn, “Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing,” Plasmonics 9(4), 765–772 (2014).
[Crossref]

Wu, C.-Y.

C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013).
[Crossref]

Wu, Y.-T.

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Xiang, H.

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

Xiao, S.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Xu, T.

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

Yan, F.

F. Yan and W. A. Goedel, “Preparation of Mesoscopic Gold Rings Using Particle Imprinted Templates,” Nano Lett. 4(7), 1193–1196 (2004).
[Crossref]

Yang, B.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

Yang, C. C.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Yang, C.-H.

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Yang, S.-M.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
[Crossref] [PubMed]

Ye, J.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[Crossref] [PubMed]

Ye, Y.-H.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

Yockell-Lelièvre, H.

T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
[Crossref]

Yoon, S.

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

Youngworth, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Yu, C. K.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Yu, J. H.

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

Yu, L.

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Yu, X.-F.

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Zang, X.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Zeng, J.

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, D.

P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
[Crossref] [PubMed]

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

Zhang, X.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Zhang, Z. S.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Zhou, L.

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Züchner, T.

T. Züchner, A. V. Failla, and A. J. Meixner, “Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects,” Angew. Chem. Int. Ed. Engl. 50(23), 5274–5293 (2011).
[Crossref] [PubMed]

T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009).
[Crossref]

ACS Nano (1)

Y. Babayan, J. M. McMahon, S. Li, S. K. Gray, G. C. Schatz, and T. W. Odom, “Confining Standing Waves in Optical Corrals,” ACS Nano 3(3), 615–620 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

J. Zeng, F. Huang, C. Guclu, M. Veysi, M. Albooyeh, H. K. Wickramasinghe, and F. Capolino, “Sharply Focused Azimuthally Polarized Beams with Magnetic Dominance: Near-Field Characterization at Nanoscale by Photoinduced Force Microscopy,” ACS Photonics 5(2), 390–397 (2018).
[Crossref]

Adv. Funct. Mater. (1)

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton–Plasmon Interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Adv. Mater. (1)

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: from Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

T. Züchner, A. V. Failla, and A. J. Meixner, “Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects,” Angew. Chem. Int. Ed. Engl. 50(23), 5274–5293 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (9)

J. Escrig, P. Landeros, D. Altbir, M. Bahiana, and J. d’Albuquerque e Castro, “Magnetic properties of layered nanorings,” Appl. Phys. Lett. 89(13), 132501 (2006).
[Crossref]

Y.-T. Chang, Y.-H. Ye, D.-C. Tzuang, Y.-T. Wu, C.-H. Yang, C.-F. Chan, Y.-W. Jiang, and S.-C. Lee, “Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings,” Appl. Phys. Lett. 92(23), 233109 (2008).
[Crossref]

F. Ruffino, I. Crupi, F. Simone, and M. G. Grimaldi, “Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface,” Appl. Phys. Lett. 98(2), 023101 (2011).
[Crossref]

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92(25), 253111 (2008).
[Crossref]

M. Consonni, J. Hazart, and G. Lérondel, “Fabry–Pérot-type enhancement in plasmonic visible nanosource,” Appl. Phys. Lett. 94(5), 051105 (2009).
[Crossref]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93(11), 111114 (2008).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

T. Lerond, J. Proust, H. Yockell-Lelièvre, D. Gérard, and J. Plain, “Self-assembly of metallic nanoparticles into plasmonic rings,” Appl. Phys. Lett. 99(12), 123110 (2011).
[Crossref]

L. Zhou, X.-F. Fu, L. Yu, X. Zhang, X.-F. Yu, and Z.-H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Appl. Surf. Sci. (1)

T. Züchner, F. Wackenhut, A. V. Failla, and A. J. Meixner, “Nanoscale characterization of single Au nanorods by confocal microscopy,” Appl. Surf. Sci. 255(10), 5391–5395 (2009).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

ChemPhysChem (1)

M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman Near-Field Optical Microscopy,” ChemPhysChem 9(2), 316–320 (2008).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Microsc. (2)

B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202(Pt 2), 365–373 (2001).
[Crossref] [PubMed]

C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution,” J. Microsc. 210(Pt 3), 203–208 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. B 113(8), 3041–3045 (2009).

J. Phys. Chem. C (2)

H. Jiang and J. Sabarinathan, “Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings,” J. Phys. Chem. C 114(36), 15243–15250 (2010).
[Crossref]

F. Wackenhut, A. V. Failla, and A. J. Meixner, “Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods,” J. Phys. Chem. C 117(34), 17870–17877 (2013).
[Crossref]

Langmuir (1)

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance,” Langmuir 22(17), 7109–7112 (2006).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Nano Lett. (9)

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes,” Nano Lett. 6(7), 1374–1378 (2006).
[Crossref] [PubMed]

F. Yan and W. A. Goedel, “Preparation of Mesoscopic Gold Rings Using Particle Imprinted Templates,” Nano Lett. 4(7), 1193–1196 (2004).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, “Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography,” Nano Lett. 12(4), 2158–2164 (2012).
[Crossref] [PubMed]

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au Nanotip as Luminescent Near-Field Probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref] [PubMed]

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances,” Nano Lett. 12(9), 4881–4888 (2012).
[Crossref] [PubMed]

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, and A. J. Meixner, “Excitation Isotropy of Single CdSe/ZnS Nanocrystals,” Nano Lett. 11(3), 1131–1135 (2011).
[Crossref] [PubMed]

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref] [PubMed]

Nanoscale (2)

C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale 5(17), 7861–7866 (2013).
[Crossref] [PubMed]

S. H. Lee, S. Yoon, H. Jeong, M. Han, S. M. Choi, J. G. Kim, J.-W. Park, G. Y. Jung, B. K. Cho, and W. B. Kim, “Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms,” Nanoscale 5(21), 10653–10659 (2013).
[Crossref] [PubMed]

Nanotechnol. Rev. (1)

M. Fleischer, “Near-field scanning optical microscopy nanoprobes,” Nanotechnol. Rev. 1(4), 313–338 (2012).
[Crossref]

Nanotechnology (5)

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology 20(43), 434015 (2009).
[Crossref] [PubMed]

C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016).
[Crossref] [PubMed]

D. K. Singh, R. V. Krotkov, H. Xiang, T. Xu, T. P. Russell, and M. T. Tuominen, “Arrays of ultrasmall metal rings,” Nanotechnology 19(24), 245305 (2008).
[Crossref] [PubMed]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[Crossref] [PubMed]

M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology 21(6), 065301 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (4)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2013).
[Crossref]

Opt. Commun. (1)

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun. 270(2), 447–454 (2007).
[Crossref]

Opt. Express (9)

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
[Crossref] [PubMed]

S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express 17(4), 2906–2917 (2009).
[Crossref] [PubMed]

J. S. Ahn, H. W. Kihm, J. E. Kihm, D. S. Kim, and K. G. Lee, “3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips,” Opt. Express 17(4), 2280–2286 (2009).
[Crossref] [PubMed]

T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
[Crossref] [PubMed]

P. Reichenbach, A. Horneber, D. A. Gollmer, A. Hille, J. Mihaljevic, C. Schäfer, D. P. Kern, A. J. Meixner, D. Zhang, M. Fleischer, and L. M. Eng, “Nonlinear optical point light sources through field enhancement at metallic nanocones,” Opt. Express 22(13), 15484–15501 (2014).
[Crossref] [PubMed]

C. Huber, S. Orlov, P. Banzer, and G. Leuchs, “Corrections to the knife-edge based reconstruction scheme of tightly focused light beams,” Opt. Express 21(21), 25069–25076 (2013).
[Crossref] [PubMed]

M. Lieb and A. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8(7), 458–474 (2001).
[Crossref] [PubMed]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

A. M. Chizhik, R. Jäger, A. I. Chizhik, S. Bär, H.-G. Mack, M. Sackrow, C. Stanciu, A. Lyubimtsev, M. Hanack, and A. J. Meixner, “Optical imaging of excited-state tautomerization in single molecules,” Phys. Chem. Chem. Phys. 13(5), 1722–1733 (2011).
[Crossref] [PubMed]

B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, and F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010).
[Crossref] [PubMed]

Phys. Rev. B (4)

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75(20), 205401 (2007).
[Crossref]

F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, “Metastable states in magnetic nanorings,” Phys. Rev. B 67(18), 184425 (2003).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational Imaging of Single Molecules by Annular Illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Plasmonics (2)

M. Toma, K. Cho, J. B. Wood, and R. M. Corn, “Gold Nanoring Arrays for Near Infrared Plasmonic Biosensing,” Plasmonics 9(4), 765–772 (2014).
[Crossref]

C.-Y. Tsai, C.-Y. Wu, K.-H. Chang, and P.-T. Lee, “Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8(2), 1011–1016 (2013).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

E. Wolf, “Electromagnetic diffraction in optical systems-I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Other (3)

J. Stern, “Silver nanorings: Nanofabrication and optical Properties,” Process & Characterization, NNIN REU Research Accomplishments (2006), http://www.nnin.org/sites/default/files/files/NNINreu06Stern.pdf .

M. A. Lieb, Mikroskopie mit Parabolspiegeloptik: Theorie, Aufbau und Charakterisierung eines kombinierten konfokalen und nahfeld-optischen Mikroskops für die Einzelmolekül-Spektroskopie bei tiefen Temperaturen (BoD–Books on Demand, 2002).

“Refractive Index Database”, retrieved Jan. 01, 2012, < http://refractiveindex.info >.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The processing steps of the ring fabrication: (a) using HSQ negative resist and an etch-mask transfer, (b) using PMMA positive resist and a lift-off, and (c) schematic of NR array.
Fig. 2
Fig. 2 (a) Top-view SEM images of gold NRs with periodicity p = 2 µm, height h = 50 nm, average width w = 50 nm and nominal centre diameters d of 250, 450, 650 and 850 nm; (b) normalized scattering dark-field spectra of single gold NRs as imaged in (a); (c) and (d) normalized extinction spectra of gold NRs (d = 450 nm, h = 50 nm, w = 50 nm) with TE and TM polarization of the incident light and the sample normal tilted by 0°, 30° and 60° relative to the incident beam. (e) Simulated scattering spectra of an infinite gold nanorod on ITO (h = 50 nm, w = 50 nm) excited by electromagnetic field components polarized perpendicular and parallel to the substrate (inset: polarization direction of the excitation fields).
Fig. 3
Fig. 3 Correlation between ring diameter und PL intensity distribution under excitation with AP and RP laser modes. (a) and (b) Individually normalized PL images and line cuts through the PL images of NRs excited with AP laser mode, as well as with (d) and (e) RP laser mode. (c) Top-view SEM images of measured gold NRs with increasing center diameters from 369 nm to 751 nm. The scale bar applies to (c). The center-to-center distances in (b), (c) and (d) correspond to 2 μm. Occasional artefacts in the shape of short bright lines appear in some of the PL images, which may result from intermittent local contaminations on the NRs.
Fig. 4
Fig. 4 (a) and (b) Calculation (based on a beam radius of 190 nm from beam simulations) and measurement of the average diameters of the ring-shaped PL patterns under excitation with (a) AP and (b) RP laser beams versus ring centre diameter. (c) Calculation and measurement of the average FWHM of the PL maximum or double peak inside the ring under excitation with RP laser mode versus ring centre diameter.
Fig. 5
Fig. 5 (a) Formation of (upper row) RP and (lower row) AP laser modes from a linearly polarized mode; arrows denote the orientation of the electric field vector, black lines indicate the fast axis of the four λ/2 wave plates. After the mode converter, a pin-hole is used for spatial filtering (not shown). (b) Calculated intensity profiles of (left) RP and (right) AP doughnut modes for a 632.8 nm laser beam in the focus of an objective with an NA of 1.25: Ez2 (dotted line) is the longitudinal, Exy2 (dashed line) is the transversal and E2 (solid lines) is the total electric field strength squared. For AP modes, E2 = Exy2.
Fig. 6
Fig. 6 Generation of PL signal for gold NRs of width w = 50 nm using (a) and (b) focused AP laser modes and (c),(d) focused RP laser modes centered at the positions of the red dots for NR diameters (a) and (c) d = 751 nm and (b), (d) d = 369 nm. The arrows indicate the in-plane electric field orientation in the focus plane, with components marked in yellow leading to PL. The black and green lines mark the ring radius Rr and radius of the intensity maximum of Exy2, respectively, and the red arrows mark the distance from the ring centre to the maxima of PL intensity RPL.

Metrics