Abstract

High-quality InxGa1-xN/GaN multi-quantum well (MQW) structures (0.05≤x≤0.13), are successfully grown on transparent and conductive (−201)-oriented β-Ga2O3 substrate. Scanning-transmission electron microscopy and secondary ion mass spectrometry (SIMS) show well-defined high quality MQWs, while the In and Ga compositions in the wells and the barriers are estimated by SIMS. Temperature-dependant Photoluminescence (PL) confirms high optical quality with a strong bandedge emission and negligble yellow band. time-resolved PL measurements (via above/below-GaN bandgap excitations) explain carrier dynamics, showing that the radiative recombination is predominant. Our results demonstrate that (−201)-oriented β-Ga2O3 is a strong candidate as a substrate for III-nitride-based vertical- emitting devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

GaN and III-nitride alloys (InN and AlN) have attracted great research interest over the past few years and have triggered cutting-edge innovations in solid-state lighting due to their outstanding material properties, including large and tunable direct energy bandgap, maximum electron velocities, very large heterojunction offsets, and high thermal and chemical stability [1]. Particularly, vertical light emitting diodes (vertical LEDs) based on III-nitrides possess several advantages compared to traditional lateral LEDs, in which the total internal reflection and subsequent absorption at the GaN/substrate interface limit the light extraction efficiency and thus reduce external efficiency [2]. Extant studies indicated that the techniques aiming to overcome the aforementioned issues further increase the device design complexity, while making it more challenging to meet the high-efficiency requirements [2,3]. Furthermore, lateral LEDs grown on sapphire substrate suffer efficiency droop and reliability issues due to high threading dislocation density (TDD) caused by a significant lattice mismatch (~14%) [4]and severe current crowding near the edge of the n-contact and the n-type GaN material [5,6]. On the other hand, vertical injection design is a promising strategy for improving both heat and current management [7]. Conductive SiC substrates are commonly used for vertical LEDs; however, such substrate is expensive, not transparent and introduces micropipes during crystal growth, which limits large-scale emitting devices [8]. Thus, fabricating bright high-efficiency vertical emitting devices is a highly demanding process and more in-depth research is required to achieve their optimization.

The wide bandgap (4.8 eV) β-Ga2O3 substrate is a potential candidate for enhancing the efficiency of III-nitride-based vertical LEDs, as it considerably reduces the vertical LED fabrication complexity [9]. β-Ga2O3 is cost-effective with much higher conductivity and higher transparency in UV spectral region compared to GaN and SiC substrates, making it more suitable for large-scale devices [10,11]. Consequently, β-Ga2O3 is a potential candidate for UV and visible vertical LEDs. In addition, the transparency of Ga2O3 substrate allows omnidirectional light emission from vertical LEDs, leading to high brightness. Previous attempts to obtain high-quality III-nitride quantum wells (QWs) using (100)-oriented β-Ga2O3 grown by both molecular beam epitaxy (MBE) [12,13] and metal organic chemical vapor deposition (MOCVD) [14,15] as a substrate have failed due to the strong cleavage of the (100) plane [14,16]. In our earlier work, we reported a high optical and structural quality InxGa1-xN epilayers grown on monoclinic (−201)-oriented β-Ga2O3 using AlN [10] and GaN buffer layer [11]. We have demonstrated that a low TDD (2 × 108 cm−2) created in GaN grown on (−201)-oriented β-Ga2O3 compared to that grown on sapphire was due to the lower lattice mismatch (~4.7%) and threading dislocation (TD) annihilation near the interface between the buffer layer and the substrate [11]. The TDD reduction led to a low non-radiative recombination and is likely to result in high-quality vertical emitting devices [17]. However, there is no systematic study on the optical and structural properties on InGaN/GaN multiple quantum well (MQW) with different InN contents grown on (−201)-oriented β-Ga2O3.

To address this gap in the current research, in this study, we systematically investigate the structural and optical quality of the InxGa1-xN/GaN MQWs (x = 0.05−0.13) grown by MOCVD without any quality enhancement techniques, such as the epitaxial lateral overgrowth, substrate patterning or nano-imprint lithography. We also perform a detailed investigation of the characteristic carrier dynamics of the MQWs grown directly on β-Ga2O3 substrate.

2. Experiment

The (−201)-oriented β-Ga2O3 substrates was doped with Sn to improve the conductivity, and the carrier density of 1018 cm−3 was estimated using Hall measurements. A low-temperature (LT) undoped GaN buffer layer was grown to a thickness of ~2 nm at 490 °C under a N2 and NH3 atmosphere on β-Ga2O3 substrates using a low-pressure vertical MOCVD reactor. Then, H2 was used as the carrier gas and the substrate temperature was increased to 920 °C to grow an n-type Si-doped GaN epilayer (of 4 × 1018 cm−3 carrier density and ~2.5 µm nominal thickness). To optimize the GaN layer quality, the temperature was increased further to 1080 °C to deposit another Si-doped GaN layer (of ~2.5 µm thickness), followed by three periods of InxGa1−xN/GaN MQW growth. During the MQW growth, precursors of trimethylgallium (TMGa), trimethylindium (TMIn), and NH3 were used as source gasses and N2 at a pressure 400 mbar served as the carrier gas. The growth temperature was varied from 725 to 820 K for InN contents varied from 0.05 to 0.13, respectively.

Structural characterization was performed by high-resolution X-ray diffraction (HR-XRD), secondary ion mass spectrometry (SIMS) and scanning-transmission electron micrograph (STEM). The required elemental distribution in MQW was achieved using SIMS technique. Depth profiling experiments were carried out on In and Ga atoms using a dynamic SIMS instrument operated at ultra-high vacuum conditions under Secondary Neutral Mass Spectrometry (SNMS) mode [18]. The STEM images were acquired with a Titan 60-300 TEM from Thermo Fisher, USA, equipped with a Probe Cs corrector. Dark-field STEM mode was used to obtain Z-contrast images with Fischione high-angle annular dark field (HAADF) detector at 300 kV with a probe semi-convergence angle 20 mrad, 100 mm camera length, and a probe current of 100 pA. The lamella for STEM analysis was prepared by lift-off procedure using an FEI Helios focused ion beam system. The temperature-dependent photoluminescence (PL) and temperature-dependent time-resolved PL (TRPL) measurements on the MQW were performed to study the carrier recombination dynamics of the MQW structures through above/below-GaN quantum barrier (QB) bandgap excitations. PL measurements were performed at different temperatures (10−300 K) via above/below-GaN bandgap excitations using a continuous-wave (CW) 325 nm He-Cd laser and 405/376 nm solid-state lasers, respectively. The spectra were collected by an Andor monochromator attached to a CCD camera. The TRPL spectra were excited at room temperature (RT) and 6 K by the second-harmonic (400 nm) pulses of a mode-locked Ti:sapphire femtosecond pulsed laser (with a pulse width of ~190 fs and a power density of 7 W/cm2 at 2 MHz repetition rate). A Coherent Verdi-V18 diode-pumped solid-state CW laser was used to pump the Ti:sapphire laser. The sample emission was detected by a monochromator attached to a Hamamatsu streak camera (C5680) with 10 ps temporal resolution in single-mode operation. For all optical measurements, the samples were mounted in a closed-cycle helium cryostat.

3. Results and discussion

Figure 1(a) shows the high resolution XRD (HR-XRD) ω/2θ scan spectra obtained for all InxGa1-xN (x = 0.05, 0.1 and 0.13) MQW samples at (0002) reflection. The sharp peak (observed at θ = 17.4°) and the satellite peaks originate from the GaN layer and the periodic MQW layers, respectively. The low-angle shoulder of the GaN (0002) peak (zeroth-order) represents the average InN composition in the QWs, while the greater split between the GaN and the zeroth-order peak indicates higher InN content [19,20], as shown in Fig. 1(a). Broadening of the satellite peaks can be observed as InN content increases, because higher InN content introduces greater roughness at the interface.

 figure: Fig. 1

Fig. 1 HR-XRD patterns on InxGa1-xN/GaN MQW samples (a) for the (0002) reflection from the QWs with different x-values (0.05, 0.1 and 0.13). (b) SNMS depth profiling with x = 0.13 and x = 0.1.

Download Full Size | PPT Slide | PDF

To obtain more accurate information on elemental (In and Ga) distribution in the MQW samples, SIMS at SNMS mode was performed using a standard InGaN thin-film with known Ga and In concentrations as a reference confirmed by X-ray photoelectron spectroscopy (figure not shown). Figure 1(b) shows the SNMS quantitative depth profiles for two MQW samples with the highest InN compositions. The depth profiling quality, the depth resolution and the stability of ion signals reveals three well-defined and high-quality QW embedded between GaN QBs. The experiments were repeated several times to estimate the concentration range for Ga and In compositions across the 2″ wafers of these samples. The average InN compositions were estimated to be ⁓13% and ⁓10% for these two MQW wafers. The QW and QB width was calculated by analyzing the full width at half maximum (FWHM) values of the depth profile [18]. The In0.13Ga0.87N/GaN MQW sample exhibits more uniform profiles, with the QW and QB width of ⁓3 nm and ⁓7 nm, respectively. The average QW and QB thickness in the In0.1Ga0.9N/GaN MQW sample was ⁓4.1 nm and ⁓8.5 nm, respectively.

We confirmed the QW dimensions by performing cross-sectional STEM analysis (along g = 0002) on the MQW sample (x = 0.13), as shown in Fig. 2(a). STEM scans show that the MQWs structures exhibit high-quality. No TD penetration to the MQW is observed. Figure 2(b) shows a high-resolution STEM image, confirming the well-defined QW and QB width, which is in good agreement with the SIMS results. The cross-sectional STEM image at the interface between the β-Ga2O3 substrate and GaN epilayer is shown in Fig. 3(a). The electron diffraction shows GaN wurtzite (0001) structure, without any zinc blende regions or misoriented grains. The diffraction patterns show that the film is viewed along the [1-100] zone axis, which is parallel to the Ga2O3 [110] axis. The common diffraction pattern (center) shows a strong epitaxial relationship between the two films. The orientation relationship between GaN and β-Ga2O3 indicates the growth of (0001)-oriented GaN on (−201)-oriented β-Ga2O3. Limited presence of TDDs is observed, which can be due to the bending and termination of TDs near the interface as shown in Fig. 3(b). Such observation has been explained in our previous work [11]. These results suggest that (−201)-oriented β-Ga2O3 is a promising substrate for high-quality devices.

 figure: Fig. 2

Fig. 2 (a) Cross-sectional STEM image of In0.13Ga0.87N/GaN MQW sample and (b) high resolution image with QW and QB dimensions.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 A STEM cross-sectional image (a) at the interface between the β-Ga2O3 substrate and GaN epilayer, with electron diffraction patters at highlighted positions shown at the β-Ga2O3 substrate (bottom), interface (middle), and GaN epilayer (top) (beam stop is used to mask the central bright spot). (b) The zoomed image of the TD annihilation.

Download Full Size | PPT Slide | PDF

Figure 4(a) and 4(b) show the typical PL spectra of all samples measured at RT and low temperature (10 K), respectively, obtained by exciting the MQWs to the energy above the GaN QB bandgap. The oscillations in the PL spectra at RT are related to Fabry-Perot optical interference within the structure. These Fabry-Perot fringes result from the high refractive index contrasts between the layers, confirming that the samples have a very smooth interface surface and epilayer uniformity [21]. For all samples, the peak emission exhibits a slight shift (up to ~2 nm) across the 2″ wafer due to InN compositional fluctuations [22,23]. All samples show high intensity bandedge emissions associated to recombination at the MQWs even at RT with a very weak yellow band (YB) with negligible intensity. At RT, the MQW peaks are located at 3.21, 3.03, and 2.67 eV (Fig. 4(a)), whereas at low temperature (LT), the same peaks are located at 3.25, 3.05, and 2.71 eV (Fig. 4(b)), corresponding to x = 0.05, 0.1 and 0.13, respectively. At 10 K, the InxGa1-xN MQW structures with x = 0.13 showed a MQW emission peak with a narrower FWHM compared to that of the In0.1Ga0.9N MQW sample as shown in Fig. 3(b). This finding shows that, even though the InN content is higher for the In0.13Ga0.87N MQWs structure, its growth conditions were well optimized, resulting in more homogeneous distribution of In atoms in the QWs, with lower In diffusion to the QB, which concurs with the SNMS results (Fig. 1(b)).

 figure: Fig. 4

Fig. 4 Normalized PL spectra of the samples at (a) 10 K and (b) RT obtained through 325 nm CW laser excitation. (c) A comparison of the PL intensity for similar In0.05Ga0.95N/GaN MQW structures grown on β-Ga2O3 and sapphire substrates.

Download Full Size | PPT Slide | PDF

For comparison, similar In0.05Ga0.95N/GaN MQW structures have been grown on sapphire substrate. Figure 4(c) shows the RT PL spectra pertaining to In0.05Ga0.95N/GaN MQWs grown on (−201)-oriented β-Ga2O3 substrates with roughly two-fold higher PL intensity than that associated with MQWs grown on sapphire, although the FWHM and peak energy remain almost the same. The detected PL emission consists of direct emission from the MQWs and the reflected light from the interface between the n-GaN and substrate layers, due to the difference in the refractive index. A higher refractive index of β-Ga2O3 (⁓1.9) compared to sapphire (⁓1.78) confirms a higher critical angle for total internal refection of the emitted light from n-GaN and β-Ga2O3 interface [24,25]. Therefore, it is expected that more light would be reflected from the n-GaN and sapphire interface, which proves that the high PL intensity from MQW on β-Ga2O3 substrate is not due to the refractive index difference. We observe that the intensity ratio of the YB emission to the MQW emission is lower for the MQWs grown on (−201)-β-Ga2O3 compared to that grown on sapphire substrate, indicating better crystalline quality [26, 27]. Moreover, for the sample grown β-Ga2O3, the MQW and GaN PL bandedge emission peaks exhibit a small blueshift (16 meV) that could be ascribed to strain relaxed layers compared to that grown on sapphire substrate, as demonstrated in our previous work [10]. All these findings indicate better optical quality of In0.05Ga0.95N/GaN MQW structures grown on β-Ga2O3 relative to those grown on sapphire substrate.

Figure 4 showed the PL peak-energy and the FWHM as functions of temperature (10−300 K) for all MQW samples. The peak-energy for x = 0.13 and x = 0.1 samples exhibits typical ‘S-shape’ behavior as the temperature increases, which is the characteristic of the localization in MQWs [28–30], as shown in Fig. 5(a) and 5(b), respectively. For In0.1Ga0.9N/GaN MQWs, the MQW peaks exhibit a redshift as temperature increases (up to 50K), followed by a slight blueshift and a subsequent redshift up to 300 K. The initial redshift is a result of the thermally activated carriers undergoing hopping and relaxing down into strongly localized states. The slight blueshift due to a further temperature increase is attributed to the carriers occupying higher-energy levels of the localized states [28,31]. The FWHM values varied between 9 and 16.5 meV (~7.5 meV) as the temperature increased from 10 K to RT. Similar behavior is observed for In0.13Ga0.87N/GaN MQWs, whereby the initial peak-energy switch from redshift to blueshift occurs at a higher temperature (65 K), indicating a larger potential variation or localization. For the x = 0.13 sample, the PL peak FWHM varied in the 7−14 meV range (~7 meV)as the temperature increased, indicating less pronounced changes in FWHM as a function of temperature compared to the x = 0.1 sample, which is in agreement with the SIMS results. The carriers are thermally excited out of the potential minima at a higher temperature if a deeper potential fluctuation exists. In the low temperature region, the narrowing of FWHM occurs due to the redistribution of carriers in both deep and shallow localization states. Further increase in the temperature up to RT causes FWHM broadening for both samples. Generally, this FWHM increase accompanying the peak energy redshift as the temperature increases is due to carrier thermalization [28,31]. On the other hand, for the sample with x = 0.05 (Fig. 5(c)), the peak energy and FWHM remain constant up to T = 130 K, after which the peak energy shows a redshift and FWHM increases as temperature increases to 300 K, indicating the typical thermalization of the carriers [32].

 figure: Fig. 5

Fig. 5 PL peak energy (blue) and FWHM (black) as functions of temperature for the InxGa1-xN/GaN MQW samples with (a) x = 0.13, (b) x = 0.1 and (c) x = 0.05.

Download Full Size | PPT Slide | PDF

As the In0.13Ga0.87N/GaN and In0.1Ga0.9N/GaN MQW samples showed better optical quality than that of x = 0.05, we conducted further investigations of their optical properties by the below-QB bandgap excitation. Such excitation allows us to study exclusively the carrier behavior inside the MQWs. Figure 6 shows a comparison of the PL spectra obtained through above- and below-QB bandgap excitations. For In0.13Ga0.88N MQW sample (Fig. 6(a)), the below-QB bandgap excitation produces low-energy peak at 2.74 eV accompanied the main peak (2.77 eV), which can be due to quasi-confinement states or two-dimensional potential minima formed inside the QW because of the InN compositional fluctuations [33], and the carrier recombination preferentially occurs through the localized potentials [34]. The energy difference of 28 meV between the two peaks confirms that the peak split is not due to the light interference at the epitaxial layers, which is 37 meV as shown in Fig. 4(a) for the In0.13Ga0.87N MQW sample. When the carriers are excited by the above-QB bandgap excitations, the recombination at the QWs requires multiple phonon energies. In this case, photon energy can be resonant with the quasi-confinement energy levels and the carrier relaxation may occur through few active energy levels only, resulting in disappearance of some peaks. The shoulder at 2.81 eV arises due to the In compositional fluctuations. For the In0.1Ga0.9N MQW, the peak energy exhibits a redshift only under the below-QB bandgap excitation (376 nm) compared to that produced by the above-QB bandgap excitation, as shown in Fig. 6(b), which is within the resolution limit of the grating (~0.5 nm).

 figure: Fig. 6

Fig. 6 A comparison of PL spectra obtained at 10 K by excitation energies above (325 nm) and below (405 and 376 nm) the QB bandgap energy for the samples with x = (a) 0.13 (b) 0.1.

Download Full Size | PPT Slide | PDF

We studied the carrier dynamics by TRPL to elucidate the radiative recombination contributions and the effect of the localized potentials on the highest quality sample (x = 0.13) by the below-QB bandgap (400 nm) excitation [35,36]. A bi-exponential decay is observed from the emission peak indicating multi-level recombination, as shown in Fig. 7(a). The bi-exponential decay can be expressed as [37,38],

I(t)=A1exp(tτPL1)+A2exp(tτPL2),
where A1 and A2 are adjustable constants and τPL1 and τPL2 denote the fast and slow decay times, respectively.

 figure: Fig. 7

Fig. 7 (a) TRPL spectra for MQW (with x = 0.13) obtained at 6 K and RT fitted by the bi-exponential decay (the blue lines correspond to the fit using Eq. (1)). (b) Temperature-dependent lifetime.

Download Full Size | PPT Slide | PDF

The fast and slow decay times of 4.2 and 22.8 ns are obtained at 6 K, compared to 1.67 and 7.76 ns at RT, respectively. Figure 7(a) shows that the overall PL decay time decreases at RT compared to that at 6 K, which is due to the carrier thermalization and dominant non-radiative recombination [39]. The radiative lifetime (τR) and non-radiative lifetime (τNR) can be deduced from the slow PL decay time, τPL and internal efficiency, ηint, for the MQWs as a function of temperature [40]. The ratio of integrated PL intensity at temperature T to that at 6 K can be used as a measure for internal quantum efficiency (IQE, ηint) at any temperature T, by assuming that the non-radiative channels are inactive at the lowest possible temperature (6 K) at which the recombination processes is mostly radiative in nature (in line with Rashba’s approach) [41]. Such IQE values at RT are calculated to be 23.5%, 11% and 29.3% for x = 0.05, 0.1 and 0.13, respectively, indicating that the sample with x = 0.13 has the highest optical quality. τR and τNR can be obtained by:

τR(T)=τPL(T)ηint(T),
τNR(T)=τPL(T)1ηint(T).

Figure 7(b) shows the temperature dependence of τR, τNR and τPL values for the samples obtained from Eq. (2). The photo-excited carriers mainly decay through radiative recombination and non-radiative recombination processes. In0.13Ga0.87N/GaN MQW TRPL shows that, at low temperatures, recombination process is mostly radiative in nature and the PL lifetime is close to the τR. In the intermediate temperature range (60−150 K), the effect of non-radiative recombination starts to contribute to the recombination process. The radiative lifetime τR remains almost constant within the error range ( ± 0.8 ns) when the temperature increases from 6 K to 150 K, indicating strong localization of the excitons at these temperatures [40]. On the other hand, τNR decreases rapidly with temperature and becomes smaller than τR above 150 K, decreasing to 10 ns at RT. The radiative/non-radiative crossover point (at which the non-radiative recombination rate starts to exceed radiative recombination rate) occurs at ⁓150 K due to severe suppression of non-radiative recombination below 150 K, confirming high-quality localization in the MQW.

4. Conclusion

In summary, the optical and structural characterizations of InxGa1-xN/GaN MQW structures grown on transparent and conductive (−201)-oriented β-Ga2O3 substrate showed a high material quality. No TD penetration into the MQW were observed. The PL measurements using above/below-QB bandgap excitations revealed sharp emissions and presence of localized states. TDPL showed a typical S-shape behavior. TRPL findings indicated that radiative recombination is predominant. Our results confirmed that (−201)-oriented β-Ga2O3 are potential for reliable and bright vertical LEDs, emitting light omnidirectionally via a direct growth method at a low cost per device.

Acknowledgment

The samples were purchased from Tamura Corporation and Novel Crystal Technology, Inc., Sayama, Saitama 350-1328, Japan. The author would like to thank the growers Mr. Yoshihiro Yamashita, Mr. Higuchi Mitsuhito, and Mr. Akito Kuramata, president and CEO of Novel Crystal Technology, Inc. Japan. The authors thanks KAUST for the finance support.

References and links

1. B. Monemar, “III-V nitrides—important future electronic materials,” J. Mater. Sci. Mater. Electron. 10(4), 227–254 (1999). [CrossRef]  

2. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007). [CrossRef]  

3. Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016). [CrossRef]   [PubMed]  

4. N. V. Edwards, “Chapter 9 - Residual stress in III–V nitrides,” in III-Nitride Semiconductors: Electrical, Structural and Defects Properties, O. Manasreh ed. (Elsevier, 2000).

5. X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001). [CrossRef]  

6. I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek Jr., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999). [CrossRef]  

7. H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007). [CrossRef]  

8. E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006). [CrossRef]  

9. M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017). [CrossRef]   [PubMed]  

10. M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014). [CrossRef]  

11. M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016). [CrossRef]   [PubMed]  

12. E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014). [CrossRef]  

13. E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007). [CrossRef]  

14. K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005). [CrossRef]  

15. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008). [CrossRef]  

16. S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012). [CrossRef]  

17. J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008). [CrossRef]  

18. R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis (Wiley, 1989).

19. G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003). [CrossRef]  

20. A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006). [CrossRef]  

21. C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007). [CrossRef]  

22. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998). [CrossRef]  

23. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000). [CrossRef]  

24. M. J. Dodge, “Refractive index”, in CRC Handbook of Laser Science and Technology, Vol. 4: Optical Materials, Part 2, M. J. Weber ed. (CRC Press, 1986), pp. 21–47.

25. S. Pearton, GaN and ZnO-based Materials and Devices, (Springer, 2012).

26. S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997). [CrossRef]  

27. I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999). [CrossRef]  

28. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998). [CrossRef]  

29. W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, H. Yang, Y. T. Zhang, and G. T. Du, “Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells,” Opt. Express 23(12), 15935–15943 (2015). [CrossRef]   [PubMed]  

30. X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018). [CrossRef]  

31. K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997). [CrossRef]  

32. G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000). [CrossRef]  

33. T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015). [CrossRef]   [PubMed]  

34. H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010). [CrossRef]  

35. G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011). [CrossRef]  

36. S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002). [CrossRef]  

37. S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001). [CrossRef]  

38. T. Y. Seong, J. Han, H. Amano, and H. Morkoc, III-Nitride Based Light Emitting Diodes and Applications. (Springer, 2017).

39. S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003). [CrossRef]  

40. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996). [CrossRef]  

41. O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. B. Monemar, “III-V nitrides—important future electronic materials,” J. Mater. Sci. Mater. Electron. 10(4), 227–254 (1999).
    [Crossref]
  2. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
    [Crossref]
  3. Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
    [Crossref] [PubMed]
  4. N. V. Edwards, “Chapter 9 - Residual stress in III–V nitrides,” in III-Nitride Semiconductors: Electrical, Structural and Defects Properties, O. Manasreh ed. (Elsevier, 2000).
  5. X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
    [Crossref]
  6. I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
    [Crossref]
  7. H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
    [Crossref]
  8. E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006).
    [Crossref]
  9. M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
    [Crossref] [PubMed]
  10. M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
    [Crossref]
  11. M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
    [Crossref] [PubMed]
  12. E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
    [Crossref]
  13. E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
    [Crossref]
  14. K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
    [Crossref]
  15. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
    [Crossref]
  16. S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
    [Crossref]
  17. J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
    [Crossref]
  18. R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis (Wiley, 1989).
  19. G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
    [Crossref]
  20. A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
    [Crossref]
  21. C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
    [Crossref]
  22. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
    [Crossref]
  23. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000).
    [Crossref]
  24. M. J. Dodge, “Refractive index”, in CRC Handbook of Laser Science and Technology, Vol. 4: Optical Materials, Part 2, M. J. Weber ed. (CRC Press, 1986), pp. 21–47.
  25. S. Pearton, GaN and ZnO-based Materials and Devices, (Springer, 2012).
  26. S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
    [Crossref]
  27. I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
    [Crossref]
  28. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
    [Crossref]
  29. W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, H. Yang, Y. T. Zhang, and G. T. Du, “Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells,” Opt. Express 23(12), 15935–15943 (2015).
    [Crossref] [PubMed]
  30. X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
    [Crossref]
  31. K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
    [Crossref]
  32. G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
    [Crossref]
  33. T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
    [Crossref] [PubMed]
  34. H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010).
    [Crossref]
  35. G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
    [Crossref]
  36. S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
    [Crossref]
  37. S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
    [Crossref]
  38. T. Y. Seong, J. Han, H. Amano, and H. Morkoc, III-Nitride Based Light Emitting Diodes and Applications. (Springer, 2017).
  39. S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
    [Crossref]
  40. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
    [Crossref]
  41. O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
    [Crossref]

2018 (1)

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

2017 (1)

M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
[Crossref] [PubMed]

2016 (2)

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
[Crossref]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

2012 (1)

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

2011 (1)

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

2010 (1)

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010).
[Crossref]

2008 (2)

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[Crossref]

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

2007 (4)

E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
[Crossref]

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

2006 (2)

E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006).
[Crossref]

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
[Crossref]

2005 (1)

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

2003 (2)

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

2002 (1)

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

2001 (2)

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

2000 (2)

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000).
[Crossref]

1999 (3)

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

B. Monemar, “III-V nitrides—important future electronic materials,” J. Mater. Sci. Mater. Electron. 10(4), 227–254 (1999).
[Crossref]

1998 (3)

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
[Crossref]

1997 (2)

S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
[Crossref]

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

1996 (1)

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Abare, A. C.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Abell, J.

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[Crossref]

Aida, H.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

Ajia, I. A.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

Akasaki, I.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000).
[Crossref]

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Alwadai, N.

M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
[Crossref] [PubMed]

Amano, H.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000).
[Crossref]

Aoki, K.

E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
[Crossref]

E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
[Crossref]

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

Aoshima, H.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Aota, N.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

Arjoca, S.

E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
[Crossref]

Azuhata, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Baik, K. H.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Bergman, J. P.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Bläsing, J.

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
[Crossref]

Bowers, J. E.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Brandt, O.

O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
[Crossref]

Breitkopf, T.

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

Brown, M. G.

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

Chen, C. Y.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Chen, H.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Chen, P.

Chen, Z. Z.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Cheng, Y. C.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Chichibu, S.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Chichibu, S. F.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Cho, J.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Cho, Y. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Choi, K. K.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Chou, C. Y.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Christen, J.

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Chung, Y. Y.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Chyi, J. I.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Coldren, L. A.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Dadgar, A.

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
[Crossref]

Dai, L.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Demeester, P.

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

DenBaars, S. P.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Diez, A.

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
[Crossref]

Ding, X. M.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Ding, Y. J.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

Domen, K.

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

Du, C.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Du, G. T.

Eliashevich, I.

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

Fang, Y.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Feng, S. W.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Finger, T.

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Fischer, A. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Fleischer, S. B.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Franco, N.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Gainer, G. H.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Gan, Z. Z.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Guo, X.

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Haung, J. Y.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Hempel, T.

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Henneberger, F.

O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
[Crossref]

Hoffmann, A.

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

Horton, M. N.

S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
[Crossref]

Hsu, C.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Hu, E.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Hu, X. D.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Huang, C. Y.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Humphreys, C. J.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

Hums, C.

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
[Crossref]

Hwang, J. M.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Ichinose, N.

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

Iizuka, K.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

Inomata, D.

E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
[Crossref]

Ishida, Y.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Ito, S.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Iwaya, M.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Jia, H.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Jiang, D.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Jiang, D. S.

Jiang, Y.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Kalt, H.

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

Kamiyama, S.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Karlicek, R. F.

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

Keller, S.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Kim, H.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010).
[Crossref]

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Kim, K. K.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Kitamura, K.

E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
[Crossref]

Kitamura, T.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Kronik, L.

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

Krost, A.

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
[Crossref]

Kuech, T. F.

S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
[Crossref]

Kuramata, A.

M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
[Crossref] [PubMed]

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Kuroda, T.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Lee, Y. J.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Li, M.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Li, X.

Li, Y.

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

Li, Z. H.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Liang, F.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Lin, C. C.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Lin, T. N.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Lin, Y. S.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Liu, G.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

Liu, J. P.

Liu, S.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Liu, W.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, H. Yang, Y. T. Zhang, and G. T. Du, “Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells,” Opt. Express 23(12), 15935–15943 (2015).
[Crossref] [PubMed]

Liu, Z.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Liu, Z. S.

Lopatin, S.

M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
[Crossref] [PubMed]

Lorenz, K.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Lu, M.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Lu, T.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Ma, K. J.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Ma, Z.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Matyi, R.

S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
[Crossref]

Middleton, P. G.

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

Minsky, M. S.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Mishra, U. K.

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Moerman, I.

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

Monemar, B.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

B. Monemar, “III-V nitrides—important future electronic materials,” J. Mater. Sci. Mater. Electron. 10(4), 227–254 (1999).
[Crossref]

Morishima, Y.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Moustakas, T. D.

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[Crossref]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Muhammed, M. M.

M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
[Crossref] [PubMed]

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Nagata, K.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Nakamura, S.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Nakanishi, H.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Nishiguchi, K.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

O’Donnell, K. P.

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

Okumura, H.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Onuma, T.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Osinsky, A.

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

Park, Y.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Peres, M.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Perkins, N. R.

S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
[Crossref]

Ploog, K. H.

O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
[Crossref]

Pozina, G.

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Qin, Z. X.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Rasp, M.

E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006).
[Crossref]

Ringling, J.

O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
[Crossref]

Roldan, M. A.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

Roqan, I. S.

M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
[Crossref] [PubMed]

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Rosenwaks, Y.

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

Ryu, H.-Y.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010).
[Crossref]

Safvi, S. A.

S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
[Crossref]

Sahonta, S. L.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

Salzman, J.

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

Sato, S.

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Schmitt, E.

E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006).
[Crossref]

Schubert, E. F.

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

Segal, G.

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

Seong, S. Y.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Shalish, I.

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

Shapira, Y.

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Shen, J. L.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Shen, W. C.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Shi, M.

Shim, J.-I.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010).
[Crossref]

Shimamura, K.

E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
[Crossref]

E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
[Crossref]

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

Shin, D.-S.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010).
[Crossref]

Sone, C.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Song, J. J.

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Song, J. O.

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

Sota, T.

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Straubinger, T.

E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006).
[Crossref]

Sugiyama, M.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Sun, G.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

Sunakawa, K.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

Tackeuchi, A.

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

Takeda, H.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

Takeda, K.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Takehara, K.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Takeuchi, T.

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000).
[Crossref]

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

Tansu, N.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

Tisch, U.

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

Tong, Y. Z.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Tran, C. A.

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

Tsai, M. T.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Ujiie, T.

E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
[Crossref]

Van der Stricht, W.

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

Víllora, E. G.

E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
[Crossref]

E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
[Crossref]

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

Wang, H.

Wang, L.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Wang, M. T.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Wang, W.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Wang, X.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Weber, A.-D.

E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006).
[Crossref]

Wetzel, C.

C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000).
[Crossref]

Wu, H.

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Wünsche, H.-J.

O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
[Crossref]

Xing, Y.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Xu, G.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

Yaguchi, Y.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

Yamashita, Y.

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

Yang, C. C.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Yang, C. F.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Yang, H.

Yang, J.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Yang, Z. J.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Yang, Z. P.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Yao, Y. C.

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

Yu, T. J.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Yui, K.

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

Zhang, G. Y.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Zhang, J.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

Zhang, L.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Zhang, S. M.

Zhang, Y. T.

Zhao, D.

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Zhao, D. G.

Zhao, D. M.

Zhao, H.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

Zhao, Y.

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Zhu, J. J.

ACS Appl. Mater. Interfaces (1)

M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, and I. S. Roqan, “High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate,” ACS Appl. Mater. Interfaces 9(39), 34057–34063 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (10)

M. M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, K. Lorenz, A. Kuramata, and I. S. Roqan, “High optical and structural quality of GaN epilayers grown on (−201) β-Ga2O3,” Appl. Phys. Lett. 105(4), 042112 (2014).
[Crossref]

H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and S. Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91(2), 023510 (2007).
[Crossref]

E. G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, and T. Ujiie, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90(23), 234102 (2007).
[Crossref]

J. Abell and T. D. Moustakas, “The role of dislocations as nonradiative recombination centers in InGaN quantum wells,” Appl. Phys. Lett. 92(9), 091901 (2008).
[Crossref]

S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998).
[Crossref]

Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

K. P. O’Donnell, T. Breitkopf, H. Kalt, W. Van der Stricht, I. Moerman, P. Demeester, and P. G. Middleton, “Optical linewidths of InGaN light emitting diodes and epilayers,” Appl. Phys. Lett. 70(14), 1843–1845 (1997).
[Crossref]

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[Crossref]

S. F. Chichibu, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, and H. Okumura, “Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells,” Appl. Phys. Lett. 79(26), 4319–4321 (2001).
[Crossref]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

J. Appl. Phys. (5)

S. F. Chichibu, T. Onuma, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, “Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1−xN/GaN multiple quantum wells,” J. Appl. Phys. 93(4), 2051–2054 (2003).
[Crossref]

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88(5), 2677–2681 (2000).
[Crossref]

C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate,” J. Appl. Phys. 101(3), 033113 (2007).
[Crossref]

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

J. Cryst. Growth (2)

A. Dadgar, C. Hums, A. Diez, J. Bläsing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth 297(2), 279–282 (2006).
[Crossref]

S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, “Effect of reactor geometry and growth parameters on the uniformity and material properties of GaN sapphire grown by hydride vapor-phase epitaxy,” J. Cryst. Growth 182(3–4), 233–240 (1997).
[Crossref]

J. Disp. Technol. (1)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

B. Monemar, “III-V nitrides—important future electronic materials,” J. Mater. Sci. Mater. Electron. 10(4), 227–254 (1999).
[Crossref]

Jpn. J. Appl. Phys. (3)

K. Shimamura, E. G. Víllora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 44(1), L7–L8 (2005).
[Crossref]

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method,” Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008).
[Crossref]

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of Time-resolved Photoluminescence of InGaN Quantum Wells Using the Carrier Rate Equation,” Jpn. J. Appl. Phys. 49(1111R), 112402 (2010).
[Crossref]

Mater. Res. Express (1)

X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, and M. Li, “Influence of InGaN layer growth temperature on luminescence properties of InGaN/GaN multiple quantum wells,” Mater. Res. Express 5(2), 025906 (2018).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

G. Y. Zhang, Z. J. Yang, Y. Z. Tong, Z. X. Qin, X. D. Hu, Z. Z. Chen, X. M. Ding, M. Lu, Z. H. Li, T. J. Yu, L. Zhang, Z. Z. Gan, Y. Zhao, and C. F. Yang, “InGaN/GaN MQW high brightness LED grown by MOCVD,” Opt. Mater. 23(1–2), 183–186 (2003).
[Crossref]

Phys. Rev. B (3)

I. Shalish, L. Kronik, G. Segal, Y. Rosenwaks, Y. Shapira, U. Tisch, and J. Salzman, “Yellow luminescence and related deep levels in unintentionally doped GaN films,” Phys. Rev. B 59(15), 9748–9751 (1999).
[Crossref]

C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, “Quantized states in Ga1-xInxN/GaN heterostructures and the model of polarized homogeneous quantum wells,” Phys. Rev. B 62(20), R13302 (2000).
[Crossref]

O. Brandt, J. Ringling, K. H. Ploog, H.-J. Wünsche, and F. Henneberger, “Temperature dependence of the radiative lifetime in GaN,” Phys. Rev. B 58(24), R15977 (1998).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(3–4), 519–522 (2012).
[Crossref]

Proc. SPIE (2)

E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, “β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs & LDs, and β-Ga2O3 potential for next generation of power devices,” Proc. SPIE 8987, 89871U (2014).
[Crossref]

I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek., “InGaN blue light-emitting diodes with optimized n-GaN layer,” Proc. SPIE 3621, 28–36 (1999).
[Crossref]

Sci. Rep. (3)

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6(1), 22659 (2016).
[Crossref] [PubMed]

M. M. Muhammed, M. A. Roldan, Y. Yamashita, S. L. Sahonta, I. A. Ajia, K. Iizuka, A. Kuramata, C. J. Humphreys, and I. S. Roqan, “High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer,” Sci. Rep. 6(1), 29747 (2016).
[Crossref] [PubMed]

T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4(1), 6131 (2015).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

E. Schmitt, T. Straubinger, M. Rasp, and A.-D. Weber, “Defect reduction in sublimation grown SiC bulk crystals,” Superlattices Microstruct. 40(4–6), 320–327 (2006).
[Crossref]

Other (5)

N. V. Edwards, “Chapter 9 - Residual stress in III–V nitrides,” in III-Nitride Semiconductors: Electrical, Structural and Defects Properties, O. Manasreh ed. (Elsevier, 2000).

R. G. Wilson, F. A. Stevie, and C. W. Magee, Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis (Wiley, 1989).

M. J. Dodge, “Refractive index”, in CRC Handbook of Laser Science and Technology, Vol. 4: Optical Materials, Part 2, M. J. Weber ed. (CRC Press, 1986), pp. 21–47.

S. Pearton, GaN and ZnO-based Materials and Devices, (Springer, 2012).

T. Y. Seong, J. Han, H. Amano, and H. Morkoc, III-Nitride Based Light Emitting Diodes and Applications. (Springer, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 HR-XRD patterns on InxGa1-xN/GaN MQW samples (a) for the (0002) reflection from the QWs with different x-values (0.05, 0.1 and 0.13). (b) SNMS depth profiling with x = 0.13 and x = 0.1.
Fig. 2
Fig. 2 (a) Cross-sectional STEM image of In0.13Ga0.87N/GaN MQW sample and (b) high resolution image with QW and QB dimensions.
Fig. 3
Fig. 3 A STEM cross-sectional image (a) at the interface between the β-Ga2O3 substrate and GaN epilayer, with electron diffraction patters at highlighted positions shown at the β-Ga2O3 substrate (bottom), interface (middle), and GaN epilayer (top) (beam stop is used to mask the central bright spot). (b) The zoomed image of the TD annihilation.
Fig. 4
Fig. 4 Normalized PL spectra of the samples at (a) 10 K and (b) RT obtained through 325 nm CW laser excitation. (c) A comparison of the PL intensity for similar In0.05Ga0.95N/GaN MQW structures grown on β-Ga2O3 and sapphire substrates.
Fig. 5
Fig. 5 PL peak energy (blue) and FWHM (black) as functions of temperature for the InxGa1-xN/GaN MQW samples with (a) x = 0.13, (b) x = 0.1 and (c) x = 0.05.
Fig. 6
Fig. 6 A comparison of PL spectra obtained at 10 K by excitation energies above (325 nm) and below (405 and 376 nm) the QB bandgap energy for the samples with x = (a) 0.13 (b) 0.1.
Fig. 7
Fig. 7 (a) TRPL spectra for MQW (with x = 0.13) obtained at 6 K and RT fitted by the bi-exponential decay (the blue lines correspond to the fit using Eq. (1)). (b) Temperature-dependent lifetime.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(t)= A 1 exp( t τ PL1 )+ A 2 exp( t τ PL2 ),
τ R (T)= τ PL (T) η int (T) ,
τ NR (T)= τ PL (T) 1 η int (T) .

Metrics