Abstract

The two-dimensional photoelectron momentum distributions (PMD) of F- ions induced by a linearly polarized few-cycle laser pulse are analyzed with the saddle-point (SP) method. The validity of the SP method is confirmed by comparing the PMD with those obtained from direct numerical integration of the transition probability amplitude in the context of strong-field approximation (SFA). We analyze the intra- and inter-cycle interference patterns in the two-dimensional PMD and show that the two-dimensional PMD can be effectively monitored by changing the carrier-envelope phase of few-cycle laser pulse. In addition, by separately calculating the two-dimensional PMD formed in the different detachment steps, we find that the rich oscillatory patterns in the two-dimensional PMD can be mainly attributed to the interference effects of electronic wave packets in the classical propagation step after the ionization, and part of intra-cycle interference fringes’ shape is affected by the sub-barrier phase.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photoionization or detachment is the footstone for understanding numerous strong-field phenomena and attosecond physics [1,2]. Much important information about the electron dynamics can be extracted from the angle-resolved photoelectron spectra induced by strong laser field [3]. Usually, the tunnel ionization regime is quantified by the Keldysh parameter γ=Ip/2Up<1, where Ipis ionization potential and Upis the ponderomotive energy. In this regime, electron can be released by tunneling from laser-induced potential barrier near the field maxima and the dominant structures emerging in the photoelectron spectra are explained as interference between electron wave packets (WP) emitted at different times within the whole laser pulse [4]. The earlier observed interference pattern is above-threshold ionization (ATI) peaks in the electron energy spectra [5], which results from the interference between wave packets emitted at time intervals separated by at least single laser cycle (so called inter-cycle interference) [6,7]. Few-cycle pulses with absolute phase stabilization have been appreciated as powerful tools to study strong-field ionization [8]. Especially in 2005, a striking pattern called intra-cycle (or sub-cycle) interference was demonstrated with few-cycle laser pulses, which results from the temporal double-slit interference between two WPs released in consecutive laser half-cycles [9]. Recent works show that the measurement of sub-cycle electron wave-packet interference patterns can serve as a tool to extract structure and electron dynamics in atoms and molecules on attosecond time scale [10,11].

For most strong-field ionization of neutral atoms, the ionic Coulomb field on the photoelectron gives rise to some additional structures in the two-dimensional photoelectron momentum distributions(PMD), which also distorts the interference fringes [12,13]. However, for the negative ions, the outer electron is bound by short-range potential and the Coulomb effect inside the neutral atoms is absent. Therefore strong-field approximation (SFA) model has been viewed as an accurate treatment for the photodetachment of negative ions. As a matter of fact, a series of consequent measurements about angle-resolved electron spectra for H- ions [14] and F- ions [15–18] implemented by Kiyan et al. have been quantitatively reproduced by using SFA model [19–24] and solving the time-dependent Schrödinger equation (TDSE) [22]. Based on the SFA model, the saddle-point (SP) method was developed by Gribakin and Kuchiev [19]. For the linearly polarized or two-color bicircular laser field, the SP method can provide with an intuitive description of interference effects during the strong-field photodetachment [8,14,15,24]. Most previous works on strong-field detachment of negative atomic ions focus on multicycle laser pulses. Recently, Shearer et al. generalized the SP method to describe the photodetachment of negative ions in a few-cycle linearly polarized laser pulse [25,26]. However, the possibility for monitoring the inter- and intra-cycle interference patterns in photoelectron momentum distributions (PMD) of the negative ions by few-cycle laser pulse have not yet been clarified. On the other hand, few previous works studied the effect of the phase of the tunneling wave packet on the two-dimensional PMD of neutral atoms [27]. Very recently, Han et al. have demonstrated that the sub-barrier phase leaves definite imprint on the final photoelectron momentum distribution in tunneling ionization of Ar atoms [4]. As far as we know, the effect of sub-barrier phase on the PMD of the negative ions with short range potential has not been analyzed in detail.

In this paper, we investigate theoretically the two-dimensional PMD of F- ions induced by a linearly polarized few-cycle laser pulse with the generalized SP method. There are two main goals in this paper. First, based on the SP method, we analyze the intra- and inter-cycle interference patterns in two-dimensional PMD of F- ions induced by few-cycle laser pulse in detail. Second, based on the imaginary time method (ITM) and two-step semiclassical model for strong-field phenomena [27–29], we study the PMD formed in each step of photodetachment process and the effect of the sub-barrier phase on the interference patterns. The effect of the carrier-envelope phase (CEP) on the PMD is also discussed. Atomic units are used in this paper unless stated otherwise.

2. Theoretical methods

In the SFA model without rescattering mechanism, the direct transition probability amplitude from the atomic or ionic ground state |ψlm to the continuum state |ψp with momentum p is given by [8,18]

Ap=i+ψp|Hi(t)|ψlmdt
where Hi=rE(t) is the electron-laser interaction in the length gauge, and E(t) is the electric field of the laser pulse. The initial state of F- ions can be approximated as an asymptotic form [26]
ψlm(r)=Arexp(κr)Ylm(r^)
whereκ=2Ip,Ip=3.401eV is the ionization potential of F- ions, A=0.7is the asymptotic constant for the wave function. In this paper, we choose the orbital quantum number l=1 and the magnetic quantum number m=0 for F- ions. It has been shown that this electronic state gives a dominant contribution to the detachment signal [30].

The final state is approximately by the Volkov state

ψp(r,t)=exp[i(p+A(t))ri2t(p+A(t'))2dt']

The vector potential of the laser pulse is defined by A(t)=tE(t')dt'. The electric field of a linearly polarized laser pulse (along the z axis) can be written as

E(t)=E0cos2(πtτ)cos(ωt+ϕ)z^
for the time interval (τ/2,τ/2) and zero elsewhere. E0,ω,ϕ and τare the amplitude, angular frequency, CEP and total duration of the laser pulse, respectively.

After performing the integration over space coordinates in Eq. (1) analytically, for the magnetic quantum number m=0, we obtain the transition probability amplitude for F- ions with,

Ap=i62πAdtexp(i2tq2dt'+iIpt)E(t)×{q23qz2q5arctan(qκ)+5q2qz2κ+3qz2κ3q4κq2κ3q4(q2+κ2)2}

In Eq. (5), q=p+A(t) is a canonical momentum of the electron in a laser field and qz is the projection of q in the polarization direction of laser pulse.

The transition amplitude Ap in Eq. (5) is usually calculated by numerically integrating over time (hereafter to be called the numerical integration method). Alternatively, Ap can also be evaluated using the SP method of Shearer et al. [26] as follows

Ap=(2π)3/2Ats(±1)lY1m(q^s)exp(if(ts))if''(ts)
whereq^sis the unit vector in the direction of the complex canonical momentump+A(ts) and the sum runs over all SPs ts which are the complex roots of the following equations in the upper half-plane

(p+A(ts))2+2Ip=0

In this paper, all the complex SPtsare obtained by solving Eq. (8) with the Secant method. In Eq. (6), f(ts) and f(ts) are given by

f(ts)=ts[12(p+A(t'))2+Ip]dt'
and

f(ts)=2pE(ts)2A(ts)E(ts)

Since the integrand in Eq. (8) is analytic function, the integral path of f(ts) can be split into two parts [27],

f(ts)=fsub+fre

The first part fsub=tstr, where tr=Re(ts) is calculated along the path parallel to the imaginary axis down to the real axis. The second part fre=tr is evaluated along the real axis. In terms of the imaginary time theory [28] and semiclassical two-step model [29], the first part in Eq. (10) denotes the step that an electron tunnels through the barrier of negative ions, while the second part represents the step that the electron classically moves toward a detector in a laser pulse, i.e. classical propagation.

The differential detachment probability of an electron with energy E=p2/2 in the direction of p^ is given by

Q=3Pp3=|Ap|2
For the fixed magnetic quantum number m, to study how the two-dimensional PMD is contributed from the two steps of electron detachment of negative ions, we define two probabilities Qsub and Qre as
Qsub=|Ap(fsub)|2
and
Qre=|Ap(fre)|2
where Qsub is the detachment probability observed at the tunnel exit and Qre denotes the probability only contributed from the classical propagation process.

3. Results and discussion

3.1 Saddle-point distributions and the validity of the SP method

In this paper, we investigate the direct photodetachment from F- ions in a few-cycle linearly polarized laser pulse by the SP method. In our calculations, we use a three-cycle laser pulse with wavelength of 1400 nm and peak intensity of 1.7×1013W/cm2.

Figure 1 shows the electric field of three-cycle laser pulse with ϕ=0 and the corresponding SP distributions in the upper half-plane of complex ts for the fixed photoelectron energy of 3.4eV. In Fig. 1(b), each group of points depict the saddle points for the angles from θ=0to θ=180 with a step size of 1. It is found that there are eight SPs as the solutions of Eq. (7) for the three-cycle laser pulse with ϕ=0. In terms of the ITM method [28], the real parts of saddle points SP3, SP4, and SP5 in Fig. 1(b) represent the moments when the electrons are released more probably.

 

Fig. 1 (a) The electric field of a three-cycle laser pulse with wavelength of 1400nm, peak intensity of 1.7×1013W/cm2 , and CEP of ϕ=0. (b) The corresponding momentum complex-time SPs distributions for the fixed photoelectron energy of 3.4eV. The numbers of several dominant SPs are marked in complex-time plane.

Download Full Size | PPT Slide | PDF

Next we establish the validity of the SP method by comparing with numerical integration method. In Figs. 2(a) and 2(b), we show the two-dimensional PMD forϕ=0, by numerical integration method and SP method, respectively. pand p represent the momentum components perpendicular and parallel to the polarization direction of the laser’s electric field, respectively. By comparing Fig. 2(a) with Fig. 2(b), one can see that the structures of two-dimensional PMD using the numerical integration method and the SP method agree very well with each other. In Fig. 2(c), we show the PMD by considering coherently superposition of three dominant SPs, i.e., SPs 3-5. The main structures of Fig. 2(a) can be well reproduced by only considering the contribution of the SPs 3-5. Therefore three central SPs, i.e. SP3, SP4 and SP5, dominate the interference patterns of PMD in the three-few cycle pulse with ϕ=0.

 

Fig. 2 The normalized two-dimensional PMD of F- ions in a three-cycle laser pulse with ϕ=0 by using the (a) numerical integration method; (b) saddle-point method including all the SPs;(c) saddle-point method by considering several dominant SPs. The color is plotted on the logarithmic scale. The laser parameters are same as Fig. 1.

Download Full Size | PPT Slide | PDF

3.2 Analysis of interference patterns in the two-dimensional PMD

To further explore the formation of the interference structure in PMD by SP method, it is necessary to distinguish the contributions of the dominant SPs in the formation of main shape of PMD. In Figs. 3(a), 3(b) and 3(c), we show the PMD by coherently adding the contributions of SP3 + SP4, SP4 + SP5, SP3 + SP5, respectively. As known, the inter-cycle interference arises from the coherent superposition of electron wave packets released at complex times during different optical cycles, whereas intra-cycle interference comes from the coherent superposition of electron packets released in the same optical cycle. The interference patterns of Fig. 3(a) and Fig. 3(b) are actually originated from the intra-cycle interference and the interference patterns of Fig. 3(c) are originated from the inter-cycle interference. By comparing Fig. 2(a) with Fig. 3(a) and Fig. 3(b), it is found that the main interference patterns in the lower-half plane of Fig. 3(a) are similar to the lower-half part in the Fig. 2(a), while the main interference patterns in the upper-half plane of Fig. 3(b) are similar to upper-half part in the Fig. 2(a). It indicates that the main interference patterns in the lower half plane of Fig. 2(a) originate from the intra-cycle interference from wave packets for SP3 and SP4, while the main oscillatory patterns in the upper half plane of Fig. 3(a) originate from the intra-cycle interference from wave packets for SP4 and SP5. Figure 3(c) has the form of concentric rings centered at zero momentum in the momentum plane. The rings in Fig. 3(c) is associated with above-threshold detachment (ATD) rings of the photoelectron spectrum. The radius pr of each ATD ring can be calculated from an energy conservation equation [27],

pr=2(nωUpIp)
where n is the photon number absorbed from the laser field by electrons. By comparing Fig. 2(a) with Fig. 3(c), we find that the interference fringes with the concentric rings centered at zero momentum in Fig. 2(a) originates from the inter-cycle interference from wave packets for SP3 and SP5. Therefore the main structures of the two-dimensional PMD are attributed to the interplay of the intra- and inter-cycle interferences of those SPs.

 

Fig. 3 The normalized two-dimensional PMD contributed from different steps of the detachment process, calculated by considering the saddle points SP3 + SP4, SP4 + SP5, SP3 + SP5, respectively. (a)–(c) represent the PMD formed in whole detachment process, (d)–(f) represent the PMD formed in classical propagation step, (g)–(i) represent the PMD formed in quantum tunneling step. The laser parameters are same as Fig. 1 and the colors of (a)-(f) are plotted on the logarithmic scale.

Download Full Size | PPT Slide | PDF

Based on the ITM method described in Sec.2, the action f(ts) in Eq. (6) can be split into two parts [see Eq. (10)], i.e., fsuband fre. The sub-barrier action fsubrepresents the process of quantum tunneling detachment. The action fre describes the classical propagation process of photoelectron in the few-cycle laser field. The PMD that are contributed by fsuband fre can be calculated by using Eq. (12) and Eq. (13). Although it is impossible to separately detect these detachment probability distributions in the experiment, it is useful to understand the origin of interference structure of PMD with the theoretical analysis.

In Figs. 3(d)-3(f), we show the PMD formed in the classical propagation step by coherently adding the contributions of SP3 + SP4, SP4 + SP5, SP3 + SP5, respectively. We can clearly see that the main shape and number of the destructive interference fringes in Figs. 3(d)-3(f) agree with those in Figs. 3(a)-3(c). It indicates that the interference patterns in PMD of Fig. 2(a) can be attributed to the interference effects of electronic wave packets during the classical propagation process. Further careful inspection shows that the interference fringe at the bottom of Fig. 3(d) is more curved than those in Fig. 3(a), and the interference fringe at the top of Fig. 3(e) is more curved than those in Fig. 3(b). The reason is that the sub-barrier phase is absent in the calculations for Figs. 3(d)-3(f).

The PMD formed in the tunneling step are given in Figs. 3(g)-3(i). In practice, Figs. 3(g)-3(i) show the typical feature of tunneling probability distributions for the negative ions (or atoms) with the ground states of p state, in which two distinct maxima of probability deviating from zero momentum coexist along the laser polarization axis. As seen in Figs. 3(g)-3(i), the tunneling probability distributions are asymmetric about the horizontal axis for SP3 + SP4 and SP4 + SP5, but symmetric about the horizontal axis for SP3 + SP5. In the complex-time plane at the CEP of ϕ=0 , the positions of SP3 and SP5 are symmetric about the horizontal axis and both higher than the position of SP4, which suggests that the contribution for the tunneling probability from SP4 are greater than those from other two SPs, but the contributions from SP3 and SP5 are equivalent.

3.3 The effect of the sub-barrier phase on the interference patterns

In terms of ITM method, the real part of the sub-barrier action Re(fsub) is the accumulated sub-barrier phase when electrons tunnel through the potential, and the imaginary part Im(fsub) is related to the ionization probability [12,27–29].

In Fig. 4, we give the PMD of F- ions for ϕ=0 without sub-barrier phase, by considering the contributions from different saddle points. The PMD in Fig. 4(a) are obtained from coherently adding three dominant saddle points SP3-SP5 . It can be seen that the main interference fringes at larger momenta are more curved than those in Fig. 2(a). Figs. 4(b),(c),(d) show the PMD by coherently adding the contributions of SP3 + SP4, SP4 + SP5, SP3 + SP5, respectively. By comparing Figs. 4(b), 4(c), and 4(d) with Figs. 3(a), 3(b) and 3(c), we find that part of the intra-cycle interference fringes’ shape is changed, if the sub-barrier phase is absent. However, the inter-cycle interference fringes are almost independent of the sub-barrier phase.

 

Fig. 4 . The normalized PMD for ϕ=0 obtained from coherently adding different saddle points, but without the sub-barrier phase. (a) Considering the saddle points SP3-SP5; (b) considering the saddle points SP3 + SP4;(c) considering the saddle points SP4 + SP5; (d) considering the saddle points SP3 + SP5. The color is plotted on the logarithmic scale.

Download Full Size | PPT Slide | PDF

3.4 The effect of carrier-envelope phase on the interference patterns

In this section, we study the effect of the CEP on the interference patterns in the two-dimensional PMD. In Fig. 5, we show the electric field of three-cycle laser pulse with ϕ=0.5π and the corresponding SP distributions for the fixed photoelectron energy of 3.4eV. It is found that there are eight SPs as the solutions of Eq. (7) for the three-cycle laser pulse with ϕ=0.5π . In Fig. 5(b), SP4 and SP5 are the lowest two SPs in the upper half-plane of complex ts . It indicates that the saddle points SP4 and SP5 make more significant contributions to the ionization probability and interference structure. Fig. 6(a) illustrates the two-dimensional PMD for ϕ=0.5π by numerical integration method. The momentum distribution of Fig. 6(a) is asymmetric about the horizontal axis. Comparing with Fig. 2(a), one can find that the distinctive feature of the two-dimensional PMD of Fig. 6(a) is absence of ATD rings. It indicates that the inter-cycle interference between electronic wave packets is suppressed for the case of ϕ=0.5π . In Fig. 6(b), we show the PMD formed by coherently superposition two dominant SPs, i.e., SP4 and SP5. We find that the most striking feature of the two-dimensional PMD of Fig. 6(a) can be reproduced by only considering the SP4 and SP5. Therefore the main structures of the two-dimensional PMD for ϕ=0.5π are dominated by of the intra-cycle interferences. Figure 6(c) and Fig. 6(d) show the PMD by coherently adding the contributions of SP4 + SP5, formed in the classical propagation step and quantum tunneling step, respectively. In Fig. 6(c), we can clearly see that the similar shape and number of the destructive interference fringes appeared in Figs. 6(b). Therefore the interference patterns in PMD of Fig. 6(a) is dominated by the intra-cycle interference effects between electronic wave packets during the classical propagation process. In Fig. 6(d), it is found that the two discrete maxima of probability are not symmetric about the horizontal axis, even though the contribution for the tunneling probability from SP4 and SP5 are equivalent and the positions of SP3 and SP5 are symmetric about the horizontal axis in the complex-time plane. It indicates that the CEP has an important influence on the tunneling probability.

 

Fig. 5 The same as Fig. 1 but for Δφ=0.5π.

Download Full Size | PPT Slide | PDF

 

Fig. 6 (a) The normalized two-dimensional PMD of F- ions in a three-cycle laser pulse with ϕ=0.5π by using the numerical integration method; (b) The normalized two-dimensional PMD calculated by considering the saddle points SP4 and SP5 of Fig. 5; (c) two-dimensional PMD formed in classical propagation step by considering the saddle points SP4 + SP5;(d) The two-dimensional PMD formed in quantum tunneling step by considering the saddle points SP4 + SP5. The colors of (a)-(c) are plotted on the logarithmic scale.

Download Full Size | PPT Slide | PDF

4. Conclusions

In summary, we have analyzed the two-dimensional PMD of F- ions in a three-cycle laser pulse by the saddle-point method. By distinguishing the contributions of the dominant SPs, we find that the main structures of PMD for the CEP ϕ=0 are attributed to the interplay of the intra- and inter-cycle interferences between electronic wave packets. For the PMD with ϕ=0.5π, the intra-cycle interference between electronic wave packets comes into the dominant role, the inter-cycle interference is suppressed. Moreover, based on the two-step semiclassical model and ITM method, we separately calculate the PMD formed in quantum tunneling and classical propagation steps. It is found that the rich interference patterns in the PMD can be mainly attributed to the interference effects of coherent quantum wave packets in the classical propagation step of detachment processes, and part of intra-cycle interference fringes’ shape is affected by the sub-barrier phase. Since the sub-barrier phase originates from the tunneling, it definitely imprints its effect on the coherent processes in tunneling-related phenomena [4]. The theoretical analysis clearly indicates that the tunneling process transfers the initial phase onto the two-dimensional PMD of F- ions with p-state valence electrons and short-range potential. The present work is meaningful for further controlling and probing electron dynamics in the detachment (or ionization) process of negative ions (atoms) with p-state electrons with the few-cycle laser pulse.

Funding

National Natural Science Foundation of China (NSFC) (11434002, 11664035, 11647150); the Young Talents Program of Gansu Province (2016); the Scientific Research Program of the Higher Education Institutions of Gansu Province (2016A-068).

References and links

1. P. B. Corkum, “Recollision physics,” Phys. Today 64(3), 36–41 (2011). [CrossRef]  

2. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009). [CrossRef]  

3. Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011). [CrossRef]   [PubMed]  

4. M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017). [CrossRef]   [PubMed]  

5. P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979). [CrossRef]  

6. D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010). [CrossRef]  

7. D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014). [CrossRef]  

8. D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006). [CrossRef]  

9. F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005). [CrossRef]   [PubMed]  

10. R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009). [CrossRef]   [PubMed]  

11. X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012). [CrossRef]   [PubMed]  

12. T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010). [CrossRef]   [PubMed]  

13. M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014). [CrossRef]   [PubMed]  

14. R. Reichle, H. Helm, and I. Y. Kiyan, “Photodetachment of H in a strong infrared laser field,” Phys. Rev. Lett. 87(24), 243001 (2001). [CrossRef]   [PubMed]  

15. I. Y. Kiyan and H. Helm, “Production of energetic electrons in the process of photodetachment of F−.,” Phys. Rev. Lett. 90(18), 183001 (2003). [CrossRef]   [PubMed]  

16. B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005). [CrossRef]   [PubMed]  

17. B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007). [CrossRef]  

18. A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010). [CrossRef]   [PubMed]  

19. G. F. Gribakin and M. Y. Kuchiev, “Multiphoton detachment of electrons from negative ions,” Phys. Rev. A 55(5), 3760–3771 (1997). [CrossRef]  

20. S. Bivona, R. Burlon, and C. Leone, “Photodetachment of F by a few-cycle circularly polarized laser field,” Opt. Express 14(26), 12576–12583 (2006). [CrossRef]   [PubMed]  

21. S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007). [CrossRef]  

22. X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008). [CrossRef]  

23. A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012). [CrossRef]  

24. A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007). [CrossRef]  

25. S. F. C. Shearer and C. R. J. Addis, “Strong-field photodetachment of H by few-cycle laser pulses,” Phys. Rev. A 85(6), 063409 (2012). [CrossRef]  

26. S. F. C. Shearer and M. R. Monteith, “Direct photodetachment of F by mid-infrared few-cycle femtosecond laser pulses,” Phys. Rev. A 88(3), 033415 (2013). [CrossRef]  

27. T.-M. Yan and D. Bauer, “Sub-barrier Coulomb effects on the interference pattern in tunneling-ionization photoelectron spectra,” Phys. Rev. A 86(5), 053403 (2012). [CrossRef]  

28. V. S. Popov, “Imaginary-time method in quantum mechanics and field theory,” Phys. At. Nucl. 68(4), 686 (2005). [CrossRef]  

29. S. V. Popruzhenko, “Keldysh theory of strong field ionization: history, applications, difficulties and perspectives,” J. Phys. At. Mol. Opt. Phys. 47(20), 204001 (2014). [CrossRef]  

30. G. F. Gribakin and S. M. K. Law, “Comment on “Direct photodetachment of F by mid-infrared few-cycle femtosecond laser pulses”,” Phys. Rev. A 94(5), 057401 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. B. Corkum, “Recollision physics,” Phys. Today 64(3), 36–41 (2011).
    [Crossref]
  2. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  3. Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
    [Crossref] [PubMed]
  4. M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
    [Crossref] [PubMed]
  5. P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
    [Crossref]
  6. D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
    [Crossref]
  7. D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
    [Crossref]
  8. D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006).
    [Crossref]
  9. F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
    [Crossref] [PubMed]
  10. R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
    [Crossref] [PubMed]
  11. X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
    [Crossref] [PubMed]
  12. T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010).
    [Crossref] [PubMed]
  13. M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
    [Crossref] [PubMed]
  14. R. Reichle, H. Helm, and I. Y. Kiyan, “Photodetachment of H− in a strong infrared laser field,” Phys. Rev. Lett. 87(24), 243001 (2001).
    [Crossref] [PubMed]
  15. I. Y. Kiyan and H. Helm, “Production of energetic electrons in the process of photodetachment of F−.,” Phys. Rev. Lett. 90(18), 183001 (2003).
    [Crossref] [PubMed]
  16. B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005).
    [Crossref] [PubMed]
  17. B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007).
    [Crossref]
  18. A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
    [Crossref] [PubMed]
  19. G. F. Gribakin and M. Y. Kuchiev, “Multiphoton detachment of electrons from negative ions,” Phys. Rev. A 55(5), 3760–3771 (1997).
    [Crossref]
  20. S. Bivona, R. Burlon, and C. Leone, “Photodetachment of F− by a few-cycle circularly polarized laser field,” Opt. Express 14(26), 12576–12583 (2006).
    [Crossref] [PubMed]
  21. S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F− in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007).
    [Crossref]
  22. X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
    [Crossref]
  23. A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
    [Crossref]
  24. A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007).
    [Crossref]
  25. S. F. C. Shearer and C. R. J. Addis, “Strong-field photodetachment of H− by few-cycle laser pulses,” Phys. Rev. A 85(6), 063409 (2012).
    [Crossref]
  26. S. F. C. Shearer and M. R. Monteith, “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses,” Phys. Rev. A 88(3), 033415 (2013).
    [Crossref]
  27. T.-M. Yan and D. Bauer, “Sub-barrier Coulomb effects on the interference pattern in tunneling-ionization photoelectron spectra,” Phys. Rev. A 86(5), 053403 (2012).
    [Crossref]
  28. V. S. Popov, “Imaginary-time method in quantum mechanics and field theory,” Phys. At. Nucl. 68(4), 686 (2005).
    [Crossref]
  29. S. V. Popruzhenko, “Keldysh theory of strong field ionization: history, applications, difficulties and perspectives,” J. Phys. At. Mol. Opt. Phys. 47(20), 204001 (2014).
    [Crossref]
  30. G. F. Gribakin and S. M. K. Law, “Comment on “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses”,” Phys. Rev. A 94(5), 057401 (2016).
    [Crossref]

2017 (1)

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

2016 (1)

G. F. Gribakin and S. M. K. Law, “Comment on “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses”,” Phys. Rev. A 94(5), 057401 (2016).
[Crossref]

2014 (3)

S. V. Popruzhenko, “Keldysh theory of strong field ionization: history, applications, difficulties and perspectives,” J. Phys. At. Mol. Opt. Phys. 47(20), 204001 (2014).
[Crossref]

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

2013 (1)

S. F. C. Shearer and M. R. Monteith, “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses,” Phys. Rev. A 88(3), 033415 (2013).
[Crossref]

2012 (4)

T.-M. Yan and D. Bauer, “Sub-barrier Coulomb effects on the interference pattern in tunneling-ionization photoelectron spectra,” Phys. Rev. A 86(5), 053403 (2012).
[Crossref]

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

S. F. C. Shearer and C. R. J. Addis, “Strong-field photodetachment of H− by few-cycle laser pulses,” Phys. Rev. A 85(6), 063409 (2012).
[Crossref]

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

P. B. Corkum, “Recollision physics,” Phys. Today 64(3), 36–41 (2011).
[Crossref]

2010 (3)

D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
[Crossref]

T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010).
[Crossref] [PubMed]

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

2009 (2)

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

2008 (1)

X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
[Crossref]

2007 (3)

A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007).
[Crossref]

S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F− in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007).
[Crossref]

B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007).
[Crossref]

2006 (2)

D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006).
[Crossref]

S. Bivona, R. Burlon, and C. Leone, “Photodetachment of F− by a few-cycle circularly polarized laser field,” Opt. Express 14(26), 12576–12583 (2006).
[Crossref] [PubMed]

2005 (3)

V. S. Popov, “Imaginary-time method in quantum mechanics and field theory,” Phys. At. Nucl. 68(4), 686 (2005).
[Crossref]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005).
[Crossref] [PubMed]

2003 (1)

I. Y. Kiyan and H. Helm, “Production of energetic electrons in the process of photodetachment of F−.,” Phys. Rev. Lett. 90(18), 183001 (2003).
[Crossref] [PubMed]

2001 (1)

R. Reichle, H. Helm, and I. Y. Kiyan, “Photodetachment of H− in a strong infrared laser field,” Phys. Rev. Lett. 87(24), 243001 (2001).
[Crossref] [PubMed]

1997 (1)

G. F. Gribakin and M. Y. Kuchiev, “Multiphoton detachment of electrons from negative ions,” Phys. Rev. A 55(5), 3760–3771 (1997).
[Crossref]

1979 (1)

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
[Crossref]

Addis, C. R. J.

S. F. C. Shearer and C. R. J. Addis, “Strong-field photodetachment of H− by few-cycle laser pulses,” Phys. Rev. A 85(6), 063409 (2012).
[Crossref]

Agostini, P.

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
[Crossref]

Ansari, Z.

B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007).
[Crossref]

Arbó, D. G.

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
[Crossref]

Bakker, J. M.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Baltuška, A.

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Bauer, D.

T.-M. Yan and D. Bauer, “Sub-barrier Coulomb effects on the interference pattern in tunneling-ionization photoelectron spectra,” Phys. Rev. A 86(5), 053403 (2012).
[Crossref]

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010).
[Crossref] [PubMed]

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006).
[Crossref]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Becker, W.

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007).
[Crossref]

D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006).
[Crossref]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Berden, G.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Bergues, B.

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007).
[Crossref]

B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005).
[Crossref] [PubMed]

Bivona, S.

S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F− in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007).
[Crossref]

S. Bivona, R. Burlon, and C. Leone, “Photodetachment of F− by a few-cycle circularly polarized laser field,” Opt. Express 14(26), 12576–12583 (2006).
[Crossref] [PubMed]

Bonanno, G.

S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F− in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007).
[Crossref]

Burgdörfer, J.

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
[Crossref]

Burlon, R.

S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F− in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007).
[Crossref]

S. Bivona, R. Burlon, and C. Leone, “Photodetachment of F− by a few-cycle circularly polarized laser field,” Opt. Express 14(26), 12576–12583 (2006).
[Crossref] [PubMed]

Cauchy, C.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Chen, Z. J.

X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
[Crossref]

Corkum, P. B.

P. B. Corkum, “Recollision physics,” Phys. Today 64(3), 36–41 (2011).
[Crossref]

Deng, Y.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Dürr, M.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Ergler, T.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Fabre, F.

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
[Crossref]

Fetic, B.

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

Gazibegovic-Busuladzic, A.

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

Ge, P.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

Geng, J.-W.

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Gijsbertsen, A.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Gong, Q.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Gopal, R.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Goreslavski, S. P.

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

Goulielmakis, E.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Gräfe, S.

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

Gribakin, G. F.

G. F. Gribakin and S. M. K. Law, “Comment on “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses”,” Phys. Rev. A 94(5), 057401 (2016).
[Crossref]

G. F. Gribakin and M. Y. Kuchiev, “Multiphoton detachment of electrons from negative ions,” Phys. Rev. A 55(5), 3760–3771 (1997).
[Crossref]

Han, M.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

Hanstorp, D.

B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007).
[Crossref]

Hasovic, E.

A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007).
[Crossref]

Helm, H.

B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005).
[Crossref] [PubMed]

I. Y. Kiyan and H. Helm, “Production of energetic electrons in the process of photodetachment of F−.,” Phys. Rev. Lett. 90(18), 183001 (2003).
[Crossref] [PubMed]

R. Reichle, H. Helm, and I. Y. Kiyan, “Photodetachment of H− in a strong infrared laser field,” Phys. Rev. Lett. 87(24), 243001 (2001).
[Crossref] [PubMed]

Herrwerth, O.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Huismans, Y.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Hultgren, H.

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

Ishikawa, K. L.

D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
[Crossref]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Ivanov, M. Yu.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Jungmann, J. H.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Kartashov, D.

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

Kitzler, M.

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

Kiyan, I. Y.

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007).
[Crossref]

B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005).
[Crossref] [PubMed]

I. Y. Kiyan and H. Helm, “Production of energetic electrons in the process of photodetachment of F−.,” Phys. Rev. Lett. 90(18), 183001 (2003).
[Crossref] [PubMed]

R. Reichle, H. Helm, and I. Y. Kiyan, “Photodetachment of H− in a strong infrared laser field,” Phys. Rev. Lett. 87(24), 243001 (2001).
[Crossref] [PubMed]

Kling, M. F.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Korneev, A. P.

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

Kramo, A.

A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007).
[Crossref]

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Kuchiev, M. Y.

G. F. Gribakin and M. Y. Kuchiev, “Multiphoton detachment of electrons from negative ions,” Phys. Rev. A 55(5), 3760–3771 (1997).
[Crossref]

Kühnel, K.-U.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Kurka, M.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Law, S. M. K.

G. F. Gribakin and S. M. K. Law, “Comment on “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses”,” Phys. Rev. A 94(5), 057401 (2016).
[Crossref]

Le, A.-T.

X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
[Crossref]

Leone, C.

S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F− in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007).
[Crossref]

S. Bivona, R. Burlon, and C. Leone, “Photodetachment of F− by a few-cycle circularly polarized laser field,” Opt. Express 14(26), 12576–12583 (2006).
[Crossref] [PubMed]

Lépine, F.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Lezius, M.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Li, M.

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Lin, C. D.

X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
[Crossref]

Lindner, F.

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Liu, H.

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Liu, M.-M.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

Liu, Y.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Logman, P. S. W. M.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Mainfray, G.

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
[Crossref]

Marchenko, T.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Milosevic, D. B.

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Miloševic, D. B.

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007).
[Crossref]

D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006).
[Crossref]

Monteith, M. R.

S. F. C. Shearer and M. R. Monteith, “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses,” Phys. Rev. A 88(3), 033415 (2013).
[Crossref]

Morishita, T.

X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
[Crossref]

Moshammer, R.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Muller, H. G.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Nagele, S.

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

Ni, Y.

B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005).
[Crossref] [PubMed]

Paulus, G. G.

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006).
[Crossref]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Peng, L.-Y.

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Persson, E.

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
[Crossref]

Petite, G.

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
[Crossref]

Popov, V. S.

V. S. Popov, “Imaginary-time method in quantum mechanics and field theory,” Phys. At. Nucl. 68(4), 686 (2005).
[Crossref]

Popruzhenko, S. V.

S. V. Popruzhenko, “Keldysh theory of strong field ionization: history, applications, difficulties and perspectives,” J. Phys. At. Mol. Opt. Phys. 47(20), 204001 (2014).
[Crossref]

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010).
[Crossref] [PubMed]

Rahman, N. K.

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
[Crossref]

Redlich, B.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Reichle, R.

R. Reichle, H. Helm, and I. Y. Kiyan, “Photodetachment of H− in a strong infrared laser field,” Phys. Rev. Lett. 87(24), 243001 (2001).
[Crossref] [PubMed]

Roither, S.

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

Rouzée, A.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Rudenko, A.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Schafer, K. J.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Schätzel, M. G.

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Schiessl, K.

D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
[Crossref]

Schöffler, M. S.

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

Schröter, C.-D.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Schultze, M.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Shao, Y.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

Shearer, S. F. C.

S. F. C. Shearer and M. R. Monteith, “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses,” Phys. Rev. A 88(3), 033415 (2013).
[Crossref]

S. F. C. Shearer and C. R. J. Addis, “Strong-field photodetachment of H− by few-cycle laser pulses,” Phys. Rev. A 85(6), 063409 (2012).
[Crossref]

Simeonidis, K.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Smirnova, O.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Smolkowska, A. S.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Spanner, M.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Tong, X.-M.

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

Tschuch, S.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Uiberacker, M.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Ullrich, J.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

Uphues, T.

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

van der Meer, A. F. G.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Vermin, W.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Vrakking, M. J. J.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010).
[Crossref] [PubMed]

Walther, H.

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

Wu, C.

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

Xie, X.

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

Yan, T.-M.

T.-M. Yan and D. Bauer, “Sub-barrier Coulomb effects on the interference pattern in tunneling-ionization photoelectron spectra,” Phys. Rev. A 86(5), 053403 (2012).
[Crossref]

T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010).
[Crossref] [PubMed]

Zamith, S.

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Zhang, L.

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

Zhou, X. X.

X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (2)

D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, “Above-threshold ionization by few-cycle pulses,” J. Phys. At. Mol. Opt. Phys. 39(14), R203–R262 (2006).
[Crossref]

S. V. Popruzhenko, “Keldysh theory of strong field ionization: history, applications, difficulties and perspectives,” J. Phys. At. Mol. Opt. Phys. 47(20), 204001 (2014).
[Crossref]

Laser Phys. Lett. (1)

A. Kramo, E. Hasovic, D. B. Milošević, and W. Becker, “Above-threshold detachment by a two-color bicircular laser field,” Laser Phys. Lett. 4(4), 279–286 (2007).
[Crossref]

New J. Phys. (1)

A. P. Korneev, S. V. Popruzhenko, S. P. Goreslavski, W. Becker, G. G. Paulus, B. Fetić, and D. B. Milošević, “Interference structure of above-threshold ionization versus above-threshold detachment,” New J. Phys. 14(5), 055019 (2012).
[Crossref]

Opt. Express (1)

Phys. At. Nucl. (1)

V. S. Popov, “Imaginary-time method in quantum mechanics and field theory,” Phys. At. Nucl. 68(4), 686 (2005).
[Crossref]

Phys. Rev. A (10)

G. F. Gribakin and S. M. K. Law, “Comment on “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses”,” Phys. Rev. A 94(5), 057401 (2016).
[Crossref]

S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Interference effects in photodetachment of F− in a strong circularly polarized laser pulse,” Phys. Rev. A 76(2), 021401 (2007).
[Crossref]

X. X. Zhou, Z. J. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields,” Phys. Rev. A 77(5), 053410 (2008).
[Crossref]

G. F. Gribakin and M. Y. Kuchiev, “Multiphoton detachment of electrons from negative ions,” Phys. Rev. A 55(5), 3760–3771 (1997).
[Crossref]

S. F. C. Shearer and C. R. J. Addis, “Strong-field photodetachment of H− by few-cycle laser pulses,” Phys. Rev. A 85(6), 063409 (2012).
[Crossref]

S. F. C. Shearer and M. R. Monteith, “Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses,” Phys. Rev. A 88(3), 033415 (2013).
[Crossref]

T.-M. Yan and D. Bauer, “Sub-barrier Coulomb effects on the interference pattern in tunneling-ionization photoelectron spectra,” Phys. Rev. A 86(5), 053403 (2012).
[Crossref]

D. G. Arbó, K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, “Intracycle and intercycle interferences in above-threshold ionization: the time grating,” Phys. Rev. A 81(2), 021403 (2010).
[Crossref]

D. G. Arbó, S. Nagele, X.-M. Tong, X. Xie, M. Kitzler, and J. Burgdörfer, “Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses,” Phys. Rev. A 89(4), 043414 (2014).
[Crossref]

B. Bergues, Z. Ansari, D. Hanstorp, and I. Y. Kiyan, “Photodetachment in a strong laser field: an experimental test of Keldysh-like theories,” Phys. Rev. A 75(6), 063415 (2007).
[Crossref]

Phys. Rev. Lett. (11)

A. Gazibegović-Busuladzić, D. B. Milosević, W. Becker, B. Bergues, H. Hultgren, and I. Y. Kiyan, “Electron rescattering in above-threshold photodetachment of negative ions,” Phys. Rev. Lett. 104(10), 103004 (2010).
[Crossref] [PubMed]

M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity,” Phys. Rev. Lett. 119(7), 073201 (2017).
[Crossref] [PubMed]

P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Phys. Rev. Lett. 42(17), 1127–1130 (1979).
[Crossref]

F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. B. Milosević, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95(4), 040401 (2005).
[Crossref] [PubMed]

R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel, S. Tschuch, C.-D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, and M. F. Kling, “Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses,” Phys. Rev. Lett. 103(5), 053001 (2009).
[Crossref] [PubMed]

X. Xie, S. Roither, D. Kartashov, E. Persson, D. G. Arbó, L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, “Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields,” Phys. Rev. Lett. 108(19), 193004 (2012).
[Crossref] [PubMed]

T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett. 105(25), 253002 (2010).
[Crossref] [PubMed]

M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu, “Classical-quantum correspondence for above-threshold ionization,” Phys. Rev. Lett. 112(11), 113002 (2014).
[Crossref] [PubMed]

R. Reichle, H. Helm, and I. Y. Kiyan, “Photodetachment of H− in a strong infrared laser field,” Phys. Rev. Lett. 87(24), 243001 (2001).
[Crossref] [PubMed]

I. Y. Kiyan and H. Helm, “Production of energetic electrons in the process of photodetachment of F−.,” Phys. Rev. Lett. 90(18), 183001 (2003).
[Crossref] [PubMed]

B. Bergues, Y. Ni, H. Helm, and I. Y. Kiyan, “Experimental study of photodetachment in a strong laser field of circular polarization,” Phys. Rev. Lett. 95(26), 263002 (2005).
[Crossref] [PubMed]

Phys. Today (1)

P. B. Corkum, “Recollision physics,” Phys. Today 64(3), 36–41 (2011).
[Crossref]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Science (1)

Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science 331(6013), 61–64 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The electric field of a three-cycle laser pulse with wavelength of 1400nm, peak intensity of 1.7× 10 13 W/cm2 , and CEP of ϕ=0. (b) The corresponding momentum complex-time SPs distributions for the fixed photoelectron energy of 3.4eV. The numbers of several dominant SPs are marked in complex-time plane.
Fig. 2
Fig. 2 The normalized two-dimensional PMD of F- ions in a three-cycle laser pulse with ϕ=0 by using the (a) numerical integration method; (b) saddle-point method including all the SPs;(c) saddle-point method by considering several dominant SPs. The color is plotted on the logarithmic scale. The laser parameters are same as Fig. 1.
Fig. 3
Fig. 3 The normalized two-dimensional PMD contributed from different steps of the detachment process, calculated by considering the saddle points SP3 + SP4, SP4 + SP5, SP3 + SP5, respectively. (a)–(c) represent the PMD formed in whole detachment process, (d)–(f) represent the PMD formed in classical propagation step, (g)–(i) represent the PMD formed in quantum tunneling step. The laser parameters are same as Fig. 1 and the colors of (a)-(f) are plotted on the logarithmic scale.
Fig. 4
Fig. 4 . The normalized PMD for ϕ=0 obtained from coherently adding different saddle points, but without the sub-barrier phase. (a) Considering the saddle points SP3-SP5; (b) considering the saddle points SP3 + SP4;(c) considering the saddle points SP4 + SP5; (d) considering the saddle points SP3 + SP5. The color is plotted on the logarithmic scale.
Fig. 5
Fig. 5 The same as Fig. 1 but for Δφ=0.5π.
Fig. 6
Fig. 6 (a) The normalized two-dimensional PMD of F- ions in a three-cycle laser pulse with ϕ=0.5π by using the numerical integration method; (b) The normalized two-dimensional PMD calculated by considering the saddle points SP4 and SP5 of Fig. 5; (c) two-dimensional PMD formed in classical propagation step by considering the saddle points SP4 + SP5;(d) The two-dimensional PMD formed in quantum tunneling step by considering the saddle points SP4 + SP5. The colors of (a)-(c) are plotted on the logarithmic scale.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A p =i + ψ p | H i (t)| ψ lm dt
ψ lm (r)= A r exp(κr) Y lm ( r ^ )
ψ p (r,t)=exp[ i(p+A(t))r i 2 t (p+A(t')) 2 dt' ]
E(t)= E 0 cos 2 ( πt τ )cos( ωt+ϕ ) z ^
A p = i 6 2π A dt exp( i 2 t q 2 dt' +i I p t ) E(t) ×{ q 2 3 q z 2 q 5 arctan( q κ )+ 5 q 2 q z 2 κ+3 q z 2 κ 3 q 4 κ q 2 κ 3 q 4 ( q 2 + κ 2 ) 2 }
A p = (2π) 3/2 A t s (±1) l Y 1m ( q ^ s ) exp(if( t s )) i f '' ( t s )
(p+A( t s )) 2 +2 I p =0
f( t s )= t s [ 1 2 (p+A(t')) 2 + I p ] dt'
f ( t s )=2pE( t s )2A( t s )E( t s )
f( t s )= f sub + f re
Q= 3 P p 3 = | A p | 2
Q sub = | A p ( f sub ) | 2
Q re = | A p ( f re ) | 2
p r = 2(nω U p I p )

Metrics