Abstract

We report stimulated emission in the 2.8–3.5 μm wavelength range from HgTe/CdHgTe quantum well (QW) heterostructures at temperatures available with thermoelectric cooling. The structures were designed to suppress the Auger recombination by implementing narrow (1.5 – 2 nm wide) QWs. We conclude that Peltier cooled operation is feasible in lasers based on such structures, making them of interest for spectroscopy applications in the atmospheric transparency window from 3 to 5 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Compact semiconductor sources of mid-infrared radiation are needed for a number of spectroscopy related tasks, e.g. for a gas sensing. Tunable diode laser absorption spectroscopy (TLDAS) usually aims for the atmospheric transparency windows, where the atmospheric absorption is low and it is possible to scan through the large volumes of gas. The wavelength range from 3 μm to 5 μm is considered unique for its atmospheric transparency and the number of organic and non-organic molecules having the absorption lines there, including several common pollutants: HCL, CO, CO2, NOx, SO2, CH4 [1–4].

The forefront of devices for the required range includes interband cascade lasers (ICLs) [2–4] and quantum cascade lasers (QCLs) [5, 6]. Cascade lasers are capable of continuous wave operation in 3 - 15 μm range at room temperature [5, 7–9]. The figures of merit of cascade lasers are impressive, however certain technological nuances and high production cost prevent them from fully satisfying the industrial needs. Interband diode laser is a more straightforward alternative, but it requires narrow-gap materials with variable bandgap. To mention as an instance, room temperature emission near 3 μm has been recently reported from “lead salt” laser based on PbSrS/PbS [10]. In this work we focus on infrared emission from another narrow-gap material, HgCdTe (MCT), and HgTe/CdHgTe quantum well (QW) structures, in particular.

Molecular beam epitaxy (MBE) of HgCdTe is well developed nowadays and it is widely used for the production of mid-infrared (MIR) detectors and focal plane arrays. There was also a number of works concerning MCT-based lasers for MIR region [11–13] However, room-temperature stimulated emission was demonstrated only for wavelengths up to 2.5 μm [11, 12]. The operation temperature dropped drastically with increase in wavelength: for wavelengths exceeding 2.8 μm lasing in MCT materials was obtained only at temperatures well below 200К [12]. This was attributed to the non-radiative Auger recombination, since its rates get higher both when temperature grows or bandgap decreases.

It was theoretically predicted [14] that Auger recombination is mitigated in narrow binary HgTe QWs compared to the thick Hg1−xCdxTe QWs that inherit their properties from the bulk alloys. Nevertheless, experimental studies of lasing or stimulated emission in such structures are scarce in literature: previous MCT lasers employed QWs or bulk-like layers containing HgCdTe solid solution [11, 12]. It should be noted, that despite HgTe being semimetal with the so-called inverted band alignment, the band structure of HgTe/CdHgTe QW can be normal (CdTe-like), when the QW is narrow enough. At the critical width dqw ~6.3 nm, the bandgap between the conduction band and the valence band in the HgTe/CdHgTe QW disappears, and the dispersion law of carriers becomes linear like in a single-layer graphene [15]. QWs with the width below critical value have normal band structure. The energy of optical transitions in such wells can be tailored over a wide spectral range by changing the QW width. For the operation wavelengths in 3 – 5 μm range QWs must be only several nm thick. Growing such structures was complicated for decades, until a significant progress has been made in the technology of MCT epitaxial growth. Modern MBE allows growing the MCT epitaxial structures with in situ control of the layer thickness up to a single monolayer not only on “native” CdZnTe substrates, but also on “alternative” substrates, GaAs [16] and Si [17].

In this work we designed and grew MCT-based waveguide structures containing several HgTe QWs in order to investigate the stimulated emission (SE) from such structures in the range of 2.8–3.5 μm. We demonstrate that structures under study provide SE at temperatures achievable with Peltier elements in contrast to previous works, that employed wide QWs or bulk-like layers for active media.

2. Experimental methods and structures under study

Two structures were MBE-grown on semiinsulating GaAs (013) substrates with 50 nm ZnTe and 5 μm CdTe buffers. The MBE growth temperature was 185 °C. The active region of each structure consists of 10 HgTe/CdHgTe QWs (targeted widths were 1.9 nm and 1.5 nm for structure #1 and #2, respectively) sandwiched between barrier layers with 65% Cd content. The active region is stacked between thick (several hundreds of nm) CdHgTe layers providing the refractive index contrast to confine the radiation in the vicinity of the active region as shown in Fig. 1.

 

Fig. 1 Refractive index distribution throughout the structure and calculated TE mode localization for λ = 3.7 µm in structure #1.

Download Full Size | PPT Slide | PDF

During the studies of photoluminescence (PL) and SE the samples were mounted either on the cold finger of a closed-cycle helium cryostat with a temperature range from 20 to 200 K or in a Peltier cooler with a temperature range from 200 to 300 K. The estimated accuracy of temperature measurement is ± 1 К. The light was collected from the sample's facet and guided to the Fourier transform infrared spectrometer Bruker Vertex 80v, operating in step-scan mode [18, 19]. An optical parametric oscillator (SOLAR OPO) pumped with Nd:YAG laser was used as an optical excitation source over a 4-mm-diam area of the sample. The pumping source provides 10 ns pulses of narrow band radiation with a continuously adjusted wavelength in 1.0–2.3 μm range. We used optical pumping with 1.5 – 1.6 μm wavelength as it provided the lowest thresholds. Scattered pumping radiation was cut off with a 3 mm-thick Ge filter and PL signal was measured with Kolmar Technologies HgCdTe photovoltaic detector D317. Due to a quite specific growth direction (013), naturally cleaved facets do not form the Fabri-Perot resonator in the structure. Therefore, the SE studied in this work results from a single-pass amplification.

3. Results and discussion

Both structures provided SE near 3 μm, as shown in Fig. 2. The exact position of the SE line and its shift with temperature are in a reasonable agreement with the calculated values, and the results of the photoconductivity measurements performed for samples characterization at T = 77K and T = 300К. As temperature grows, the SE line shifts to higher energies by 2.2 cm−1 per Kelvin. Note that the bandgap of structures under study increases with temperature [20–22], in contrast to typical narrow gap А3В5 semiconductors, like InSb. SE takes place below a certain critical temperature, which is 210 K for structure #1 and 250 K for structure #2. The difference in maximum «operating» temperature occurs because the bandgap of structure #1 is slightly narrower than that of structure #2, leading to less effective radiative recombination and more effective non-radiative processes. At highest «operating» temperatures (210K and 250 К for structure #1 and #2, respectively) the emission wavelengths are 3.57 μm for structure #1 and 2.8 μm for structure #2. The entire temperature dependence of emission wavelength for both samples can be found in Fig. 2(c).

 

Fig. 2 SE and PL spectra at different temperatures for (a) structure #1 (pumping wavelength λp = 1.6 μm) at fixed pumping intensity Ip = 250 kW/cm2; (b) structure #2 (pumping wavelength λp = 1.5 μm). Pumping intensity for 100–200 K range was chosen to keep SE peak amplitude the same, spectra for higher temperatures (256–300K) are given at the highest pumping intensity Ip = 250 kW/cm2 (c) temperature dependence of SE peak position (blue and red symbols correspond to measurement in closed-cycle cryostat and in Peltier cooler, respectively; filled symbols correspond to SE peak traced in PL spectra above “critical” temperature for structure #2).

Download Full Size | PPT Slide | PDF

The SE onset reveals itself with a superlinear rise in the integrated PL signal when the pumping intensity is increased above a threshold, as shown in Fig. 3. At 200 K, the threshold power density is ≈20 kW/cm2 for structure #2 (428 meV gap) and ≈80 kW/cm2 for structure #1 (348 meV gap). The telltale sign of the SE is also the full width at half maximum (FWHM) of the emission line. Typical FWHM of spontaneous emission in such structures is never less than 2kT, even at low pumping intensity, e.g. continuous wave excitation. In contrast, the emission line FWHM in Fig. 2(b) is ~10 meV (Δλ/λ ~0.03), which is considerably less than 2kT for T>100K, and does not change across the wide temperature range. Note that PL line broadens well above 2kT under intense pulsed pumping [23, 24], unless SE occurs. It can be readily seen in emission spectra measured above the critical temperature in Fig. 2, when the spectra is dominated by PL. Transformation of the spectrum in Fig. 2(b) suggests however that a subtle peak at the long-wavelength edge of PL band at 267 and 300 K is a remnant of SE. This narrow peak exhibits strong power dependence compared to the broad line and its position can be traced from the SE line position at lower temperatures. The integral emission intensity keeps growing linearly with pumping power above the critical temperature, suggesting that the non-radiative processes play a minor role and waning of SE is mainly due to decrease in modal gain, which is expected with rise in temperature.

 

Fig. 3 Integrated intensity of light emission from the structures under study as a function of pumping intensity at various temperatures: (a) structure #1; (c) structure #2. Inset (b) shows the logarithm of threshold pumping intensity versus temperature.

Download Full Size | PPT Slide | PDF

It is important to mention that since we study single-pass amplification, it is the fundamental effect of Auger recombination mitigation in narrow HgTe/CdHgTe QWs that is responsible for ~100 K improvement in operating temperature over previous works that exploited different types of optical cavities in MCT lasers [12]. Consider Fig. 4 showing the band spectra of 2 nm thick HgTe QW vs. 10 nm HgCdTe QW. In Auger process, the energy released when electron-hole pair recombines is transferred to the third carrier. If the third carrier is driven to a state with higher kinetic energy within the first subband, the net kinetic energy of the three initial carriers has to be over a threshold for the energy-momentum conservation laws to be fulfilled. The threshold for Auger process involving two electrons and a hole (CCHC or Auger-1 process) with the effective masses me and mh, respectively, is Eth = µEg/(1 + µ), where µ = me/mh [25]. As can be seen from Fig. 4, while µ<<1 and Eth << Eg in 10 nm thick QW, in the structure under study µ is close to 1, increasing the energetic threshold for Auger process up to ~Eg/2. Thus, when the dispersion laws for holes and electrons are quasi-symmetrical, the Auger process requires carriers with kinetic energy of the order of Eg/2, which is considerably larger than kT in our experiment. Therefore, the Auger recombination is mitigated. It should be mentioned that this concept was successfully used to obtain long-wavelength SE in MCT structures up to 19.5 μm [20]. Note that thresholdless Auger processes, in which the third carrier is transferred from the first subband to other subbands or barrier continuum, are also possible in a QW structure. Therefore, the promising route is to increase Cd content in barriers to prevent transitions into the barrier continuum, and design the energy spectrum of the structure to mitigate the Auger processes deploying intersubband transitions, as suggested in Ref [14, 26]. In fact, the highest operating temperature achieved in this work corresponds to the maximum pumping intensity available from the pumping source ~250 kW/cm2. Our previous work [20] infers that it is technologically feasible to obtain MCT epitaxial structures with overall thickness of ~20 μm, which is sufficient to grow both the Bragg reflectors and the active region sandwiched between them [27]. Forming an optical cavity is expected to lower the threshold and increase the operating temperature further.

 

Fig. 4 Calculated band spectrum for (a) 2 nm thick HgTe/Cd0.65Hg0.35Te QW (b) 10 nm thick Hg0.66Cd0.34Te/Cd0.58Hg0.42Te QW at T = 160K. Grey areas indicate barrier continuum states.

Download Full Size | PPT Slide | PDF

4. Conclusion

This work aims to demonstrate that the potential of MCT structures for MIR lasers in not exhausted. Implementing narrow HgTe/CdHgTe QW heterostructures allows one to suppress the Auger recombination and thus increase operating temperature and wavelength compared to lasers with wide QWs in the active region. At the very least, wavelength range of 3.2 – 3.4 μm seems to be feasible at temperature around 230 K. In contrast to previous works, such operating temperature can be achieved with a single Peltier element, making structures under study of interest for applications in gas analysis and methane detection, in particular. In addition, strong temperature dependence of the bandgap enables effective wavelength tuning by changing the temperature. MCT technology is constantly developing and high-quality MCT structures grown on alternative substrates, like GaAs in this work, can pave the way towards cheap optical converters and/or MCT lasers with current pumping.

Funding

Russian Science Foundation (Nº17-12-01360).

Acknowledgments

The work was done using equipment of Center “Physics and technology of micro- and nanostructures” at IPM RAS.

References and links

1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-state Mid-infrared Laser Sources (Springer, 2003), pp. 458–529.

2. F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017). [CrossRef]   [PubMed]  

3. L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528–A535 (2016). [CrossRef]   [PubMed]  

4. R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017). [CrossRef]   [PubMed]  

5. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015). [CrossRef]   [PubMed]  

6. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015). [CrossRef]   [PubMed]  

7. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011). [CrossRef]  

8. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012). [CrossRef]  

9. A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 µm,” Opt. Express 24(16), 18799–18806 (2016). [CrossRef]   [PubMed]  

10. A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017). [CrossRef]  

11. A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012). [CrossRef]  

12. J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999). [CrossRef]  

13. C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999). [CrossRef]  

14. I. Vurgaftman and J. Meyer, “High-temperature HgTe/CdTe multiple-quantum-well lasers,” Opt. Express 2(4), 137–142 (1998). [CrossRef]   [PubMed]  

15. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006). [CrossRef]   [PubMed]  

16. N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006). [CrossRef]  

17. M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011). [CrossRef]  

18. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014). [CrossRef]  

19. J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006). [CrossRef]  

20. S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017). [CrossRef]  

21. A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017). [CrossRef]  

22. S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016). [CrossRef]  

23. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014). [CrossRef]  

24. K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011). [CrossRef]  

25. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier Science Publishers, North-Holland, 1991).

26. A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998). [CrossRef]  

27. I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-state Mid-infrared Laser Sources (Springer, 2003), pp. 458–529.
  2. F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
    [Crossref] [PubMed]
  3. L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528–A535 (2016).
    [Crossref] [PubMed]
  4. R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
    [Crossref] [PubMed]
  5. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref] [PubMed]
  6. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
    [Crossref] [PubMed]
  7. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  8. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  9. A. N. Baranov, M. Bahriz, and R. Teissier, “Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 µm,” Opt. Express 24(16), 18799–18806 (2016).
    [Crossref] [PubMed]
  10. A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
    [Crossref]
  11. A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
    [Crossref]
  12. J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
    [Crossref]
  13. C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
    [Crossref]
  14. I. Vurgaftman and J. Meyer, “High-temperature HgTe/CdTe multiple-quantum-well lasers,” Opt. Express 2(4), 137–142 (1998).
    [Crossref] [PubMed]
  15. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
    [Crossref] [PubMed]
  16. N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
    [Crossref]
  17. M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
    [Crossref]
  18. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
    [Crossref]
  19. J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
    [Crossref]
  20. S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
    [Crossref]
  21. A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
    [Crossref]
  22. S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
    [Crossref]
  23. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
    [Crossref]
  24. K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
    [Crossref]
  25. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier Science Publishers, North-Holland, 1991).
  26. A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
    [Crossref]
  27. I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
    [Crossref]

2017 (5)

R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
[Crossref] [PubMed]

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref] [PubMed]

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (2)

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

2012 (2)

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

2011 (3)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

2006 (3)

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

1999 (2)

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

1998 (3)

I. Vurgaftman and J. Meyer, “High-temperature HgTe/CdTe multiple-quantum-well lasers,” Opt. Express 2(4), 137–142 (1998).
[Crossref] [PubMed]

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Aleshkin, V. Y.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Andronov, A. A.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Antonov, A. V.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Bahriz, M.

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Baranov, A. N.

Bazhenov, N. L.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Bernevig, B. A.

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Bleuse, J.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Bonnet-Gamard, J.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Bovkun, L. S.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Brunev, D. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Chu, J.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

De Natale, P.

Dell, J. M.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Dong, L.

Dubinov, A. A.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

Dvoretskii, S. A.

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Dvoretsky, S. A.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Fadeev, M. A.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

Faraone, L.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Fisher, T. A.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Gavrilenko, V. I.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Ghorbani, R.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Griffin, R. J.

Guo, S.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Hadji, E.

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

Heydari, D.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hughes, T. L.

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Ikonnikov, A. V.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Ishida, A.

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

Ivanov-Omskii, V. I.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Jean-Louis, P.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Kadykov, A. M.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

Krasilnikova, L. V.

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Krishtopenko, S. S.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Kudryavtsev, K. E.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Li, C.

Li, Z.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Lu, Q. Y.

Lu, W.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Lü, X.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Magnea, N.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Marchishin, I. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Maremyanin, K. V.

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

Meyer, J.

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Mikhailov, N. N.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Morozov, S. V.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Mula, G.

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

Mynbaev, K. D.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Nakashima, S.

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

Nozdrin, Y. N.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Okomel’kov, A. V.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Orlita, M.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Pautrat, J. L.

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

Polkovnikov, A. S.

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

Potemski, M.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

Predein, A. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Razeghi, M.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Remesnik, V. G.

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Roux, C.

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

Rumyantsev, V. V.

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

Rykhlitski, S. V.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Sabinina, I. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Sampaolo, A.

Sanchez, N. P.

Scalari, G.

Schmidt, F. M.

Shao, J.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Shvets, V. A.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Sidorov, G. Y.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Sidorov, Y. G.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Sidorov, Yu. G.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Slivken, S.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Smirnov, R. N.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Song, F.

Sorochkin, A. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Spesivtsev, E. V.

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

Teissier, R.

Tittel, F. K.

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Varavin, V. S.

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Vasilyev, V. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

Vitiello, M. S.

Vurgaftman, I.

I. Vurgaftman and J. Meyer, “High-temperature HgTe/CdTe multiple-quantum-well lasers,” Opt. Express 2(4), 137–142 (1998).
[Crossref] [PubMed]

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

Wang, Y.

Williams, B.

Wu, H.

Yakushev, M. V.

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Yan, W.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Ye, W.

Yu, Y.

Yue, F.

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Zegrya, G. G.

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

Zhang, S. C.

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Zheng, C.

Zholudev, M. S.

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

Zhou, W.

Appl. Phys. Lett. (7)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

A. Ishida and S. Nakashima, “PbSrS/PbS mid-infrared short-cavity edge-emitting laser on Si substrate,” Appl. Phys. Lett. 111(16), 161104 (2017).
[Crossref]

C. Roux, E. Hadji, and J. L. Pautrat, “2.6 μm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system,” Appl. Phys. Lett. 75(24), 3763–3765 (1999).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm,” Appl. Phys. Lett. 104(7), 072102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures,” Appl. Phys. Lett. 108(9), 092104 (2016).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, “Time resolved photoluminescence spectroscopy of narrow gap Hg1−xCdxTe/CdyHg1−yTe quantum well heterostructures,” Appl. Phys. Lett. 105(2), 022102 (2014).
[Crossref]

S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, “Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm,” Appl. Phys. Lett. 111(19), 192101 (2017).
[Crossref]

Int. J. Nanotechnol. (1)

N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1-xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control,” Int. J. Nanotechnol. 3, 120–130 (2006).
[Crossref]

J. Appl. Phys. (1)

I. Vurgaftman, J. R. Meyer, J. M. Dell, T. A. Fisher, and L. Faraone, “Simulation of mid-infrared HgTe/CdTe quantum-well vertical-cavity surface-emitting lasers,” J. Appl. Phys. 83(8), 4286–4291 (1998).
[Crossref]

J. Cryst. Growth (1)

J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, “Laser emission in HgCdTe in the 2–3.5 μm range,” J. Cryst. Growth 197(3), 529–536 (1999).
[Crossref]

J. Lumin. (1)

A. A. Andronov, Y. N. Nozdrin, A. V. Okomel’kov, N. N. Mikhailov, G. Y. Sidorov, and V. S. Varavin, “Stimulated emission from optically excited CdxHg1−xTe structures at room temperature,” J. Lumin. 132(3), 612–616 (2012).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (7)

Phys. Rev. B (1)

A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7), 4039–4056 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer,” Rev. Sci. Instrum. 77(6), 063104 (2006).
[Crossref]

Science (1)

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314(5806), 1757–1761 (2006).
[Crossref] [PubMed]

Semiconductors (3)

M. V. Yakushev, D. V. Brunev, V. S. Varavin, V. V. Vasilyev, S. A. Dvoretskii, I. V. Marchishin, A. V. Predein, I. V. Sabinina, Y. G. Sidorov, and A. V. Sorochkin, “HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays,” Semiconductors 45(3), 385–391 (2011).
[Crossref]

A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, S. S. Krishtopenko, V. Y. Aleshkin, A. M. Kadykov, M. Orlita, M. Potemski, V. I. Gavrilenko, S. V. Morozov, S. A. Dvoretsky, and N. N. Mikhailov, “On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation,” Semiconductors 51(12), 1531–1536 (2017).
[Crossref]

K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, V. G. Remesnik, S. A. Dvoretsky, V. S. Varavin, and Y. G. Sidorov, “Photoluminescence of Hg1−xCdxTe based heterostructures grown by molecular-beam epitaxy,” Semiconductors 45(7), 872–879 (2011).
[Crossref]

Other (2)

V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier Science Publishers, North-Holland, 1991).

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-state Mid-infrared Laser Sources (Springer, 2003), pp. 458–529.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Refractive index distribution throughout the structure and calculated TE mode localization for λ = 3.7 µm in structure #1.
Fig. 2
Fig. 2 SE and PL spectra at different temperatures for (a) structure #1 (pumping wavelength λp = 1.6 μm) at fixed pumping intensity Ip = 250 kW/cm2; (b) structure #2 (pumping wavelength λp = 1.5 μm). Pumping intensity for 100–200 K range was chosen to keep SE peak amplitude the same, spectra for higher temperatures (256–300K) are given at the highest pumping intensity Ip = 250 kW/cm2 (c) temperature dependence of SE peak position (blue and red symbols correspond to measurement in closed-cycle cryostat and in Peltier cooler, respectively; filled symbols correspond to SE peak traced in PL spectra above “critical” temperature for structure #2).
Fig. 3
Fig. 3 Integrated intensity of light emission from the structures under study as a function of pumping intensity at various temperatures: (a) structure #1; (c) structure #2. Inset (b) shows the logarithm of threshold pumping intensity versus temperature.
Fig. 4
Fig. 4 Calculated band spectrum for (a) 2 nm thick HgTe/Cd0.65Hg0.35Te QW (b) 10 nm thick Hg0.66Cd0.34Te/Cd0.58Hg0.42Te QW at T = 160K. Grey areas indicate barrier continuum states.

Metrics