T. A. Sipkens, N. R. Singh, and K. J. Daun, “Time-resolved laser-induced incandescence characterization of metal nanoparticles,” Appl. Phys. B 123(1), 14 (2017).
[Crossref]
J. Menser, K. Daun, T. Dreier, and C. Schulz, “Laser-induced incandescence from laser-heated silicon nanoparticles,” Appl. Phys. B 122(11), 277 (2016).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements,” Appl. Phys. B 122(1), 1–16 (2016).
[Crossref]
T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, and M. Ioannidis, “Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time resolved laser induced incandescence,” Appl. Phys. B 119(4), 561–575 (2015).
[Crossref]
N. E. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119(4), 669–683 (2015).
[Crossref]
R. Lemaire and M. Mobtil, “Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques,” Appl. Phys. B 119(4), 577–606 (2015).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
A. V. Eremin and E. V. Gurentsov, “Sizing of Mo nanoparticles synthesized by Kr-F laser pulse photo-dissociation of Mo(CO)6,” Appl. Phys., A Mater. Sci. Process. 119(2), 615–622 (2015).
[Crossref]
H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII–lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]
X. López-Yglesias, P. E. Schrader, and H. A. Michelsen, “Soot maturity and absorption cross sections,” J. Aerosol Sci. 75, 43–64 (2014).
[Crossref]
D. Hebert, A. Coppalle, and M. Talbaut, “2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence,” Proc. Combust. Inst. 34(2), 2575–2582 (2013).
[Crossref]
A. Eremin, E. Gurentsov, E. Mikheyeva, and K. Priemchenko, “Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating,” Appl. Phys. B 112(3), 421–432 (2013).
[Crossref]
T. Sipkens, G. Joshi, K. J. Daun, and Y. Murakami, “Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence,” J. Heat Transfer 135(5), 052401 (2013).
[Crossref]
S. Maffi, S. De Iuliis, F. Cignoli, and G. Zizak, “Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames,” Appl. Phys. B 104(2), 357–366 (2011).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
A. R. Coderre, K. A. Thomson, D. R. Snelling, and M. R. Johnson, “Spectrally resolved light absorption properties of cooled soot from a methane flame,” Appl. Phys. B 104(1), 175–188 (2011).
[Crossref]
F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100(3), 655–663 (2010).
[Crossref]
H. A. Michelsen, P. E. Schrader, and F. Goulay, “Wavelength and temperature dependences of the absorption and scattering cross sections of soot,” Carbon 48(8), 2175–2191 (2010).
[Crossref]
H. Bladh, J. Johnsson, and P. E. Bengtsson, “Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame,” Appl. Phys. B 96(4), 645–656 (2009).
[Crossref]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
A. Eremin, E. Gurentsov, and C. Schulz, “Infulence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature,” J. Phys. D Appl. Phys. 41(5), 055203 (2008).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, “Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII,” Appl. Phys. B 83(3), 383–395 (2006).
[Crossref]
B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, “Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine,” Combust. Flame 147(1–2), 79–92 (2006).
[Crossref]
S. De Iuliis, F. Migliorini, F. Cignoli, and G. Zizak, “Peak soot temperature in laser-induced incandescence measurements,” Appl. Phys. B 83(3), 397–402 (2006).
[Crossref]
T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
O. Alm, L. Landström, M. Boman, C. G. Granqvist, and P. Heszler, “Tungsten oxide nanoparticles synthesised by laser assisted homogeneous gas-phase nucleation,” Appl. Surf. Sci. 247(1–4), 262–267 (2005).
[Crossref]
Y. Murakami, T. Sugatani, and Y. Nosaka, “Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium,” J. Phys. Chem. A 109(40), 8994–9000 (2005).
[Crossref]
[PubMed]
J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, “2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements,” Appl. Phys. B 81(2–3), 181–186 (2005).
[Crossref]
F. Liu, G. J. Smallwood, and D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 301–312 (2005).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136(1), 180–190 (2004).
[Crossref]
L. Landström and P. Heszler, “Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles,” J. Phys. Chem. B 108(20), 6216–6221 (2004).
[Crossref]
[PubMed]
L. Landström, J. Kokavecz, J. Lu, and P. Heszler, “Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition,” J. Appl. Phys. 95(8), 4408–4414 (2004).
[Crossref]
H. Bladh and P.-E. Bengtsson, “Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model,” Appl. Phys. B 78(2), 241–248 (2004).
[Crossref]
H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118(15), 7012–7045 (2003).
[Crossref]
G. J. Smallwood, D. R. Snelling, F. Liu, and O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123(4), 814–818 (2001).
[Crossref]
S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120(4), 439–450 (2000).
[Crossref]
R. L. Vander Wal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59(4), 445–452 (1994).
[Crossref]
B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97(3–4), 384–392 (1994).
[Crossref]
Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]
T. T. Charalampopoulos and H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59(4–6), 401–421 (1988).
[Crossref]
V. K. Pustovalov and G. S. Romanov, “The theory of heating and evaporation of a spherical particle exposed to optical radiation,” Int. J. Heat Mass Transfer 28(1–2), 277–289 (1985).
[Crossref]
A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48(11), 4473–4479 (1977).
[Crossref]
S. W. Churchill and R. Usagi, “A general expression for the correlation of rates of transfer and other phenomena,” AIChE J. 18(6), 1121–1128 (1972).
[Crossref]
B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII–lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]
P. E. Bengtsson and M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60(1), 51–59 (1995).
[Crossref]
O. Alm, L. Landström, M. Boman, C. G. Granqvist, and P. Heszler, “Tungsten oxide nanoparticles synthesised by laser assisted homogeneous gas-phase nucleation,” Appl. Surf. Sci. 247(1–4), 262–267 (2005).
[Crossref]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120(4), 439–450 (2000).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
N. E. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119(4), 669–683 (2015).
[Crossref]
H. Bladh, J. Johnsson, and P. E. Bengtsson, “Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame,” Appl. Phys. B 96(4), 645–656 (2009).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
P. E. Bengtsson and M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60(1), 51–59 (1995).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
H. Bladh and P.-E. Bengtsson, “Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model,” Appl. Phys. B 78(2), 241–248 (2004).
[Crossref]
T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]
T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, and M. Ioannidis, “Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time resolved laser induced incandescence,” Appl. Phys. B 119(4), 561–575 (2015).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, “2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements,” Appl. Phys. B 81(2–3), 181–186 (2005).
[Crossref]
N. E. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119(4), 669–683 (2015).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
H. Bladh, J. Johnsson, and P. E. Bengtsson, “Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame,” Appl. Phys. B 96(4), 645–656 (2009).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
H. Bladh and P.-E. Bengtsson, “Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model,” Appl. Phys. B 78(2), 241–248 (2004).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
O. Alm, L. Landström, M. Boman, C. G. Granqvist, and P. Heszler, “Tungsten oxide nanoparticles synthesised by laser assisted homogeneous gas-phase nucleation,” Appl. Surf. Sci. 247(1–4), 262–267 (2005).
[Crossref]
T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]
B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII–lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, “2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements,” Appl. Phys. B 81(2–3), 181–186 (2005).
[Crossref]
B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII–lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
T. T. Charalampopoulos and H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59(4–6), 401–421 (1988).
[Crossref]
T. T. Charalampopoulos and H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59(4–6), 401–421 (1988).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
S. W. Churchill and R. Usagi, “A general expression for the correlation of rates of transfer and other phenomena,” AIChE J. 18(6), 1121–1128 (1972).
[Crossref]
S. Maffi, S. De Iuliis, F. Cignoli, and G. Zizak, “Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames,” Appl. Phys. B 104(2), 357–366 (2011).
[Crossref]
S. De Iuliis, F. Migliorini, F. Cignoli, and G. Zizak, “Peak soot temperature in laser-induced incandescence measurements,” Appl. Phys. B 83(3), 397–402 (2006).
[Crossref]
A. R. Coderre, K. A. Thomson, D. R. Snelling, and M. R. Johnson, “Spectrally resolved light absorption properties of cooled soot from a methane flame,” Appl. Phys. B 104(1), 175–188 (2011).
[Crossref]
D. Hebert, A. Coppalle, and M. Talbaut, “2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence,” Proc. Combust. Inst. 34(2), 2575–2582 (2013).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120(4), 439–450 (2000).
[Crossref]
J. Menser, K. Daun, T. Dreier, and C. Schulz, “Laser-induced incandescence from laser-heated silicon nanoparticles,” Appl. Phys. B 122(11), 277 (2016).
[Crossref]
T. A. Sipkens, N. R. Singh, and K. J. Daun, “Time-resolved laser-induced incandescence characterization of metal nanoparticles,” Appl. Phys. B 123(1), 14 (2017).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements,” Appl. Phys. B 122(1), 1–16 (2016).
[Crossref]
T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, and M. Ioannidis, “Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time resolved laser induced incandescence,” Appl. Phys. B 119(4), 561–575 (2015).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
T. Sipkens, G. Joshi, K. J. Daun, and Y. Murakami, “Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence,” J. Heat Transfer 135(5), 052401 (2013).
[Crossref]
K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in auto-compensating laser-induced incandescence parameters,” Appl. Phys. B. Under review.
S. Maffi, S. De Iuliis, F. Cignoli, and G. Zizak, “Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames,” Appl. Phys. B 104(2), 357–366 (2011).
[Crossref]
S. De Iuliis, F. Migliorini, F. Cignoli, and G. Zizak, “Peak soot temperature in laser-induced incandescence measurements,” Appl. Phys. B 83(3), 397–402 (2006).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, “2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements,” Appl. Phys. B 81(2–3), 181–186 (2005).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, “2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements,” Appl. Phys. B 81(2–3), 181–186 (2005).
[Crossref]
J. Menser, K. Daun, T. Dreier, and C. Schulz, “Laser-induced incandescence from laser-heated silicon nanoparticles,” Appl. Phys. B 122(11), 277 (2016).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48(11), 4473–4479 (1977).
[Crossref]
A. Eremin, E. Gurentsov, E. Mikheyeva, and K. Priemchenko, “Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating,” Appl. Phys. B 112(3), 421–432 (2013).
[Crossref]
A. Eremin, E. Gurentsov, and C. Schulz, “Infulence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature,” J. Phys. D Appl. Phys. 41(5), 055203 (2008).
[Crossref]
A. V. Eremin and E. V. Gurentsov, “Sizing of Mo nanoparticles synthesized by Kr-F laser pulse photo-dissociation of Mo(CO)6,” Appl. Phys., A Mater. Sci. Process. 119(2), 615–622 (2015).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
H. A. Michelsen, P. E. Schrader, and F. Goulay, “Wavelength and temperature dependences of the absorption and scattering cross sections of soot,” Carbon 48(8), 2175–2191 (2010).
[Crossref]
F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100(3), 655–663 (2010).
[Crossref]
O. Alm, L. Landström, M. Boman, C. G. Granqvist, and P. Heszler, “Tungsten oxide nanoparticles synthesised by laser assisted homogeneous gas-phase nucleation,” Appl. Surf. Sci. 247(1–4), 262–267 (2005).
[Crossref]
G. J. Smallwood, D. R. Snelling, F. Liu, and O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123(4), 814–818 (2001).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136(1), 180–190 (2004).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, 34th National Heat Transfer Conference (2000).
A. Eremin, E. Gurentsov, E. Mikheyeva, and K. Priemchenko, “Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating,” Appl. Phys. B 112(3), 421–432 (2013).
[Crossref]
A. Eremin, E. Gurentsov, and C. Schulz, “Infulence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature,” J. Phys. D Appl. Phys. 41(5), 055203 (2008).
[Crossref]
A. V. Eremin and E. V. Gurentsov, “Sizing of Mo nanoparticles synthesized by Kr-F laser pulse photo-dissociation of Mo(CO)6,” Appl. Phys., A Mater. Sci. Process. 119(2), 615–622 (2015).
[Crossref]
Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements,” Appl. Phys. B 122(1), 1–16 (2016).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in auto-compensating laser-induced incandescence parameters,” Appl. Phys. B. Under review.
D. Hebert, A. Coppalle, and M. Talbaut, “2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence,” Proc. Combust. Inst. 34(2), 2575–2582 (2013).
[Crossref]
O. Alm, L. Landström, M. Boman, C. G. Granqvist, and P. Heszler, “Tungsten oxide nanoparticles synthesised by laser assisted homogeneous gas-phase nucleation,” Appl. Surf. Sci. 247(1–4), 262–267 (2005).
[Crossref]
L. Landström and P. Heszler, “Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles,” J. Phys. Chem. B 108(20), 6216–6221 (2004).
[Crossref]
[PubMed]
L. Landström, J. Kokavecz, J. Lu, and P. Heszler, “Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition,” J. Appl. Phys. 95(8), 4408–4414 (2004).
[Crossref]
F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, “Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII,” Appl. Phys. B 83(3), 383–395 (2006).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, and M. Ioannidis, “Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time resolved laser induced incandescence,” Appl. Phys. B 119(4), 561–575 (2015).
[Crossref]
A. R. Coderre, K. A. Thomson, D. R. Snelling, and M. R. Johnson, “Spectrally resolved light absorption properties of cooled soot from a methane flame,” Appl. Phys. B 104(1), 175–188 (2011).
[Crossref]
H. Bladh, J. Johnsson, and P. E. Bengtsson, “Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame,” Appl. Phys. B 96(4), 645–656 (2009).
[Crossref]
T. Sipkens, G. Joshi, K. J. Daun, and Y. Murakami, “Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence,” J. Heat Transfer 135(5), 052401 (2013).
[Crossref]
B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII–lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, “Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine,” Combust. Flame 147(1–2), 79–92 (2006).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
L. Landström, J. Kokavecz, J. Lu, and P. Heszler, “Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition,” J. Appl. Phys. 95(8), 4408–4414 (2004).
[Crossref]
O. Alm, L. Landström, M. Boman, C. G. Granqvist, and P. Heszler, “Tungsten oxide nanoparticles synthesised by laser assisted homogeneous gas-phase nucleation,” Appl. Surf. Sci. 247(1–4), 262–267 (2005).
[Crossref]
L. Landström and P. Heszler, “Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles,” J. Phys. Chem. B 108(20), 6216–6221 (2004).
[Crossref]
[PubMed]
L. Landström, J. Kokavecz, J. Lu, and P. Heszler, “Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition,” J. Appl. Phys. 95(8), 4408–4414 (2004).
[Crossref]
B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97(3–4), 384–392 (1994).
[Crossref]
S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120(4), 439–450 (2000).
[Crossref]
R. Lemaire and M. Mobtil, “Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques,” Appl. Phys. B 119(4), 577–606 (2015).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements,” Appl. Phys. B 122(1), 1–16 (2016).
[Crossref]
K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, “Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII,” Appl. Phys. B 83(3), 383–395 (2006).
[Crossref]
F. Liu, G. J. Smallwood, and D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 301–312 (2005).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136(1), 180–190 (2004).
[Crossref]
G. J. Smallwood, D. R. Snelling, F. Liu, and O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123(4), 814–818 (2001).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, 34th National Heat Transfer Conference (2000).
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in auto-compensating laser-induced incandescence parameters,” Appl. Phys. B. Under review.
X. López-Yglesias, P. E. Schrader, and H. A. Michelsen, “Soot maturity and absorption cross sections,” J. Aerosol Sci. 75, 43–64 (2014).
[Crossref]
L. Landström, J. Kokavecz, J. Lu, and P. Heszler, “Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition,” J. Appl. Phys. 95(8), 4408–4414 (2004).
[Crossref]
S. Maffi, S. De Iuliis, F. Cignoli, and G. Zizak, “Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames,” Appl. Phys. B 104(2), 357–366 (2011).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
J. Menser, K. Daun, T. Dreier, and C. Schulz, “Laser-induced incandescence from laser-heated silicon nanoparticles,” Appl. Phys. B 122(11), 277 (2016).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]
X. López-Yglesias, P. E. Schrader, and H. A. Michelsen, “Soot maturity and absorption cross sections,” J. Aerosol Sci. 75, 43–64 (2014).
[Crossref]
H. A. Michelsen, P. E. Schrader, and F. Goulay, “Wavelength and temperature dependences of the absorption and scattering cross sections of soot,” Carbon 48(8), 2175–2191 (2010).
[Crossref]
F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100(3), 655–663 (2010).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118(15), 7012–7045 (2003).
[Crossref]
S. De Iuliis, F. Migliorini, F. Cignoli, and G. Zizak, “Peak soot temperature in laser-induced incandescence measurements,” Appl. Phys. B 83(3), 397–402 (2006).
[Crossref]
A. Eremin, E. Gurentsov, E. Mikheyeva, and K. Priemchenko, “Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating,” Appl. Phys. B 112(3), 421–432 (2013).
[Crossref]
R. Lemaire and M. Mobtil, “Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques,” Appl. Phys. B 119(4), 577–606 (2015).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
T. Sipkens, G. Joshi, K. J. Daun, and Y. Murakami, “Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence,” J. Heat Transfer 135(5), 052401 (2013).
[Crossref]
Y. Murakami, T. Sugatani, and Y. Nosaka, “Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium,” J. Phys. Chem. A 109(40), 8994–9000 (2005).
[Crossref]
[PubMed]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34(30), 7083–7091 (1995).
[Crossref]
[PubMed]
B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97(3–4), 384–392 (1994).
[Crossref]
Y. Murakami, T. Sugatani, and Y. Nosaka, “Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium,” J. Phys. Chem. A 109(40), 8994–9000 (2005).
[Crossref]
[PubMed]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
N. E. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119(4), 669–683 (2015).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
A. Eremin, E. Gurentsov, E. Mikheyeva, and K. Priemchenko, “Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating,” Appl. Phys. B 112(3), 421–432 (2013).
[Crossref]
V. K. Pustovalov and G. S. Romanov, “The theory of heating and evaporation of a spherical particle exposed to optical radiation,” Int. J. Heat Mass Transfer 28(1–2), 277–289 (1985).
[Crossref]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97(3–4), 384–392 (1994).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
V. K. Pustovalov and G. S. Romanov, “The theory of heating and evaporation of a spherical particle exposed to optical radiation,” Int. J. Heat Mass Transfer 28(1–2), 277–289 (1985).
[Crossref]
B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, “Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine,” Combust. Flame 147(1–2), 79–92 (2006).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34(30), 7083–7091 (1995).
[Crossref]
[PubMed]
B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97(3–4), 384–392 (1994).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
X. López-Yglesias, P. E. Schrader, and H. A. Michelsen, “Soot maturity and absorption cross sections,” J. Aerosol Sci. 75, 43–64 (2014).
[Crossref]
H. A. Michelsen, P. E. Schrader, and F. Goulay, “Wavelength and temperature dependences of the absorption and scattering cross sections of soot,” Carbon 48(8), 2175–2191 (2010).
[Crossref]
F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100(3), 655–663 (2010).
[Crossref]
S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120(4), 439–450 (2000).
[Crossref]
J. Menser, K. Daun, T. Dreier, and C. Schulz, “Laser-induced incandescence from laser-heated silicon nanoparticles,” Appl. Phys. B 122(11), 277 (2016).
[Crossref]
H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
A. Eremin, E. Gurentsov, and C. Schulz, “Infulence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature,” J. Phys. D Appl. Phys. 41(5), 055203 (2008).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, “Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine,” Combust. Flame 147(1–2), 79–92 (2006).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
R. T. Wainner and J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” AIAA J. 12(738), 713 (1999).
C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
N. E. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119(4), 669–683 (2015).
[Crossref]
T. A. Sipkens, N. R. Singh, and K. J. Daun, “Time-resolved laser-induced incandescence characterization of metal nanoparticles,” Appl. Phys. B 123(1), 14 (2017).
[Crossref]
T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, and M. Ioannidis, “Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time resolved laser induced incandescence,” Appl. Phys. B 119(4), 561–575 (2015).
[Crossref]
T. Sipkens, G. Joshi, K. J. Daun, and Y. Murakami, “Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence,” J. Heat Transfer 135(5), 052401 (2013).
[Crossref]
T. A. Sipkens, N. R. Singh, and K. J. Daun, “Time-resolved laser-induced incandescence characterization of metal nanoparticles,” Appl. Phys. B 123(1), 14 (2017).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements,” Appl. Phys. B 122(1), 1–16 (2016).
[Crossref]
T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, and M. Ioannidis, “Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time resolved laser induced incandescence,” Appl. Phys. B 119(4), 561–575 (2015).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in auto-compensating laser-induced incandescence parameters,” Appl. Phys. B. Under review.
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]
F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, “Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII,” Appl. Phys. B 83(3), 383–395 (2006).
[Crossref]
F. Liu, G. J. Smallwood, and D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 301–312 (2005).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136(1), 180–190 (2004).
[Crossref]
G. J. Smallwood, D. R. Snelling, F. Liu, and O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123(4), 814–818 (2001).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, 34th National Heat Transfer Conference (2000).
C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
A. R. Coderre, K. A. Thomson, D. R. Snelling, and M. R. Johnson, “Spectrally resolved light absorption properties of cooled soot from a methane flame,” Appl. Phys. B 104(1), 175–188 (2011).
[Crossref]
K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]
F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, “Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII,” Appl. Phys. B 83(3), 383–395 (2006).
[Crossref]
F. Liu, G. J. Smallwood, and D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 301–312 (2005).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136(1), 180–190 (2004).
[Crossref]
G. J. Smallwood, D. R. Snelling, F. Liu, and O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123(4), 814–818 (2001).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, 34th National Heat Transfer Conference (2000).
K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
Y. Murakami, T. Sugatani, and Y. Nosaka, “Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium,” J. Phys. Chem. A 109(40), 8994–9000 (2005).
[Crossref]
[PubMed]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
D. Hebert, A. Coppalle, and M. Talbaut, “2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence,” Proc. Combust. Inst. 34(2), 2575–2582 (2013).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, “2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements,” Appl. Phys. B 81(2–3), 181–186 (2005).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements,” Appl. Phys. B 122(1), 1–16 (2016).
[Crossref]
A. R. Coderre, K. A. Thomson, D. R. Snelling, and M. R. Johnson, “Spectrally resolved light absorption properties of cooled soot from a methane flame,” Appl. Phys. B 104(1), 175–188 (2011).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in auto-compensating laser-induced incandescence parameters,” Appl. Phys. B. Under review.
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
N. E. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119(4), 669–683 (2015).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, “Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine,” Combust. Flame 147(1–2), 79–92 (2006).
[Crossref]
S. W. Churchill and R. Usagi, “A general expression for the correlation of rates of transfer and other phenomena,” AIChE J. 18(6), 1121–1128 (1972).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
R. L. Vander Wal, T. M. Ticich, and J. R. West., “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38(27), 5867–5879 (1999).
[Crossref]
[PubMed]
R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35(33), 6548–6559 (1996).
[Crossref]
[PubMed]
R. L. Vander Wal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59(4), 445–452 (1994).
[Crossref]
Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]
R. T. Wainner and J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” AIAA J. 12(738), 713 (1999).
R. L. Vander Wal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59(4), 445–452 (1994).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120(4), 439–450 (2000).
[Crossref]
F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, “Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII,” Appl. Phys. B 83(3), 383–395 (2006).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
S. Maffi, S. De Iuliis, F. Cignoli, and G. Zizak, “Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames,” Appl. Phys. B 104(2), 357–366 (2011).
[Crossref]
S. De Iuliis, F. Migliorini, F. Cignoli, and G. Zizak, “Peak soot temperature in laser-induced incandescence measurements,” Appl. Phys. B 83(3), 397–402 (2006).
[Crossref]
T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]
R. T. Wainner and J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” AIAA J. 12(738), 713 (1999).
S. W. Churchill and R. Usagi, “A general expression for the correlation of rates of transfer and other phenomena,” AIChE J. 18(6), 1121–1128 (1972).
[Crossref]
R. L. Vander Wal, T. M. Ticich, and J. R. West., “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38(27), 5867–5879 (1999).
[Crossref]
[PubMed]
R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35(33), 6548–6559 (1996).
[Crossref]
[PubMed]
T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34(30), 7083–7091 (1995).
[Crossref]
[PubMed]
R. L. Vander Wal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59(4), 445–452 (1994).
[Crossref]
P. E. Bengtsson and M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60(1), 51–59 (1995).
[Crossref]
J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. D. Black, and I. Vallet, “Soot volume fraction measurements in aero-engine exhausts using extinction-calibrated backward laser-induced incandescence,” Appl. Phys. B 95(4), 825–838 (2009).
[Crossref]
E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89(2–3), 417–427 (2007).
[Crossref]
B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII–lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]
C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]
T. A. Sipkens, N. R. Singh, and K. J. Daun, “Time-resolved laser-induced incandescence characterization of metal nanoparticles,” Appl. Phys. B 123(1), 14 (2017).
[Crossref]
T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, and C. Schulz, “In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence,” Appl. Phys. B 116(3), 623–636 (2014).
[Crossref]
H. Bladh and P.-E. Bengtsson, “Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model,” Appl. Phys. B 78(2), 241–248 (2004).
[Crossref]
H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]
N. E. Olofsson, J. Simonsson, S. Török, H. Bladh, and P. E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119(4), 669–683 (2015).
[Crossref]
S. De Iuliis, F. Migliorini, F. Cignoli, and G. Zizak, “Peak soot temperature in laser-induced incandescence measurements,” Appl. Phys. B 83(3), 397–402 (2006).
[Crossref]
M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood, “Sooting turbulent jet flame: characterization and quantitative soot measurements,” Appl. Phys. B 104(2), 409–425 (2011).
[Crossref]
A. Eremin, E. Gurentsov, E. Mikheyeva, and K. Priemchenko, “Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating,” Appl. Phys. B 112(3), 421–432 (2013).
[Crossref]
S. Maffi, S. De Iuliis, F. Cignoli, and G. Zizak, “Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames,” Appl. Phys. B 104(2), 357–366 (2011).
[Crossref]
K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]
F. Liu, S. Rogak, D. R. Snelling, M. Saffaripour, K. A. Thomson, and G. J. Smallwood, “Effects of laser fluence non-uniformity on ambient-temperature soot measurements using the auto-compensating laser-induced incandescence technique,” Appl. Phys. B 122(11), 286 (2016).
[Crossref]
T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, and M. Ioannidis, “Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time resolved laser induced incandescence,” Appl. Phys. B 119(4), 561–575 (2015).
[Crossref]
H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, B. Tribalet, and R. Suntz, “Modeling laser-induced incandescence of soot: a summary and comparison of LII models,” Appl. Phys. B 87(3), 503–521 (2007).
[Crossref]
F. Liu, M. Yang, F. A. Hill, D. R. Snelling, and G. J. Smallwood, “Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII,” Appl. Phys. B 83(3), 383–395 (2006).
[Crossref]
H. Bladh, J. Johnsson, and P. E. Bengtsson, “Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame,” Appl. Phys. B 96(4), 645–656 (2009).
[Crossref]
J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, “2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements,” Appl. Phys. B 81(2–3), 181–186 (2005).
[Crossref]
J. Menser, K. Daun, T. Dreier, and C. Schulz, “Laser-induced incandescence from laser-heated silicon nanoparticles,” Appl. Phys. B 122(11), 277 (2016).
[Crossref]
F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100(3), 655–663 (2010).
[Crossref]
R. Lemaire and M. Mobtil, “Modeling laser-induced incandescence of soot: a new approach based on the use of inverse techniques,” Appl. Phys. B 119(4), 577–606 (2015).
[Crossref]
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements,” Appl. Phys. B 122(1), 1–16 (2016).
[Crossref]
A. R. Coderre, K. A. Thomson, D. R. Snelling, and M. R. Johnson, “Spectrally resolved light absorption properties of cooled soot from a methane flame,” Appl. Phys. B 104(1), 175–188 (2011).
[Crossref]
A. V. Eremin and E. V. Gurentsov, “Sizing of Mo nanoparticles synthesized by Kr-F laser pulse photo-dissociation of Mo(CO)6,” Appl. Phys., A Mater. Sci. Process. 119(2), 615–622 (2015).
[Crossref]
O. Alm, L. Landström, M. Boman, C. G. Granqvist, and P. Heszler, “Tungsten oxide nanoparticles synthesised by laser assisted homogeneous gas-phase nucleation,” Appl. Surf. Sci. 247(1–4), 262–267 (2005).
[Crossref]
H. A. Michelsen, P. E. Schrader, and F. Goulay, “Wavelength and temperature dependences of the absorption and scattering cross sections of soot,” Carbon 48(8), 2175–2191 (2010).
[Crossref]
N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas,” Combust. Flame 156(7), 1339–1347 (2009).
[Crossref]
B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97(3–4), 384–392 (1994).
[Crossref]
C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107(4), 418–452 (1996).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136(1), 180–190 (2004).
[Crossref]
S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120(4), 439–450 (2000).
[Crossref]
B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, “Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine,” Combust. Flame 147(1–2), 79–92 (2006).
[Crossref]
T. T. Charalampopoulos and H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59(4–6), 401–421 (1988).
[Crossref]
Z. G. Habib and P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59(4–6), 261–274 (1988).
[Crossref]
V. K. Pustovalov and G. S. Romanov, “The theory of heating and evaporation of a spherical particle exposed to optical radiation,” Int. J. Heat Mass Transfer 28(1–2), 277–289 (1985).
[Crossref]
X. López-Yglesias, P. E. Schrader, and H. A. Michelsen, “Soot maturity and absorption cross sections,” J. Aerosol Sci. 75, 43–64 (2014).
[Crossref]
A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48(11), 4473–4479 (1977).
[Crossref]
L. Landström, J. Kokavecz, J. Lu, and P. Heszler, “Characterization and modeling of tungsten nanoparticles generated by laser-assisted chemical vapor deposition,” J. Appl. Phys. 95(8), 4408–4414 (2004).
[Crossref]
H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118(15), 7012–7045 (2003).
[Crossref]
T. Sipkens, G. Joshi, K. J. Daun, and Y. Murakami, “Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence,” J. Heat Transfer 135(5), 052401 (2013).
[Crossref]
G. J. Smallwood, D. R. Snelling, F. Liu, and O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123(4), 814–818 (2001).
[Crossref]
Y. Murakami, T. Sugatani, and Y. Nosaka, “Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium,” J. Phys. Chem. A 109(40), 8994–9000 (2005).
[Crossref]
[PubMed]
L. Landström and P. Heszler, “Analysis of blackbody-like radiation from laser-heated gas-phase tungsten nanoparticles,” J. Phys. Chem. B 108(20), 6216–6221 (2004).
[Crossref]
[PubMed]
A. Eremin, E. Gurentsov, and C. Schulz, “Infulence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature,” J. Phys. D Appl. Phys. 41(5), 055203 (2008).
[Crossref]
F. Liu, G. J. Smallwood, and D. R. Snelling, “Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers,” J. Quant. Spectrosc. Radiat. Transf. 93(1–3), 301–312 (2005).
[Crossref]
D. Hebert, A. Coppalle, and M. Talbaut, “2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence,” Proc. Combust. Inst. 34(2), 2575–2582 (2013).
[Crossref]
H. Bladh, N. E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P. E. Bengtsson, and P. Desgroux, “Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence,” Proc. Combust. Inst. 35(2), 1843–1850 (2015).
[Crossref]
R. Lemaire, A. Faccinetto, E. Therssen, M. Ziskind, C. Focsa, and P. Desgroux, “Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels,” Proc. Combust. Inst. 32(1), 737–744 (2009).
[Crossref]
H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, 34th National Heat Transfer Conference (2000).
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York 1983).
P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, and K. J. Daun, “Quantifying uncertainty in auto-compensating laser-induced incandescence parameters,” Appl. Phys. B. Under review.
W. Koechner: Solid-state laser engineering (Springer 2013).