Abstract

The internal quantum efficiencies (IQE) and carrier lifetimes of semipolar (202¯1¯) InGaN/GaN LEDs with different active regions are measured using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence. Three active regions are investigated: one 12-nm-thick single quantum well (SQW), two 6-nm-thick QWs, and three 4-nm-thick QWs. The IQE is highest for the 12-nm-thick SQW and decreases as the well width decreases. The radiative lifetimes are similar for all structures, while the nonradiative lifetimes decrease as the well width decreases. The superior IQE and longer nonradiative lifetime of the SQW structure suggests using thick SQW active regions for high brightness semipolar (202¯1¯) LEDs.

© 2017 Optical Society of America

1. Introduction

Commercial GaN-based optoelectronic devices are typically grown on the c-plane (0001) orientation of the wurtzite crystal structure. Although this approach is the most technologically mature, polarization-related electric fields in c-plane-oriented devices spatially separate the electron and hole wave functions in the active region, reducing the radiative recombination rate and adversely affecting device performance [1–3]. In addition, the long-standing challenges known as efficiency droop [4,5] and the green gap [6] continue to plague c-plane InGaN/GaN emitters.

Alternatively, devices grown on nonpolar and semipolar orientations of GaN exhibit significantly reduced polarization-related electric fields [7–11] and their potential to mitigate the effects of efficiency droop and the green gap has been extensively studied [12–14]. While many early studies focused on nonpolar orientations, the utility of nonpolar for efficient emitters was found to be limited by issues associated with indium incorporation [15], the formation of stacking faults [16], and Ga and O vacancies [17]. More recently, a variety of semipolar orientations have been investigated as a path to improved LED and laser performance. Among the semipolar orientations, LEDs grown on (202¯1¯) have shown promising performance with high brightness, low efficiency droop, large polarization ratio, narrow emission linewidth, and high indium incorporation [18–23]. Semipolar (202¯1¯) quantum wells are unique in that the direction of the piezoelectric polarization-related electric field is opposite to that of the pn-junction built-in field and of similar magnitude, resulting in a flat quantum-well profile at low bias in LED structures (see Fig. 1(b)). Thus, the wave function overlap is near unity at low bias and remains near unity at larger biases [18]. The best LED performance on semipolar (202¯1¯) has thus far been demonstrated using 12-nm-thick and 14-nm-thick single-quantum-well (SQW) active regions, with 1 W optical output power and low efficiency droop recently achieved [19, 24].

 

Fig. 1 (a) Epitaxial layer designs for the three semipolar InGaN LEDs. (b) Example energy band diagram of 3 x 4 nm active region at zero bias.

Download Full Size | PPT Slide | PDF

In this work, we investigate for the first time the internal quantum efficiencies (IQEs) and carrier lifetimes of semipolar (202¯1¯) InGaN/GaN light-emitting diodes (LEDs) as a function of active region design using temperature-dependent, carrier-density-dependent, and time-resolved photoluminescence (PL). The results explain the superior performance of thick SQW active region designs in semipolar (202¯1¯) LEDs. We investigate three active region designs with the same total active thickness and peak emission wavelengths ~450 nm. The designs include one 12-nm-thick quantum well, two 6-nm-thick quantum wells, and three 4-nm-thick quantum wells. The measured IQE is used to decouple the radiative and nonradiative lifetimes from the measured PL lifetimes over a range of excitation energy densities (carrier densities). The results show that the improved IQE of thick SQW semipolar (202¯1¯) active regions is due to an increase in the nonradiative lifetime, suggesting a smaller influence from structural and/or interface defects in the thicker active regions. The measured radiative lifetimes are similar for all three active region designs, due to the absence of a significant quantum confined Stark effect in semipolar (202¯1¯) LEDs. The results also suggest that SQW designs are preferred over multiple-quantum-well (MQW) designs for high-brightness semipolar (202¯1¯) LEDs since SQW designs exhibit the highest IQE and do not suffer from issues with carrier distribution between multiple wells [25].

2. Experimental methods

The studied structures are LEDs that were grown using atmospheric-pressure metal organic chemical vapor deposition (MOCVD) on free-standing semipolar (202¯1¯) GaN substrates from Mitsubishi Chemical Corporation. The dislocation density of the substrates is ~105 cm−2. The details of the structure are shown in Fig. 1(a). The InGaN active regions for the 1 x 12 nm, 2 x 6 nm, and 3 x 4 nm have quantum well compositions of In0.15Ga0.85N, In0.16Ga0.84N, and In0.17Ga0.83N, respectively, surrounded by GaN barriers. The samples were mounted in a variable-temperature closed-cycle Helium cryostat. Temperature-dependent PL and time-resolved PL (TRPL) measurements were performed using 405 nm wavelength excitation from a frequency-doubled Ti:sapphire laser with ~150 fs pulse width and 4 MHz repetition rate. The pumping scheme using 405 nm excitation ensures photo-generation of carriers only within the active regions and enables uniform pumping of the quantum wells. As previously discussed by David and Gardner, carrier leakage during our PL experiments was considered negligible due to the resonant pumping scheme and the open circuit configuration [26]. Furthermore, the (202¯1¯) quantum wells studied here are nearly flat banded at zero bias and a large heterobarrier on the order of 400-500 meV exists between the quantum wells and barriers for electrons, preventing significant thermionic escape. The flat quantum well profile and large heterobarriers are clearly shown in the example energy band diagram of the 3 x 4 nm quantum well active region in Fig. 1(b). The excitation energy density was varied from ~0.7 to ~22 µJ/cm2 using a continuously variable neutral density filter. A microscope objective was used to focus the laser source to a spot-size diameter of ~50 µm on the sample surface. The light emitted from the sample was collected through the same objective, focused into an optical fiber, and coupled into a spectrometer attached to a Hamamatsu streak camera with 10 ps temporal resolution. The PL spectra from the LEDs were collected at low temperature (10 K) and room temperature (295 K) with different excitation powers, while the PL transients were obtained at room temperature only. The PL transients were recorded using photon counting mode using a sampling bandwidth of 20 nm around the peak of the PL spectrum.

3. Results and discussion

To extract the IQE as a function of carrier density, the room-temperature (295 K) and low-temperature (10 K) PL spectra were measured at different excitation energy densities. The ratios of the integrated PL spectra at room temperature to the integrated PL spectra at low temperature yield the IQE as a function of excitation energy density for the three active region designs. In general, caution must be exercised when assuming the IQE is 100% at low temperature, especially in samples with high dislocation densities under very low injection levels [27]. To confirm or deny the validity of this assumption, an examination of the slope of the time-integrated PL intensity vs. excitation energy density (carrier density) at low temperature was previously suggested. Iwata et al. identified four distinct operating regions as a function of carrier density at low temperature in AlGaN/AlN quantum wells: (i) linear with slope of 1 at very low injection levels where monomolecular radiative and nonradiative processes occur, (ii) super-linear with slope greater than 1 at higher injection levels once nonradiative centers have saturated, (iii) linear with slope of 1 at even higher injection levels where bimolecular radiative recombination dominates and the IQE is 100%, and (iv) sub-linear with slope less than 1 where absorption saturation and/or Auger recombination occur. In the case of our samples, the validity of 100% IQE at low temperature is verified by examining the slope of the integrated PL intensity versus excitation energy density at low temperature, as shown in Fig. 2. The slope is close to 1 for all excitation levels at low temperature, suggesting we are operating within region (iii). Conversely, at room temperature the slope is greater than 1 below carrier densities ~8x1017 cm−3. This indicates defect-assisted nonradiative recombination is present at room temperature but frozen out at low temperature [28]. We also note that the samples in this study have low dislocation densities ~105 cm−2, making the injection levels relevant to operation within regions (i) and (ii) extremely low. Therefore, based on Fig. 2, and in the case of our low-dislocation samples under relatively high injection, it is valid to assume that the nonradiative recombination lifetime is infinite (i.e., nonradiative recombination is frozen out and the IQE is ~100%) at 10 K [27].

 

Fig. 2 Integrated PL intensity vs. excitation energy density measured at low temperature and room temperature. The slope at low temperature is 1, indicating that the radiative recombination process dominates at low temperature.

Download Full Size | PPT Slide | PDF

Figure 3 shows the IQE versus carrier density (see calculation below) for the three active region designs in Fig. 1. The inset image shows the room-temperature PL spectra measured at the highest excitation level. The PL emission peak ranges from ~440 nm to ~450 nm. At low carrier densities, the IQE in Fig. 3 rises significantly with increasing excitation as the carrier density increases and the dominant recombination mechanism evolves from nonradiative Shockley-Read-Hall (SRH) to radiative bimolecular (see below for radiative and nonradiative lifetimes). With a further increase in the carrier density the IQE saturates. We note that the excitation energy densities available from our PL system are not high enough to reach the Auger recombination regime, so Fig. 3 does not show the characteristic roll over in the IQE due to efficiency droop. The photo-generated carrier density corresponding to the energy density of the pump can be estimated with Δn=(E×(1R)×α)/hν, where E is the energy density of the 405 nm pump laser, R and α are the power reflection and absorption coefficients at 405 nm, respectively, and hν is the photon energy of the 405 nm pump laser. The power reflection coefficient is estimated to be 19% at 405 nm. In the literature, the absorption coefficient for In0.15Ga0.85N quantum wells varies between 2×104 cm1 and 7×104 cm1 at 405 nm [28–30]. Using the maximum absorption coefficient 7×104 cm1 and the maximum energy density 22 µJ/cm2 of the pump, the maximum possible photo-generated carrier density is 2.6×1018 cm3. The maximum value is significantly lower than those reported for the onset of IQE roll over due to Auger recombination. For example, A. David et. al [30] and E. Kioupakis et. al [31], reported carrier densities at the roll over point of 7×1018 cm3 and 2×1019 cm3, respectively. In addition, the absence of roll over in the IQE curves in Fig. 3 supports that the photo-generated carrier density does not reach a value where Auger recombination affects the IQE. Figure 3 shows that the IQE for the 12-nm-thick SQW active region reaches a maximum value of more than 0.9. For the active regions with multiple thinner quantum wells, the maximum IQEs are lower, following the trend that thinner QWs have lower IQE.

 

Fig. 3 Internal quantum efficiency (IQE) for 1x12 nm, 2x6 nm, and 3x4 nm active regions versus carrier density. Inset shows PL spectra measured at the highest excitation level at room temperature.

Download Full Size | PPT Slide | PDF

TRPL was used to obtain the PL lifetimes at room temperature for excitation energy densities ranging from ~0.7 to ~22 µJ/cm2. The PL transients were fit using a bi-exponential decay function, A1et/τ1+A2et/τ2, where A1 and A2 are the amplitudes and τ1 and τ2 are the time constants of the fast decay and slow decay components, respectively. The slow decay component is taken as the PL lifetime [17, 32–35]. Figure 4 shows the PL lifetimes (extracted from the slow-decay component of the bi-exponential fitting) versus excitation energy density for the three active region designs. The inset of Fig. 4 shows examples of the room temperature PL transients for the three different active region designs at an excitation energy density of ~22 µJ/cm2. All active regions exhibit short PL lifetimes at low excitation densities, followed by a sharp increase, and relatively constant lifetimes at high excitations. The PL lifetime for the 12-nm-thick SQW active region is longest over the full range of excitation energy densities, while the 2x6 nm active region exhibits a longer PL lifetime compared to the 3x4 nm active region for all excitation energy densities. Thus, as the individual quantum well thickness increases, the PL lifetime also increases. Longer lifetimes in thicker quantum wells have also been observed for semipolar (112¯2), nonpolar (101¯0), and c-plane InGaN active regions [36,37].

 

Fig. 4 PL lifetimes for 1x12 nm, 2x6 nm, and 3x4 nm active regions at different carrier densities (excitation levels). Inset shows examples of room-temperature PL transients for active regions of 1x12 nm, 2x6 nm, and 3x4 nm at excitation energy density of 22 µJ/cm2.

Download Full Size | PPT Slide | PDF

To investigate the origin of the higher IQE in the thick SQW active region, the radiative and nonradiative recombination lifetimes were decoupled from the PL lifetimes using the IQE values for each carrier density. The radiative and nonradiative lifetimes were obtained using, τR(N)=τPL(N)/IQE(N) and τNR=τPL(N)/(1IQE(N)), respectively. The IQE and carrier lifetimes are explicitly written as a function of the carrier density N to emphasize that these parameters are strongly dependent upon the carrier (excitation energy) density and that each parameter should have a one-to-one correspondence with carrier density. Figure 5(a) and 5(b) show the extracted radiative and nonradiative lifetimes, respectively, for the three active region designs. The radiative recombination lifetime is highest at low excitation levels and gradually decreases to ~7-10 ns at the highest excitation levels for all active regions. Although the radiative lifetimes are similar for all three active region designs, a slight trend is observed in which thinner quantum wells show slightly shorter radiative lifetimes, presumably due to the slightly larger wave function overlap in thinner wells. However, the wave function overlap in semipolar (202¯1¯) quantum wells embedded in pn-junctions is not strongly dependent upon the quantum well thickness due to the cancellation of the piezoelectric and pn-junction built-in fields. Conversely, the nonradiative recombination lifetime is lowest at low excitation levels and increases as the excitation level is increased for all active regions due to the saturation of nonradiative centers. While the radiative recombination lifetimes are similar for all three structures, the nonradiative recombination lifetime of the SQW structure at moderately high excitation levels is almost one order of magnitude longer than the lifetimes for structures with two and three quantum wells. This indicates that the 12-nm-thick SQW structure is less susceptible to nonradiative recombination than the structures with thinner quantum wells. Although the radiative recombination lifetime of the 12-nm-thick SQW structure is slightly longer than that of the other two samples, the 12-nm-thick SQW structure still exhibits the highest IQE (see Fig. 3) due to its significantly longer nonradiative lifetime. At the highest excitation level, the nonradiative recombination lifetime for the 12 nm SQW structure is 153 ns, while the nonradiative recombination lifetimes for the 2x6 nm and 3x4 nm active regions are 38 ns and 21 ns, respectively. The superior optical properties of the SQW sample suggest that quantum well interface defects (Ga vacancies and alloy fluctuations [36]) play an important role towards performance degradation of the active regions since the wave functions have a stronger interaction with the interfaces and penetrate deeper into the barriers in thinner wells. Freestanding semipolar GaN substrates have low density of threading dislocations, however they are more susceptible to oxygen incorporation compared to that of c-plane GaN. These oxygen impurities enhance the formation of Ga vacancies [37] that are well known to trap holes efficiently, compared to electrons [38] thereby acting as SRH nonradiative recombination centers. Similar conclusions were suggested in an earlier study for high-efficiency semipolar (112¯2) LEDs comparing a 16-nm-thick SQW with a 2.5-nm-thick SQW [39]. Thickness effects were also previously observed in InGaAs/GaAs and AlGaAs/GaAs MQW active regions [40,41] and in thick c-plane InGaN active regions [42]. However, in the c-plane active regions the increase in nonradiative lifetime in thicker wells was also accompanied by an unwanted significant increase in the radiative lifetime due to the larger quantum confined Stark effect (QCSE) in thicker wells. The main advantage of semipolar (202¯1¯) active regions is that the nonradiative recombination lifetime can be increased by using thicker wells while keeping the radiative recombination lifetime relatively constant due to the low polarization-related electric fields and flat quantum well profile.

 

Fig. 5 (a) Radiative and (b) nonradiative lifetimes for 1x12 nm, 2x6 nm, and 3x4 nm active regions versus carrier density.

Download Full Size | PPT Slide | PDF

4. Summary

In conclusion, the IQEs and carrier lifetimes for semipolar (202¯1¯) InGaN/GaN active regions with different quantum well numbers and thicknesses were investigated using temperature-dependent and carrier-density-dependent PL and TRPL. The IQE increases as the quantum well thickness increases, reaching a value of more than 0.9 for the 1x12 nm SQW active region. The radiative carrier lifetimes for all three active regions are similar due to the low QCSE, but the nonradiative lifetimes decrease significantly as the quantum well width decreases. The results directly indicate that the improved optical performance of thick SQW semipolar (202¯1¯) active regions is related to an increase in the nonradiative lifetime, which is attributed to reduced interaction of the wave function with the quantum well interfaces in thick wells. This study encourages using thick SQW semipolar (202¯1¯) InGaN/GaN active regions to simultaneously enable high IQE and efficient carrier injection in high-brightness semipolar LEDs.

Funding

This work was supported by Department of Defense award number W911NF-15-1-0428.

Acknowledgments

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors acknowledge support from the Solid State Lighting and Energy Electronics Center (SSLEEC) at UCSB.

References and links

1. H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, 2008).

2. H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009). [CrossRef]  

3. X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012). [CrossRef]  

4. J. Piprek, “Efficiency droop in bitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2217–2225 (2010). [CrossRef]  

5. C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015). [CrossRef]  

6. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007). [CrossRef]  

7. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024 (1997). [CrossRef]  

8. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999). [CrossRef]  

9. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000). [CrossRef]   [PubMed]  

10. T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000). [CrossRef]  

11. L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011). [CrossRef]  

12. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010). [CrossRef]  

13. J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bull. 34(05), 304–312 (2009). [CrossRef]  

14. F. Scholz, “Semipolar GaN grown on foreign substrates: A review,” Semicond. Sci. Technol. 27(2), 024002 (2012). [CrossRef]  

15. Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012). [CrossRef]  

16. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012). [CrossRef]  

17. S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014). [CrossRef]  

18. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013). [CrossRef]  

19. C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012). [CrossRef]  

20. Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012). [CrossRef]  

21. S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014). [CrossRef]  

22. S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013). [CrossRef]  

23. Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011). [CrossRef]  

24. S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016). [CrossRef]  

25. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008). [CrossRef]  

26. A. David and N. F. Gardner, “Droop in III-nitrides: Comparison of bulk and injection contributions,” Appl. Phys. Lett. 97(19), 193508 (2010). [CrossRef]  

27. Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015). [CrossRef]  

28. K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014). [CrossRef]  

29. O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998). [CrossRef]  

30. A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010). [CrossRef]  

31. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011). [CrossRef]  

32. B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008). [CrossRef]  

33. P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012). [CrossRef]  

34. K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012). [CrossRef]  

35. P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012). [CrossRef]  

36. S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013). [CrossRef]  

37. S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006). [CrossRef]  

38. P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002). [CrossRef]  

39. G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009). [CrossRef]  

40. J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990). [CrossRef]  

41. M. Vening, D. J. Dunstan, and K. P. Homewood, “Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures,” Phys. Rev. B Condens. Matter 48(4), 2412–2417 (1993). [CrossRef]   [PubMed]  

42. C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, 2008).
  2. H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
    [Crossref]
  3. X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
    [Crossref]
  4. J. Piprek, “Efficiency droop in bitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2217–2225 (2010).
    [Crossref]
  5. C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
    [Crossref]
  6. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
    [Crossref]
  7. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024 (1997).
    [Crossref]
  8. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
    [Crossref]
  9. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
    [Crossref] [PubMed]
  10. T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
    [Crossref]
  11. L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
    [Crossref]
  12. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010).
    [Crossref]
  13. J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
    [Crossref]
  14. F. Scholz, “Semipolar GaN grown on foreign substrates: A review,” Semicond. Sci. Technol. 27(2), 024002 (2012).
    [Crossref]
  15. Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
    [Crossref]
  16. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
    [Crossref]
  17. S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
    [Crossref]
  18. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
    [Crossref]
  19. C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
    [Crossref]
  20. Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
    [Crossref]
  21. S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
    [Crossref]
  22. S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
    [Crossref]
  23. Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
    [Crossref]
  24. S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
    [Crossref]
  25. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
    [Crossref]
  26. A. David and N. F. Gardner, “Droop in III-nitrides: Comparison of bulk and injection contributions,” Appl. Phys. Lett. 97(19), 193508 (2010).
    [Crossref]
  27. Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
    [Crossref]
  28. K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014).
    [Crossref]
  29. O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
    [Crossref]
  30. A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
    [Crossref]
  31. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
    [Crossref]
  32. B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
    [Crossref]
  33. P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
    [Crossref]
  34. K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
    [Crossref]
  35. P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
    [Crossref]
  36. S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
    [Crossref]
  37. S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
    [Crossref]
  38. P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
    [Crossref]
  39. G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
    [Crossref]
  40. J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
    [Crossref]
  41. M. Vening, D. J. Dunstan, and K. P. Homewood, “Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures,” Phys. Rev. B Condens. Matter 48(4), 2412–2417 (1993).
    [Crossref] [PubMed]
  42. C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
    [Crossref]

2016 (1)

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

2015 (2)

Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
[Crossref]

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

2014 (3)

S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
[Crossref]

K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014).
[Crossref]

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

2013 (3)

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

2012 (9)

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

F. Scholz, “Semipolar GaN grown on foreign substrates: A review,” Semicond. Sci. Technol. 27(2), 024002 (2012).
[Crossref]

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
[Crossref]

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
[Crossref]

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
[Crossref]

2011 (3)

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
[Crossref]

2010 (4)

H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010).
[Crossref]

J. Piprek, “Efficiency droop in bitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2217–2225 (2010).
[Crossref]

A. David and N. F. Gardner, “Droop in III-nitrides: Comparison of bulk and injection contributions,” Appl. Phys. Lett. 97(19), 193508 (2010).
[Crossref]

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

2009 (3)

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

2008 (2)

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

2007 (1)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

2006 (1)

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

2002 (1)

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

2000 (2)

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

1999 (1)

V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
[Crossref]

1998 (1)

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

1997 (2)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024 (1997).
[Crossref]

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

1993 (1)

M. Vening, D. J. Dunstan, and K. P. Homewood, “Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures,” Phys. Rev. B Condens. Matter 48(4), 2412–2417 (1993).
[Crossref] [PubMed]

1990 (1)

J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
[Crossref]

Akasaki, I.

T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Aleksiejunas, R.

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

Amano, H.

T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Ambacher, O.

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

Asamizu, H.

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

Avrutin, V.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Banal, R. G.

Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
[Crossref]

Beaumont, B.

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

Bergman, J. P.

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

Bernardini, F.

V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
[Crossref]

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024 (1997).
[Crossref]

Bowers, J. E.

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

Brandt, O.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Brunner, D.

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

Cantore, M.

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

Chichibu, S. F.

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

Chiu, T. L.

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Cruz, S. C.

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

David, A.

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

A. David and N. F. Gardner, “Droop in III-nitrides: Comparison of bulk and injection contributions,” Appl. Phys. Lett. 97(19), 193508 (2010).
[Crossref]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Delaney, K. T.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Della Sala, F.

V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
[Crossref]

DenBaars, S. P.

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
[Crossref]

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010).
[Crossref]

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

Di Carlo, A.

V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
[Crossref]

Dimitrov, R.

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

Dunstan, D. J.

M. Vening, D. J. Dunstan, and K. P. Homewood, “Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures,” Phys. Rev. B Condens. Matter 48(4), 2412–2417 (1993).
[Crossref] [PubMed]

Dunstan, J.

J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
[Crossref]

Emeny, M. T.

J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
[Crossref]

Farrell, R. M.

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
[Crossref]

Feezell, D.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Feezell, D. F.

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

Fiorentini, V.

V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
[Crossref]

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024 (1997).
[Crossref]

Fujito, K.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Funato, M.

Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
[Crossref]

Gardner, N. F.

A. David and N. F. Gardner, “Droop in III-nitrides: Comparison of bulk and injection contributions,” Appl. Phys. Lett. 97(19), 193508 (2010).
[Crossref]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Garrett, G. A.

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Gibart, P.

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

Grahn, H. T.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Grundmann, M. J.

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Han, D. P.

K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014).
[Crossref]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Hautakangas, S.

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

Homewood, K. P.

M. Vening, D. J. Dunstan, and K. P. Homewood, “Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures,” Phys. Rev. B Condens. Matter 48(4), 2412–2417 (1993).
[Crossref] [PubMed]

J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
[Crossref]

Hong, S. M.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Howard, L. K.

J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
[Crossref]

Hsu, P. S.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Hsu, T. S.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Huang, C. Y.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Huang, C.-Y.

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

Huang, S. C.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Ichikawa, S.

Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
[Crossref]

Iso, K.

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

Ivanov, R.

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

Iveland, J.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Iwata, Y.

Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
[Crossref]

Jarasiunas, K.

P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
[Crossref]

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

Kaeding, J. F.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Kawaguchi, Y.

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Kawakami, Y.

Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
[Crossref]

Kelchner, K. M.

S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
[Crossref]

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Keller, S.

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

Kim, H.-S.

K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014).
[Crossref]

Kim, K. S.

K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014).
[Crossref]

Kioupakis, E.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Kneissl, M.

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
[Crossref]

Krames, M. R.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Kuritzky, L. Y.

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Lambkin, J. D.

J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
[Crossref]

Leach, J.

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

Li, X.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Look, D. C.

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

Lugli, P.

V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
[Crossref]

Makkonen, I.

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

Malinauskas, T.

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

Marcinkevicius, S.

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
[Crossref]

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Martinelli, L.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Masui, H.

H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010).
[Crossref]

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

Matulionis, A.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Melo, T.

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

Menniger, J.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Mihopoulos, T. G.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Minsky, M. S.

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

Mishra, U. K.

H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010).
[Crossref]

Monemar, B.

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

Monroy, E.

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

Morkoc, H.

P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
[Crossref]

Morkoç, H.

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
[Crossref]

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Muñoz, E.

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

Muret, P.

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

Nakamaura, S.

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Nakamura, S.

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010).
[Crossref]

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

Nargelas, S.

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

Oh, S. H.

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

Okur, S.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
[Crossref]

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
[Crossref]

Omnès, F.

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

Ozgur, U.

P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
[Crossref]

Özgür, Ü.

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
[Crossref]

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Pan, C. C.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Paskov, P. P.

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

Paskova, T.

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

Peretti, J.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Philippe, A.

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

Piccardo, M.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Piprek, J.

J. Piprek, “Efficiency droop in bitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2217–2225 (2010).
[Crossref]

Ploog, K. H.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Puska, M. J.

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

Ramsteiner, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Ranki, V.

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

Reiche, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Rinke, P.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Saarinen, K.

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

Scajev, P.

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
[Crossref]

Schade, L.

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
[Crossref]

Schmidt, M. C.

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Scholz, F.

F. Scholz, “Semipolar GaN grown on foreign substrates: A review,” Semicond. Sci. Technol. 27(2), 024002 (2012).
[Crossref]

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

Schwarz, U. T.

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
[Crossref]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Shen, H.

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Shim, J. I.

K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014).
[Crossref]

Shubina, T. V.

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

Sohmer, A.

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

Speck, J. S.

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
[Crossref]

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Stutzmann, M.

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

Sun, C. K.

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

Takeuchi, T.

T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

Tanaka, S.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Toropov, A. A.

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

Trampert, A.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Tyagi, A.

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Usui, A.

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

Van de Walle, C. G.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Vanderbilt, D.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024 (1997).
[Crossref]

Vening, M.

M. Vening, D. J. Dunstan, and K. P. Homewood, “Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures,” Phys. Rev. B Condens. Matter 48(4), 2412–2417 (1993).
[Crossref] [PubMed]

Waltereit, P.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Wang, G.

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Wernicke, T.

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
[Crossref]

Weyers, M.

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
[Crossref]

Wraback, M.

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Wu, F.

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
[Crossref]

Wu, Y. R.

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

Xu, X.

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

Yamada, H.

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

Yan, Q.

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

Yan, Q. M.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Yen, S. H.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Yonkee, B. P.

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

Young, E. C.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
[Crossref]

Zhang, F.

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

Zhao, Y.

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Zhao, Y. J.

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Appl. Phys. Express (3)

C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes,” Appl. Phys. Express 5(6), 062103 (2012).
[Crossref]

Y. J. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (20-2-1)InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
[Crossref]

S. H. Oh, B. P. Yonkee, M. Cantore, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to ~1 W,” Appl. Phys. Express 9(10), 102102 (2016).
[Crossref]

Appl. Phys. Lett. (11)

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

A. David and N. F. Gardner, “Droop in III-nitrides: Comparison of bulk and injection contributions,” Appl. Phys. Lett. 97(19), 193508 (2010).
[Crossref]

K. S. Kim, D. P. Han, H.-S. Kim, and J. I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104(9), 091110 (2014).
[Crossref]

A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97(3), 033501 (2010).
[Crossref]

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells,” Appl. Phys. Lett. 103(11), 111107 (2013).
[Crossref]

Y. Kawaguchi, C.-Y. Huang, Y. R. Wu, Q. Yan, C. C. Pan, Y. Zhao, S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and S. Nakamura, “Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 100(23), 231110 (2012).
[Crossref]

S. Marcinkevičius, R. Ivanov, Y. Zhao, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Highly polarized photoluminescence and its dynamics in semipolar (20-2-1)InGaN/GaN quantum well,” Appl. Phys. Lett. 104(11), 111113 (2014).
[Crossref]

S. Marcinkevičius, Y. Zhao, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Near-field investigation of spatial variations of (2021) InGaN quantum well emission spectra,” Appl. Phys. Lett. 103(13), 131116 (2013).
[Crossref]

Y. J. Zhao, Q. M. Yan, C. Y. Huang, S. C. Huang, P. S. Hsu, S. Tanaka, C. C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

J. D. Lambkin, J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/ GaAs and InGaAs/AlGaAs strained layer quantum wells,” Appl. Phys. Lett. 57(19), 1986–1988 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. K. Sun, S. Keller, T. L. Chiu, G. Wang, M. S. Minsky, J. E. Bowers, and S. P. DenBaars, “Well-width dependent studies of InGaN–GaN single-quantum wells using time-resolved photoluminescence techniques,” IEEE J. Sel. Top. Quantum Electron. 3(3), 731–738 (1997).
[Crossref]

IEEE Trans. Electron Dev. (1)

H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Dev. 57(1), 88–100 (2010).
[Crossref]

J. Appl. Phys. (4)

X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. S. Hsu, and A. Matulionis, “Impact of active layer design on InGaN radiative recombination coefficient and LED performance,” J. Appl. Phys. 111(6), 063112 (2012).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, Ü. Özgür, and H. Morkoç, “Carrier dynamics in bulk GaN,” J. Appl. Phys. 111(2), 023702 (2012).
[Crossref]

Y. Iwata, R. G. Banal, S. Ichikawa, M. Funato, and Y. Kawakami, “Co-existence of a few and sub-micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117(11), 115702 (2015).
[Crossref]

P. Muret, A. Philippe, E. Monroy, E. Muñoz, B. Beaumont, F. Omnès, and P. Gibart, “Properties of a hole trap in n-type hexagonal GaN,” J. Appl. Phys. 91(5), 2998–3001 (2002).
[Crossref]

J. Disp. Technol. (2)

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9, 190–198 (2013).
[Crossref]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Masui, H. Asamizu, T. Melo, H. Yamada, K. Iso, S. C. Cruz, S. Nakamura, and S. P. DenBaars, “Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (10-10) and semipolar (11-22) orientations,” J. Phys. D Appl. Phys. 42(13), 135106 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 413–416 (2000).
[Crossref]

O. Ambacher, D. Brunner, R. Dimitrov, M. Stutzmann, A. Sohmer, and F. Scholz, “Absorption of InGaN single quantum wells determined by photothermal deflection spectroscopy,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 745–752 (1998).
[Crossref]

MRS Bull. (1)

J. S. Speck and S. F. Chichibu, “Nonpolar and semipolar group III nitride-based materials,” MRS Bull. 34(05), 304–312 (2009).
[Crossref]

Nature (1)

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[Crossref] [PubMed]

Phys. Rev. B (3)

S. Hautakangas, I. Makkonen, V. Ranki, M. J. Puska, K. Saarinen, X. Xu, and D. C. Look, “Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy,” Phys. Rev. B 73(19), 193301 (2006).
[Crossref]

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), 10024 (1997).
[Crossref]

V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. Vening, D. J. Dunstan, and K. P. Homewood, “Thermal quenching and retrapping effects in the photoluminescence of InyGa1-yAs/GaAs/AlxGa1-xAs multiple-quantum-well structures,” Phys. Rev. B Condens. Matter 48(4), 2412–2417 (1993).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (3)

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi, B Basic Res. 248(3), 638–646 (2011).
[Crossref]

B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN,” Phys. Status Solidi, B Basic Res. 245(9), 1723–1740 (2008).
[Crossref]

P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, and H. Morkoc, “Carrier dynamics under two- and single-photon excitation in bulk GaN,” Phys. Status Solidi, B Basic Res. 249(3), 503–506 (2012).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (2)

J. Piprek, “Efficiency droop in bitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2217–2225 (2010).
[Crossref]

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (2)

S. Marcinkevičius, K. M. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Optical properties and carrier dynamics in m-plane InGaN quantum wells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 690–693 (2014).
[Crossref]

G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamaura, “Comparison of time-resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(S2), S800–S803 (2009).
[Crossref]

Proc. SPIE (1)

K. Jarasiunas, P. Scajev, S. Nargelas, R. Aleksiejunas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç, “Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques,” Proc. SPIE 8262, 82620G (2012).
[Crossref]

Semicond. Sci. Technol. (2)

F. Scholz, “Semipolar GaN grown on foreign substrates: A review,” Semicond. Sci. Technol. 27(2), 024002 (2012).
[Crossref]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001 (2012).
[Crossref]

Other (1)

H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Epitaxial layer designs for the three semipolar InGaN LEDs. (b) Example energy band diagram of 3 x 4 nm active region at zero bias.
Fig. 2
Fig. 2 Integrated PL intensity vs. excitation energy density measured at low temperature and room temperature. The slope at low temperature is 1, indicating that the radiative recombination process dominates at low temperature.
Fig. 3
Fig. 3 Internal quantum efficiency (IQE) for 1x12 nm, 2x6 nm, and 3x4 nm active regions versus carrier density. Inset shows PL spectra measured at the highest excitation level at room temperature.
Fig. 4
Fig. 4 PL lifetimes for 1x12 nm, 2x6 nm, and 3x4 nm active regions at different carrier densities (excitation levels). Inset shows examples of room-temperature PL transients for active regions of 1x12 nm, 2x6 nm, and 3x4 nm at excitation energy density of 22 µJ/cm2.
Fig. 5
Fig. 5 (a) Radiative and (b) nonradiative lifetimes for 1x12 nm, 2x6 nm, and 3x4 nm active regions versus carrier density.

Metrics