Abstract

Here we design and fabricate a hybrid surface plasmon polarities (SPP) waveguide on the silicon-on-insulator (SOI) photonics platform. The designed hybrid SPP waveguide is composed of a metal ridge, an air gap, and a silicon ridge. We simulate the mode characteristics in the structure and design the waveguide with a wide air gap that can simplify the fabrication process and maintain the advantages of the hybrid SPP mode. The performance of ultrahigh-bandwidth data transmission through the proposed waveguide is then investigated using 161 wavelength-division multiplexing (WDM) channels, each carrying a 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The bit-error rates (BERs) of all 161 channels are less than 1e-3. The favorable results show the prospect of on-chip optical interconnection using the proposed hybrid SPP waveguide.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Integrated plasmonic devices have gained accumulating attentions during the last decade for their great potential for on-chip optical communication and signal processing [1]. Surface plasmon polaritons (SPP), attributed to the interaction between the surface charges and the electromagnetic field at a metal-dielectric interface, can considerably confine light in subwavelength scale and enhance local electric field [2–7]. Compared with traditional dielectric waveguides, SPP waveguides are able to increase integration of devices, but they suffer from inherent tradeoff between metal-induced propagation loss and the optical mode confinement especially when high-permittivity dielectric materials such as semiconductors are involved [8–11]. To deal with the problem, the hybrid SPP waveguides consisting of metal, oxide and semiconductor have been put forward on account of their capabilities of combining sundry superiorities of ultra-small mode volume, relatively low transmission loss, efficient coupling with dielectric waveguides, and complementary metal oxide semiconductor (CMOS) compatibility [12–16]. Owing to those advantages, hybrid SPP waveguides have been studied in many applications such as bends [17–19], lasers [13, 20], polarization beam splitter [21, 22], modulators [23], couplers [24], sensors [25], etc. However, the reported researches of hybrid SPP waveguides mainly focus on the nanometer thickness of oxide layer, which benefits ultra-small mode volume and strong local electric intensity but increases the difficulty of fabrication [26–28]. For instance, air layer or gap is quite effortless to be affected by the roughness introduced in the fabrication process. When the thickness of air gap is small enough, the metal layer may touch silicon layer owing to the roughness [26, 27]. Therefore, it is necessary to design new structure to combine simple fabrication process and superiorities of hybrid SPP waveguide.

Besides, optical interconnection based on photonic integrated circuits (PICs) providing relaxed interconnection latency, wide bandwidth, low energy consumption and immunity to mutual interference effects, is considered as the promising technology to realize high-speed very large scale integration (VLSI) interconnection networks [29–32]. Several interesting and important developments of on-chip optical interconnection have been addressed in these prior art works: 1) transmission of 1.28-Tbit/s data stream (32 wavelengths × 40-Gbit/s) on-off keying (OOK) signals in a silicon waveguide with relatively low penalty [33]; 2) transmission of 170-Gbit/s OOK signals in an erbium-doped waveguide amplifier [34]; 3) 40-Gbit/s differential phase-shift keying (DPSK) transmission through a silicon microring switch [35]. However, the present reports rarely pay attention to on-chip high-speed optical interconnections in hybrid SPP waveguide. Considering the numerous advantages of hybrid SPP waveguides, a laudable goal would be to implement ultrahigh-bandwidth data transmission in hybrid SPP waveguides.

In this paper, we design and fabricate a hybrid SPP waveguide with wide air gap on the Silicon-on-insulator (SOI) photonics platform [36]. The air gap between metal ridge and silicon waveguide is 100 nm while the width of silicon waveguide is 300 nm, which can simplify the fabrication process and maintain the advantages of hybrid SPP waveguide. Two tapers are used to connect the hybrid SPP waveguide with traditional dielectric waveguides to effectively couple hybrid SPP mode with dielectric mode. The concept of on-chip optical interconnection using hybrid SPP waveguide is shown in Fig. 1 consisting of four primary components: laser source, optical modulator, hybrid SPP waveguide and photo detector [37]. The laser source continuously generates carrier waves coupled to the modulator. The optical modulator is used to modulate the carrier waves and load the signals produced by an electrical logic cell on them. The hybrid SPP waveguide can transmit the modulated carrier waves from optical modulator to photo detector. The photo detector generates current proportional to the intensity of carrier waves and sends the signal to another electrical logic cell, realizing a complete optical interconnection process. Then we experimentally investigate the wavelength division multiplexing (WDM) transmission of 1.8-Tbit/s orthogonal frequency division multiplexing (OFDM) 16-quadrature-amplitude-modulation (QAM) aggregate traffic through the suggested waveguide with 11.2 Gbit/s per 161 channels. The bit-error rate (BER) is measured for comprehensive evaluation of transmission performance. The ultrahigh-bandwidth low penalty transmission of OFDM 16-QAM signals is demonstrated in the experiment.

 

Fig. 1 Concept of on-chip optical interconnection using hybrid SPP waveguides.

Download Full Size | PPT Slide | PDF

2. Mode characters in hybrid SPP waveguide

The geometry of the proposed hybrid SPP waveguide shown in Fig. 2(a) consists of a gold ridge near a silicon waveguide with a narrow air gap between them on the top of BOX layer. Figure 2(b) depicts the distributions of electric field x component |Ex| of the modes in hybrid SPP waveguide calculated by the finite-element analysis method with different waveguide width w and air gap g at wavelength λ = 1550 nm. For g in nanometer scale, for example g = 20 nm, the dielectric mode is strongly coupled to the SPP mode, and electric field is mainly confined inside the air gap instead of silicon waveguide regardless of the varying of silicon waveguide width. For large g, for example g = 100 nm, the distribution of electric field is sensitive to the width of silicon waveguide. When w is decreasing from 500 nm to 300 nm, the coupling strength between dielectric mode and SPP mode is rising and the concentration area of electric field is transferring from silicon waveguide to air gap. The strong electric field confinement in the air gap region could be seen as the superposition of discontinuity of electric field x component Ex at the silicon-air interface and electric field at the metal-air interface. Here we define the type of mode whose electric field is confined in silicon waveguide as dielectric mode and the mode whose electric field is concentrated in air gap as hybrid SPP mode. Therefore, hybrid SPP waveguide parameters such as w and g can determine the types of modes in the waveguide, such as dielectric mode or hybrid SPP mode.

 

Fig. 2 (a) A silicon waveguide of permittivity εSi, width w and height h is separated from a metallic ridge of permittivity εm by a nanoscale air gap of permittivity ε0 and width g on the top of BOX layer of permittivity εB. εSi = 11.97, ε0 = 1 and εB = 2.07 (SiO2) at the telecommunications wavelength λ = 1550 nm. The metallic region is gold with a permittivity of −96.96 + 11.5i [38]. (b) The calculated distributions of electric field x component |Ex| of the hybrid SPP mode with different waveguide width w and air gap g at h = 220 nm.

Download Full Size | PPT Slide | PDF

In order to further understand the characteristics of modes in hybrid SPP waveguide, we numerically calculate the effective index and transmission loss of the mode depending on silicon waveguide width w and air gap g, plotted in Figs. 3(a) and 3(b), respectively. As w is changing from 500 nm to 250 nm, the disparity of effective index and loss between difference g is increasing. The results indicate that when air gap g is increasing, more electric field is distributed in air especially silicon waveguide is small (w < 350 nm). Moreover, in spite of the rising of transmission loss, the growth rate of loss is decreasing as air gap g is larger. Using a coupled mode theory, the hybrid SPP mode Ψ supported in the waveguide can be approximately seen as a superposition of the dielectric mode Ψd and SPP mode ΨSPP [12],

Ψ=aΨd+bΨSPP
where a and b = (1-|a|2)1/2 are the mode amplitudes of the dielectric mode and the SPP mode respectively. The square norm of mode amplitude of SPP mode |b|2 is a crucial parameter to measure the character of hybrid SPP mode defined as [12]
|b|2=nhybnd2nhybndnSPP
where nhyb, nd and nSPP are the effective index of hybrid SPP mode, dielectric mode and SPP mode respectively. A larger value of |b|2 means the hybrid SPP mode is more SPP-like, while it is more dielectric-like with a smaller |b|2. To analysis the influence induced by waveguide structure on |b|2, it is necessary to analysis relationship between waveguide parameters, nhyb, nd and nSPP. nhyb can be affected by both w and g of hybrid SPP waveguide, as plotted in Fig. 3(a). While nd is mainly influenced by w of dielectric waveguide, a wider w means a larger nd because more electric field is distributed in dielectric waveguide. nSPP is related to the permittivities of metal and air medium near the surface of metal ridge. Figure 3(c) illustrates the mode character |b|2 as functions of silicon waveguide width at different air gap g. When the value of w remains constant, the mode character is increasing with the reducing value of g. While w is decreasing, hybrid SPP mode is becoming more and more SPP-like under the same value of g. Furthermore, for g = 100 nm, w = 500 nm, the value of mode character |b|2 is nearly zero which can be seen only dielectric mode exists in the waveguide. For g = 100 nm, w = 300 nm, mode character |b|2 improves to 0.176 which is even larger than that of g = 20 nm, w = 500 nm. This phenomenon theoretically verify the possibility that hybrid SPP mode of large air gap can be more SPP-like than that of nanoscale g.

 

Fig. 3 (a) The effective index of the hybrid SPP mode for a range of air gap widths g and strip silicon waveguide widths w. (b) The loss of the hybrid SPP mode obtained from the imaginary part of the modal effective index as functions of gap widths g and strip silicon waveguide widths w. (c) The SPP mode character |b|2 varies with air gap widths g and strip silicon waveguide widths w. When air gap width g and strip silicon waveguide width w becomes shorter, the hybrid SPP mode is more SPP-like. While the hybrid SPP mode is more dielectric-like with longer air gap width g and strip silicon waveguide width w.

Download Full Size | PPT Slide | PDF

3. Design and fabrication of hybrid SPP waveguide

Figure 4(a) exhibits the schematic diagram of the proposed hybrid SPP waveguide connecting with input/output dielectric waveguides using two coupling tapers. The width of silicon waveguide w is 300 nm and air gap g is 100 nm in consideration of relatively low transmission loss and high mode character according to Fig. 3. Figure 4(b) displays the distribution electric field x component Ex in the propagation direction using finite difference time domain (FDTD) method. One can effortlessly indicate from Fig. 4b that dielectric mode in dielectric waveguide can successfully convert to hybrid SPP mode and experience the reverse process in tapers. The coupling ability can be taken for the changing of taper width driving more electric field distributed in air gap and coupling with SPP mode. To further analyze the coupling loss caused by tapers, Fig. 4(c) shows the simulated transmission of a 10 μm hybrid SPP waveguide depending on the wavelength with different tap length Ltap. As Ltap is decreasing, transmission is becoming worse which manifest an increasing coupling loss of tap. Besides, the transmission loss of long-wavelength region (>1600 nm) is larger than that of short-wavelength region (<1500 nm) in view of more electric field concentrated in air gap coupling with SPP mode as wavelength is increasing. In addition, when Ltap is longer than 2 μm, transmission loss is less than 1 dB from λ = 1500 nm to 1600 nm which is beneficial to data transmission in C-band.

 

Fig. 4 (a) Schematic of two tapers with gradually changed width of strip silicon waveguides connecting the proposed hybrid SPP waveguide with input/output dielectric waveguides. (b) Finite difference time domain (FDTD) simulations showing the electric field x component Ex in the propagation direction corresponding to a plane cutting through the center of the hybrid SPP waveguide perpendicular to the y-direction, 110 nm above the silica surface at wavelength λ = 1550 nm. The hybrid SPP waveguide has a length L = 10 μm containing two 2.5 μm long tapers with varying width from 500 nm to 300 nm. The input light source is launched in the TE silicon waveguide mode at the input position. Two cross sections perpendicular to the propagation direction are respectively added at w = 500 nm and 300 nm in the hybrid SPP waveguide to record the mode distribution. (c) The simulated dependence of normalized transmission through the hybrid SPP waveguide on wavelength and length of tapers Ltap.

Download Full Size | PPT Slide | PDF

On the basis of theoretically simulation of proposed hybrid SPP waveguide, we fabricate the waveguide on a SOI piece using several simple steps shown in Fig. 5(a). Firstly, two 70 nm thick vertical coupling gratings with period of 620 nm are generated on a silicon-on-insulator (SOI) piece using electron-beam lithography (EBL) followed by induced coupled plasma (ICP) etching. Then a 220 nm thick silicon waveguide connecting the gratings is fabricated using EBL overlay technology and ICP etching. In the end, a 10 nm thick nickel layer and a 210 nm thick gold ridge are evaporated on the top of buried oxide (BOX) layer adjoining the silicon waveguide in succession by electron beam evaporation (EBV) after the metal evaporation window is open using the same EBL overlay technology. Figure 5(b) exhibits the optical micrograph of a fabricated hybrid SPP waveguide device. The hybrid SPP waveguides are in the center of the whole waveguides with two 2.5-μm-long tapers, as displayed in Fig. 5(c). Figure 5(d) depicts the details of air gap in a hybrid SPP waveguide. To coupling light between hybrid SPP waveguides and optical fibers, vertical coupling gratings are added at the ends of the waveguides shown in Fig. 5(e). The measured transmission loss of a 10-μm and a 20-μm long hybrid SPP waveguide are 0.45 dB and 1.85 dB at wavelength λ = 1550 nm respectively. One can see from Fig. 5(d) that the width of silicon waveguide is 270.5 nm and the air gap is 46.6 nm, which are not quite agreement with designed ones. The difference can be considered to be caused by the error in the fabrication process. To support the fabricated hybrid SPP waveguide, structure with fabricated parameters is also simulated, as plotted in Figs. 5(f) and 5(g). One can indicate from Figs. 5(f) and 5(g) that the hybrid SPP waveguide with fabricated parameters can successfully transmit hybrid SPP mode. It is worth mentioning that the simulated transmission loss through the hybrid SPP waveguide in Fig. 5(g) is lower than measured one. This can be explained that the transmission loss is measured by calculating the difference between the power recorded at the output coupling grating side of hybrid SPP waveguide and the reference waveguide. The reference waveguide contains two coupling gratings (width: 12 μm, period: 620 nm), two tapers (length: 250 μm), and a long narrow waveguide (width: 500 nm wide, length: 1250 μm), which are the same as those of samples containing hybrid SPP waveguide. To measure the transmission loss, a light source followed by a coupler and a power meter is connected to a lens fiber at the input coupling grating side. At the output coupling grating side, a lens fiber followed by a power meter is used to record the value of output power. The value on the power meter at the input coupling grating side maintains constant in the course of measurement. The measured total transmission loss of reference waveguide is approximately 12 dB. The fabrication error may induce disturbance on reference waveguide that the measured power at the output coupling grating side may lower than ideal one.

 

Fig. 5 (a) Schematic of fabrication process of the proposed hybrid SPP waveguide. (b) Optical micrograph of a completed hybrid SPP waveguide device. The fabricated hybrid SPP waveguide is in the center of each device. Two vertical coupling gratings are located at opposite ends of each device to couple light between optical fiber and waveguide. (c) Scanning electron micrograph of a hybrid SPP waveguide with length L = 20 μm. The white circle indicates the area needing to be shown more details. (d) Scanning electron micrograph of air gap details with silicon waveguide width w = 270.5 nm and gap width g = 46.6 nm. (e) Scanning electron micrograph of a vertical coupling grating. (f) Simulated electric field component Ex in the propagation direction corresponding to a plane cutting through the center of the hybrid SPP waveguide with w = 270.5 nm and g = 46.6 nm perpendicular to the y-direction. (g) The simulated transmission loss through the hybrid SPP waveguide with w = 270.5 nm and g = 46.6 nm.

Download Full Size | PPT Slide | PDF

4. Data transmission in hybrid SPP waveguide

Then, we investigate the suitability of data transmission through fabricated hybrid SPP waveguide with OFDM 16-QAM signals by generating a 1.8-Tbit/s data stream, composed of 161 11.2-Gbit/s wavelengths. The experimental setup is shown in Fig. 6. At the transmitter side, the outputs of seven external cavity lasers (ECLs) are injected to two polarization maintain optical couplers (PMOC) and then combined by two phase modulators (PM). Each ECL sends out a beam of specific wavelength where it appears 23 sidebands after the beam is modulated by PMs Therefore the number of all channels we need is 161 (7 × 23). The outputs of two PMs are connected with polarization controllers (PC) and then joined the erbium-doped fiber amplifiers (EDFA) whose outputs are collected by a wavelength selective switch (WSS). After transmitting from the WSS and an EDFA, all of 161 channels are modulated by an optical I/Q modulator. 10 GS/s arbitrary waveform generator (AWG) is employed to produce single side band electrical signals, which are subsequently fed into the optical IQ modulator. After the IQ modulator, 1.8-Tbit/s OFDM 16-QAM signal is generated. The OFDM 16-QAM signals which are amplified by an EDFA are coupled from fiber to silicon waveguide by vertical grating coupler. Following the silicon waveguide, the signal is amplified by EDFA. A variable optical attenuator (VOA) is employed to adjust the optical signal-to-noise ratio (OSNR). At the receiver side, a local oscillator is used to mix the received signal in a polarization-diversity coherent receiver. The two RF signals corresponding to I/Q components are injected into a Tektronix real-time scope and processed off-line with a MATLAB program.

 

Fig. 6 Experiment setup for terabit-scale data transmission in hybrid SPP waveguides. ECL: external cavity laser, PC: polarization controller, WSS: wavelength selective switch, PM: phase modulator, PMOC: polarization maintain optical coupler, AWG: arbitrary waveform generator, EDFA: erbium-doped fiber amplifier, VOA: variable optical attenuator.

Download Full Size | PPT Slide | PDF

The output spectrum after the hybrid SPP waveguide propagation is plotted in Figs. 7(a) and 7(b). Figures 7(c) and 7(d) show the BER performance for all 161 channels through the 10 μm hybrid SPP waveguide. One can clearly see that all 161 channels achieve BER less than 1e-3 (7% forward error correction (FEC) threshold). Figure 7(e) plots the measured BER performance curves for λ1 = 1548.195 nm and λ2 = 1551.801 nm channels. One can indicate from Fig. 7(e) that the observed optical signal-to-noise ratio (OSNR) penalty of 10 μm long hybrid SPP waveguide is 0.9 dB while 20 μm long hybrid SPP waveguide is 3.4 dB at a BER of 1e-3, suggesting the impact of transmission loss on signal quality. Figures 7(f) and 7(j) display the measured 16-QAM constellations of back-to-back (B-to-B), 1533.90 nm, 1549.28 nm, 1552.89 nm and 1565.84 nm respectively.

 

Fig. 7 (a) Output spectrum for the 1.8-Tbit/s OFDM 16-QAM signals. The gray area indicates the details of spectrum needing to be displayed. (b) Details of output spectrum from wavelength λ = 1548 nm to 1552 nm. (c) Bit-error rate (BER) performance and received optical signal-to-noise ratio (OSNR) versus wavelength through a 10 μm long hybrid SPP waveguide. There are 161 channels in total, ranging from 1532.76 nm to 1564.76 nm with an interval of 0.204 nm. The gray area marks the details of BER and received OSNR needing to be shown. (d) Details of BER and received OSNR versus wavelength from λ = 1548 nm to 1552 nm. (e) BER vs. Received OSNR for two channels (λ1 = 1548.195 nm, λ2 = 1551.801 nm) of OFDM 16-QAM data transmitting through 10 μm, 20 μm hybrid SPP waveguide, respectively. (f) The measured 16-QAM constellation of back-to-back (B-to-B). (g)-(j) The measured 16-QAM constellation in the channel of λ = 1533.90 nm, 1549.28 nm, 1552.89 nm and 1565.84 nm, respectively.

Download Full Size | PPT Slide | PDF

5. Discussion and conclusion

We have designed and fabricated a vertical metal-air-silicon hybrid SPP waveguide using a wide air gap. Compared with the present hybrid SPP waveguides using thin oxide layers (< 50 nm), there are several conspicuous advantages of the proposed waveguide: 1) replacing the oxide layer with air gap, it does not have to deposit the oxide layer with existing fabrication technology, meaning a simpler fabrication process; 2) as is shown in Fig. 3(a), the effective index of hybrid SPP mode is reducing rapidly with air gap increasing, which is considerably important for on-chip interconnection because the propagation speed of mode in wide-air-gap hybrid SPP waveguide is faster than that in thin-oxide-layer hybrid SPP waveguide and the signals carried in wide-air-gap hybrid SPP waveguide would be arrived in receiver earlier; 3) as is plotted in Fig. 3(b), loss induced by metal absorption is decreasing with air gap increasing, indicating the improvement of signal quality using wide-air-gap hybrid SPP waveguide.

In addition to the designed hybrid SPP waveguide, another structure called slot waveguide with air gap can also be used to realize data transmission [39, 40]. Those two kinds of waveguides have similar structures and can both confine light in the air gap. Although slot waveguide has lower transmission loss compared to designed hybrid SPP waveguide, the designed hybrid SPP waveguide has some extra features. The designed hybrid SPP waveguide is composed of metal ridge, air gap, and silicon ridge, which takes up less space to confine light than the slot waveguide does. Because light attenuate rapidly inside the metal. In addition, the hybrid SPP waveguide can be used to design waveguide bends with small radius, which can increase the flexibility of photonic circuits design and improve the integration level [18, 19].

In summary, a kind of hybrid SPP waveguide with simple fabrication process and favorable mode character is proposed. The features of designed hybrid SPP waveguide such as subwavelength confinement and local field enhancement in the air gap can be applied in on-chip data transmission, which is then experimentally investigated. The favorable simulated and experimental results show the possibility of establishing a high-speed on-chip optical interconnection using the proposed hybrid SPP waveguides with various advantages discussed above.

Funding

National Natural Science Foundation of China (NSFC) (61761130082, 61222502, 11574001, 11774116, 11274131); Royal Society-Newton Advanced Fellowship; National Basic Research Program of China (973 Program) (2014CB340004); National Program for Support of Top-notch Young Professionals; Yangtze River Excellent Young Scholars Program; Program for New Century Excellent Talents in University (NCET-11-0182).

Acknowledgments

The authors thank Qi Yang, Ming Luo, Chao Li and Dequan Xie at State Key Laboratory of Optical Communication Technologies and Networks and Chengcheng Gui, Shuhui Li, Shi Chen, Jun Liu, Yifan Zhao, Nan Zhou, Andong Wang and Long Zhu at Huazhong University for Science and Technology for their technical supports and helpful discussions in the device fabrication and experiments. The authors thank the Center of Micro-Fabrication and Characterization (CMFC) of Wuhan National Laboratory for Optoelectronics (WNLO) for the support in the manufacturing process on silicon photonics platform. The authors also thank the facility support of the Center for Nanoscale Characterization and Devices of WNLO.

References and links

1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [PubMed]  

3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [PubMed]  

4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [PubMed]  

5. H. Raether, “Surface plasmons on smooth surfaces,” in Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988), pp. 4–39.

6. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009). [PubMed]  

7. H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009). [PubMed]  

8. D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [PubMed]  

10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [PubMed]  

11. D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

12. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [PubMed]  

14. H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012). [PubMed]  

15. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010). [PubMed]  

16. Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013). [PubMed]  

17. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

18. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011). [PubMed]  

19. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010). [PubMed]  

20. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [PubMed]  

21. X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38(16), 3005–3008 (2013). [PubMed]  

22. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012). [PubMed]  

23. Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012). [PubMed]  

24. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

25. R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett. 35(2), 244–246 (2010). [PubMed]  

26. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

27. S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

28. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010). [PubMed]  

29. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

30. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

31. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

32. D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).

33. B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

34. J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009). [PubMed]  

35. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

36. J. Du, C. Gui, C. Li, Q. Yang, and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM),” in Lasers and Electro-Optics (CLEO),2014Conference on, (IEEE, 2014), 1–2.

37. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

38. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [PubMed]  

39. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015). [PubMed]  

40. C. Gui, C. Li, Q. Yang, and J. Wang, “Experimental demonstration of silicon vertical slot waveguides for ultra-wide bandwidth 1.8-Tbit/s (161 WDM 11.2-Gbit/s OFDM 16-QAM) data transmission,” in Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on, (IEEE, 2014), 514–516.

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [PubMed]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [PubMed]
  5. H. Raether, “Surface plasmons on smooth surfaces,” in Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988), pp. 4–39.
  6. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
    [PubMed]
  7. H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
    [PubMed]
  8. D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [PubMed]
  11. D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
  12. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [PubMed]
  14. H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
    [PubMed]
  15. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [PubMed]
  16. Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
    [PubMed]
  17. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
  18. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
    [PubMed]
  19. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
    [PubMed]
  20. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [PubMed]
  21. X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38(16), 3005–3008 (2013).
    [PubMed]
  22. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
    [PubMed]
  23. Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
    [PubMed]
  24. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
  25. R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett. 35(2), 244–246 (2010).
    [PubMed]
  26. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
  27. S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).
  28. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
    [PubMed]
  29. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
  30. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
  31. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
  32. D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
  33. B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
  34. J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
    [PubMed]
  35. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).
  36. J. Du, C. Gui, C. Li, Q. Yang, and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM),” in Lasers and Electro-Optics (CLEO),2014Conference on, (IEEE, 2014), 1–2.
  37. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).
  38. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [PubMed]
  39. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
    [PubMed]
  40. C. Gui, C. Li, Q. Yang, and J. Wang, “Experimental demonstration of silicon vertical slot waveguides for ultra-wide bandwidth 1.8-Tbit/s (161 WDM 11.2-Gbit/s OFDM 16-QAM) data transmission,” in Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on, (IEEE, 2014), 514–516.

2015 (1)

2013 (2)

2012 (5)

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[PubMed]

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

2011 (3)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[PubMed]

2010 (7)

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[PubMed]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett. 35(2), 244–246 (2010).
[PubMed]

2009 (4)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

2008 (3)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

2007 (2)

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

2006 (3)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[PubMed]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

2005 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

2000 (1)

D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).

1998 (1)

1984 (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Aitchison, J. S.

Åkerman, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Akimov, Y.

Akimov, Y. A.

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

Alam, M. Z.

Albonesi, D. H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Ambati, M.

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Bai, P.

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Bergman, K.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Bian, Y.

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Bradley, J. D.

Bramerie, L.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Chan, J.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Chen, G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Chen, H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Choi, H.

Chou, C. Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Chu, H. S.

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

Chu, H.-S.

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Costa e Silva, M.

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Dai, D.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Djurišic, A. B.

Driessen, A.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Elazar, J. M.

Fauchet, P. M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Friedman, E. G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Fukui, M.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Gay, M.

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Gong, Q.

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Gramotnev, D. K.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Green, W. M. J.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Guan, X.

Gui, C.

Haraguchi, M.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Haurylau, M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

He, S.

Hegde, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Hsieh, I. W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Huang, Y.

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Kung, S.-Y.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Kwong, D.

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

Kwong, D. L.

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Li, C.

Li, E.-P.

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Li, Q.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Liow, T. Y.

Lipson, M.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Lira, H. L.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Liu, F.

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Liu, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Lo, G.

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

Lo, G. Q.

Lou, F.

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[PubMed]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Ma, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Majewski, M. L.

Matsuzaki, Y.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Meier, J.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Miller, D. A.

D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).

Mojahedi, M.

Nam, S.

Nelson, N. A.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Ogawa, T.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Okamoto, T.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[PubMed]

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Pile, D. F.

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Pollnau, M.

Qiu, M.

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Rakic, A. D.

Requicha, A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Shi, Y.

Simon, J. C.

Song, Y.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Thylen, L.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

Tian, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Tong, L.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Vernon, K. C.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Wan, R.

Wang, J.

Wang, Z.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Wörhoff, K.

Wosinski, L.

Wu, H.

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Xu, L.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Yamaguchi, K.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Yan, M.

Yang, Q.

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[PubMed]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Zha, C.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

Zhang, W.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Zhang, X.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

Zhu, S.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[PubMed]

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

IEEE J. Quantum Electron. (1)

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

IEEE J. Sel. Top. Quantum Electron. (2)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).

IEEE Photonics Technol. Lett. (3)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Integration (1)

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Nanotechnology (1)

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

Nat. Mater. (3)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Opt. Express (8)

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
[PubMed]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[PubMed]

J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Proc. IEEE (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[PubMed]

Other (3)

H. Raether, “Surface plasmons on smooth surfaces,” in Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988), pp. 4–39.

C. Gui, C. Li, Q. Yang, and J. Wang, “Experimental demonstration of silicon vertical slot waveguides for ultra-wide bandwidth 1.8-Tbit/s (161 WDM 11.2-Gbit/s OFDM 16-QAM) data transmission,” in Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on, (IEEE, 2014), 514–516.

J. Du, C. Gui, C. Li, Q. Yang, and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM),” in Lasers and Electro-Optics (CLEO),2014Conference on, (IEEE, 2014), 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Concept of on-chip optical interconnection using hybrid SPP waveguides.
Fig. 2
Fig. 2 (a) A silicon waveguide of permittivity εSi, width w and height h is separated from a metallic ridge of permittivity εm by a nanoscale air gap of permittivity ε0 and width g on the top of BOX layer of permittivity εB. εSi = 11.97, ε0 = 1 and εB = 2.07 (SiO2) at the telecommunications wavelength λ = 1550 nm. The metallic region is gold with a permittivity of −96.96 + 11.5i [38]. (b) The calculated distributions of electric field x component |Ex| of the hybrid SPP mode with different waveguide width w and air gap g at h = 220 nm.
Fig. 3
Fig. 3 (a) The effective index of the hybrid SPP mode for a range of air gap widths g and strip silicon waveguide widths w. (b) The loss of the hybrid SPP mode obtained from the imaginary part of the modal effective index as functions of gap widths g and strip silicon waveguide widths w. (c) The SPP mode character |b|2 varies with air gap widths g and strip silicon waveguide widths w. When air gap width g and strip silicon waveguide width w becomes shorter, the hybrid SPP mode is more SPP-like. While the hybrid SPP mode is more dielectric-like with longer air gap width g and strip silicon waveguide width w.
Fig. 4
Fig. 4 (a) Schematic of two tapers with gradually changed width of strip silicon waveguides connecting the proposed hybrid SPP waveguide with input/output dielectric waveguides. (b) Finite difference time domain (FDTD) simulations showing the electric field x component Ex in the propagation direction corresponding to a plane cutting through the center of the hybrid SPP waveguide perpendicular to the y-direction, 110 nm above the silica surface at wavelength λ = 1550 nm. The hybrid SPP waveguide has a length L = 10 μm containing two 2.5 μm long tapers with varying width from 500 nm to 300 nm. The input light source is launched in the TE silicon waveguide mode at the input position. Two cross sections perpendicular to the propagation direction are respectively added at w = 500 nm and 300 nm in the hybrid SPP waveguide to record the mode distribution. (c) The simulated dependence of normalized transmission through the hybrid SPP waveguide on wavelength and length of tapers Ltap.
Fig. 5
Fig. 5 (a) Schematic of fabrication process of the proposed hybrid SPP waveguide. (b) Optical micrograph of a completed hybrid SPP waveguide device. The fabricated hybrid SPP waveguide is in the center of each device. Two vertical coupling gratings are located at opposite ends of each device to couple light between optical fiber and waveguide. (c) Scanning electron micrograph of a hybrid SPP waveguide with length L = 20 μm. The white circle indicates the area needing to be shown more details. (d) Scanning electron micrograph of air gap details with silicon waveguide width w = 270.5 nm and gap width g = 46.6 nm. (e) Scanning electron micrograph of a vertical coupling grating. (f) Simulated electric field component Ex in the propagation direction corresponding to a plane cutting through the center of the hybrid SPP waveguide with w = 270.5 nm and g = 46.6 nm perpendicular to the y-direction. (g) The simulated transmission loss through the hybrid SPP waveguide with w = 270.5 nm and g = 46.6 nm.
Fig. 6
Fig. 6 Experiment setup for terabit-scale data transmission in hybrid SPP waveguides. ECL: external cavity laser, PC: polarization controller, WSS: wavelength selective switch, PM: phase modulator, PMOC: polarization maintain optical coupler, AWG: arbitrary waveform generator, EDFA: erbium-doped fiber amplifier, VOA: variable optical attenuator.
Fig. 7
Fig. 7 (a) Output spectrum for the 1.8-Tbit/s OFDM 16-QAM signals. The gray area indicates the details of spectrum needing to be displayed. (b) Details of output spectrum from wavelength λ = 1548 nm to 1552 nm. (c) Bit-error rate (BER) performance and received optical signal-to-noise ratio (OSNR) versus wavelength through a 10 μm long hybrid SPP waveguide. There are 161 channels in total, ranging from 1532.76 nm to 1564.76 nm with an interval of 0.204 nm. The gray area marks the details of BER and received OSNR needing to be shown. (d) Details of BER and received OSNR versus wavelength from λ = 1548 nm to 1552 nm. (e) BER vs. Received OSNR for two channels (λ1 = 1548.195 nm, λ2 = 1551.801 nm) of OFDM 16-QAM data transmitting through 10 μm, 20 μm hybrid SPP waveguide, respectively. (f) The measured 16-QAM constellation of back-to-back (B-to-B). (g)-(j) The measured 16-QAM constellation in the channel of λ = 1533.90 nm, 1549.28 nm, 1552.89 nm and 1565.84 nm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ψ = a Ψ d + b Ψ S P P
| b | 2 = n h y b n d 2 n h y b n d n S P P

Metrics