Abstract

In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

© 2017 Optical Society of America

1. Introduction

Toroidal dipole is a localized electromagnetic excitation produced by currents flowing on the surface of a torus along its meridians, which is distinct from the magnetic and electric dipoles resulting from circulating currents and a pair of charges, respectively. Static toroidal dipole was first considered by Zel’dovich in 1958 and has already been acknowledged in nuclear and particle physics [1]. Unfortunately, the dynamic excitations of toroidal dipole and higher toroidal multipoles were overlooked for some time in classical electrodynamics as their manifestations are often masked by much stronger electric and magnetic multipoles. Until 2010, T. Kaelberer et al. firstly experimentally observed the toroidal-dominated response by deliberately suppressing at the microwave regime in metamaterials consisting of a three-dimensionals (3D) array of four asymmetric split-ring resonators (SRRs) [2], and later the metamaterials were theoretically scaled down by Y. Huang et al. to push the toroidal response to the optical frequency [3]. The 3D arrangements of four SRRs are difficult to fabricate especially at optical wavelengths with toroidal dipolar moments, and many simplified or two-dimensional (2D) planar scheme were demonstrated experimentally or theoretically [4–13]. The toroidal resonances based metamaterials have been used to realize many interesting applications, electromagnetically induced transparency (EIT) [8], sensor with high sensitivity [10], resonant forward scattering of light [12], and so on. Unfortunately, the performances of these metamaterials based devices are usually limited by nonradiative and radiative losses. Fortunately, nonradiative losses can by reduced by employing materials of low loss as elements in metamolecules, such as dielectric [14–18]. Radiative losses can be controlled by optimizing the geometry of the structure to excite sharp asymmetric resonant response widely known as Fano resonances which arise due to destructive interference between broad bright mode and narrow dark mode. At the Fano resonance, the radiative damping of bright mode can be efficiently suppressed by dark mode and thus lead to the reduction of radiative losses [19]. Thus, it will be intriguing if a Fano resonators-based planar structure is designed to achieve toroidal resonance for reason that it is not only easy to fabrication, but also can reduce the nonradiative and radiative losses at the same time.

The modulation of the toroidal resonance is difficult because the geometric parameters of the structures have to be carefully re-optimized. Fortunately, the resonances can be modulated by varying the EF when the graphene layer is integrated with the proposed structure. Graphene, a monolayer carbon material, has attracted enormous interest due to its unique electronic and optical properties. The optical response of graphene is characterized by its surface conductivity σ [20,21] that greatly relates to its Fermi energy EF which can be dynamically tuned by applying bias voltage [22]. Actively tunable graphene-based plasmonic devices have been widely studied, such as filter [23], absorber [24–26] and sensor [27], etc. Graphene is also used as active medium to tune and modulate optical response of the metallic plasmonic structures in the mid-infrared and THz regime where the intraband transition of electron dominates and graphene behaves like a metal [28–31]. C. Argyropoulos presented a hybrid graphene-dielectric metasurface to tune and modulate the Fano resonance at near-infrared by making use of the strong interband absorption of the graphene layer [32]. However, to the best of our knowledge, the modulation of toroidal dipolar resonance based on dielectric metasurface by graphene at near-infrared has not been discussed so far.

In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. For a metasurface with its unit cell being only one ASSRR, it was shown that a high Q-factor magnetic Fano resonance could be excited even under normal electromagnetic incidence conditions in a recent study [27]. The simulations using a finite difference time domain (FDTD) method reveal that ultrasharp toroidal resonance can be obtained in the transmission spectrum by utilizing two mirror-symmetric Fano resonators, namely two mirror-symmetric ASSRRs. The transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the EF when the graphene layer is integrated with the dielectric metasurface, and the max transmission coefficient difference up to 78% is achieved. We also investigate the effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance and the modulation efficiency of transmission amplitude of graphene.

2. Design and simulations

The geometric parameters of the dielectric metasurface are denoted by black letters in Fig. 1(a). The silicon rings with two equal splits dividing them into pairs of arcs of different length corresponding to β1 and β2. Pairs of ASSRRs in a unit cell are of mirror symmetry about yz and xz plane which are placed over silica substrate. We note that throughout our study the structures are illuminated by y-polarized (electric field E is along the y axis) plane waves, as illustrated in Fig. 1(a). The ASSRRs have thick t = 200 nm, inner radius r = 150 nm, outer radius R = 260 nm, and the period Px = 1200 nm, Py = 600 nm, respectively. The thickness of the silica substrate is chosen to be: H = 500 nm, but it may be smaller without affecting the performance of the proposed hybrid device. In the hybrid geometry reported in Fig. 1(b), graphene is placed over the ASSRRs and modeled as a 2D flat plane. The optical conductivity of graphene is related to the Fermi energy EF and carrier mobility μ, through random phase approximation (PRA). In the local limit, it follows [20,21]

σ(ω)= 2e2Tπiω + iτ1log[2cosh(EF2KBT)] + e24[H(ω/2)+4iωπ0dεH(ϵ)  H(ω/2)ω2  4ε2],
where H(ε)=sinh(ε/KBT)/[cosh(EF/KBT)+ cosh(ε/KBT)]. Here, τ= μEF/eυF2 is the intrinsic relaxation time, where υF c/300 is the Fermi velocity. Temperature T is set as 300 K and the carrier mobility μ = 10000 cm2∕(V•s). In the proposed hybrid graphene-dielectric metasurface, the Fermi energy of the graphene layer can be modulated by using transparent electrodes which are placed between either the silica substrate or the silicon spilt-rings and the graphene layer [32,33]. The dielectric constant of Si and SiO2 can be referred from Ref [34]. Our results are obtained by using FDTD method, where periodic boundary conditions are applied along the x and y directions, and perfectly matched layers (PML) are considered in the z directions.

 

Fig. 1 Schematics of the unit cell for (a) the dielectric metasurface and (b) the hybrid graphene-dielectric metasurface. The proposed structures are composed of a pair of asymmetric Si split-ring resonators (ASSRRs) which are of mirror symmetry about yz and xz plane. Corresponding electromagnetic excitation configuration (with polarization direction along the y axis) and geometric parameters are denoted by black letters in Fig. 1 (a).

Download Full Size | PPT Slide | PDF

3. Results and discussion

First, we simulate numerically the optical response of the dielectric metasurface shown in Fig. 1(a) without the presence of graphene, in order to study the toroidal response of the dielectric metasurface. As shown in Fig. 2(a), the resonant response appears to have Fano line shape which has shown its immense potential in bio-sensing applications, and one can clearly observe a sharp resonance dip at about 1310.86 nm in the transmission spectrum which is one of the technologically interesting telecommunication wavelengths. The quality factor Q, defined as the ratio of the resonance wavelength λ0 and the line width Δλ between the peak and the antipeak of the transmission (Q = λ0 / Δλ), reaches about 1702 while the Δλ is about 0.77 nm. The spectral contrast ratio, defined as [(TpeakTantipeak)/ (Tpeak + Tantipeak)] × 100%, reaches about 100% [27], where Tpeak and Tantipeak are the transmission coefficient at the peak and dip of the resonance, respectively. Thanks to these characteristics of the toroidal dipolar resonance, the proposed metasurface is a promising candidate in many applications, such as optical filters [35] and biochemical sensors [10, 27]. The magnetic field Hz components and the displacement current density Jz components at the resonant wavelength are also computed numerically to qualitatively investigate the underlying physics of the resonance. The z- components of magnetic field Hz, as shown in Fig. 2(d), is distributed with opposite directions in two ASSRRs in the unit cell. The spatial localization of the magnetic field indicates the excitation of toroidal dipolar moment T, which is along the y-direction. The surface currents circulate along the arcs of the split-ring with inverse directions as shown in Fig. 2(e). With electric field of incident plane wave being parallel to the arcs of the split-ring, the displacement current in the two ASSRRs of the unit cell circulates with the opposite direction, resulting in the induced magnetic moments wreathed around the central part of the unit cell, forming a magnetic vortex with head-to-tail configuration. Such a head-to-tail configuration of the individual magnetic moments m can induce the toroidal moments oscillating and thus generate the toroidal dipolar resonant response.

 

Fig. 2 (a) Transmission spectrum of the dielectric metasurface without a graphene layer. (b) Scattered power and (c) phases of the five major multipoles of the dielectric metasurface, including electric dipoles (P), magnetic dipoles (M), toroidal dipoles (T), electric quadrupoles (Q)e, and magnetic quadrupoles (Q)m. The log scale in the y axis of Fig. 1(b) is chosen so as to reveal more clearly the contribution of the M and Qe as well. The magnetic field Hz components (d) and the displacement current density Jz components (e) at the resonant wavelength of 1310.86 nm are also simulated. Arrows indicate instantaneous directions of the displacement current flow.

Download Full Size | PPT Slide | PDF

In order to study the toroidal dipole resonance quantitatively, the radiated powers of the magnitude of electric and magnetic multipoles and toroidal dipole were calculated by the induced volume displacement current density J [2]:

electricdipolemoment:P= 1iωJd3r
magneticdipolemoment:M= 12c(r×J)d3r
toroidaldipolemoment:T= 110c[(rJ)r2r2J]d3r
electricquadrupolemoment:Qαβ= 1iω[rαJβ+rβJα23(rJ)]d3r
andmagneticquadrupolemoment:Mαβ= 13c[(r×J)αrβ+(r×J)βrα]d3r
where c is the speed of light in the vacuum, r is the distance vector from the origin to point (x, y, z) in a Cartesian coordinate system, and α, β = x, y, z. Therefore, the decomposed far-field scatter power by these multipole moments can be calculated by using the following equations:IP= 2ω43c3|P|2,IM= 2ω43c3|M|2, IT= 2ω63c5|T|2, IQe= ω65c5|Qαβ|2, and IQm= ω620c5|Mαβ|2. The scatted powers and phase of the five major multipoles of the proposed metasurface as functions of wavelength are shown in Figs. 2(b) and 2(c), respectively. To study the toroidal dipolar resonance in two mirrored asymmetric silicon split-ring resonators more clearly, the displacement currents in the substrate are ignored. We notice that in the vicinity of the resonant wavelength the toroidal dipole T is the strongest contribution which is about 1.1 times stronger than the magnetic quadrupole Qm and much stronger than P, M, Qe. The electric dipole moment of the proposed metasurface is suppressed because the polarization of the incident plane wave is orthogonal to the split of the Si split-rings. The presence of relative strong quadrupole Qm prevents us from achieving the even higher Q-factor.

To investigate the performance of the toroidal dipolar resonance based optical modulator, the transmission spectra of the dielectric metasurface without and with graphene layer (Fermi energies: 0.6 eV, 0.5 eV, 0.4 eV) are obtained numerically and showed in Figs. 3(a) and Figs. 3(b)-3(d), respectively. Compared with the optical response of the dielectric metasurface, the pronounced dip in the transmission spectrum is nearly no change when the graphene layer with EF = 0.6 eV is introduced, while the resonance is broadened and becomes more flatted with the decrease of the EF. Furthermore, it is obviously seen that the spectral contrast ratio and the Q-factor are rapidly decreased. Therefore, the proposed hybrid graphene/dielectric metasurface can be utilized as the active optical modulator by using a graphene layer. To explore the underlying physics mechanism, we plot the distributions of the displacement current density |J| at the resonant wavelength without and with graphene layer while EF varied from 0.6 eV to 0.4 eV in Figs. 3(e) and Figs. 3(f)-3(h), respectively. The magnitude of the displacement current density |J| in the dielectric metasurface becomes weaker when the graphene layer with EF = 0.6 eV placed over the dielectric metasurface, although it have little effect on the transmission spectrum. Decreasing of the EF yielding a decrease in the displacement current density strength and it nearly disappear when the EF decrease to 0.4 eV, as shown in Fig. 3(e)-3(h).

 

Fig. 3 (a) – (d) Simulated transmission spectra without and with the graphene layer, showing the active modulation of toroidal dipolar resonance, respectively. (e) – (h) Corresponding distributions of the displacement current density |(J)| at resonant wavelength for (a) – (d), respectively.

Download Full Size | PPT Slide | PDF

The underlying physics mechanism is further investigated and explained by calculating the wavelength dependent graphene conductivity for different EF according to the Eq. (1), and the results shown in Fig. 4. Interestingly, the real conductivity of graphene Re (σ) is always greater than zero with the decrease of the EF from 0.6 eV to 0.4 eV, while the imaginary conductivity of graphene Im (σ) is greater than zero when EF = 0.6 eV, in which case graphene features a metallic behavior, and the Im (σ) reduce to less than zero when EF = 0.5 eV meaning that graphene behaves like a lossy dielectric [36]. A doping charge density ng raises the Fermi level to EF = υFπ|ng|, so the lower charge density ng indicates the lower EF, which yields to higher loss and absorption. With the decrease of the EF from 0.6 eV to 0.4 eV, the Re (σ) of graphene increases rapidly at the toroidal dipolar resonant wavelength which indicates the increase of the absorption of the graphene [37]. Note that the electromagnetic waves reemitted by the induced multipoles of the dielectric metasurface are strongly coupled to the absorption of the graphene layer [32], therefore the shrunk outline of the toroidal dipolar resonance can attribute to the increase of the absorption of the graphene. It is worth noting that Xiao et al [29] and Chen et al [30] recently investigated the modulations of EIT effect and toroidal resonance with monolayer graphene in THz hybrid meta-graphene metamaterials by making use of the high and tunable conductivity of graphene, respectively, while the on-to-off modulation of the transmission amplitude is realized with the increase of the Fermi energy of graphene which is in the opposite trend with our proposed hybrid graphene-dielectric metasurface. That’s because the Re (σ) of graphene increase with the increase of the EF of graphene at the THz frequency while it decrease with the increase of the EF of graphene in the near-infrared regime for a fixed frequency or wavelength.

 

Fig. 4 The wavelength dependent (a) the real part (b) the imaginary part of graphene conductivity. The Fermi energy is varied from 0.4 eV to 0.6 eV, as shown in the insets.

Download Full Size | PPT Slide | PDF

Next, we will investigate the effect of the asymmetry degree of the ASSRRs, defined as Δβ = β2 – β1, on the toroidal dipolar resonance and further demonstrate the modulating potential of graphene. To present the transmission amplitude modulation more quantitative and clear, the different in transmission amplitude between without and with graphene layer (EF = 0.4 eV) are calculated. The absolute value of the transmission difference, defined as ΔT = |T(EF = 0.4 eV) – T(without the graphene layer)| × 100%, as a function of the wavelength of the incident plane wave where the Δβ is varied from 0° to 40° are plotted in Figs. 5(e)-5(h), respectively. As Δβ = 0° and in the absence of the graphene layer, there is no resonance in the transmission spectrum which keep almost unchanged when the graphene layer with EF = 0.4 eV is introduced as shown in Fig. 5(a). Moreover, the transmission coefficient difference is nearly 0 demonstrate that the graphene layer almost do not have modulating ability in this case as shown in Fig. 5(e). When Δβ = 20° is introduced, a resonance possessing high Q and pronounced contrast ratio appear in the transmission spectrum, and the max transmission coefficient difference is up to 78% demonstrating that the graphene layer have strong ability to modulate the resonance as shown in Figs. 5(b) and 5(f). As the Δβ is increased from 20° to 40° at a step of 10°, we can see from the Figs. 5(c) and 5(d) that the contrast ratio nearly unchange while the resonant wavelength increases and the Q of the resonances decrease slowly. Furthermore, the modulating ability of graphene also decreases as the max transmission coefficient difference decrease with the increase of the Δβ as shown in Figs. 5(g) and 5(h).

 

Fig. 5 (a) - (d) Simulated transmission spectra of the dielectric metasurface without and with graphene layer (EF = 0.4 eV). (e) - (h) Computed percentage of the absolute value of the transmission coefficient difference versus the incident wavelength. The asymmetry degree is varied from 0° to 40°, as shown in the insets.

Download Full Size | PPT Slide | PDF

To reveal the physical mechanism behind the novel phenomenon, simulated z-component of the displacement current density Jz at the wavelength λ = 1310.86 nm without and with graphene layer when Δβ = 0° are plotted in Figs. 6(a) and 6(b), respectively. As shown in Fig. 6(a), the displacement current circulates along the arcs of the split-ring with same directions and thus the magnetic vortex can’t form the head-to-tail configuration no longer, indicating that the toroidal dipolar resonance isn’t excited when Δβ = 0°. The graphene layer nearly has no effect on the magnitude of the Jz for reason that in the absence of resonance, the electromagnetic waves reemitted by the induced multipoles are too weak to couple to the absorption of the graphene layer.

 

Fig. 6 Simulated the z-component of the displacement current density Jz at the wavelength λ = 1310.86 nm (a) without and (b) with graphene layer while asymmetry degree is Δβ = 0°.

Download Full Size | PPT Slide | PDF

The displacement current density |J| distributions at the toroidal dipolar resonant wavelength without and with the graphene layer are also calculated and plotted in Figs. 7(a) - 6(c) and Figs. 7(d)-7(f), respectively, where the Δβ is varied from 20° to 40° at a step of 10°.

 

Fig. 7 Simulated the displacement current density |(J)| distributions at the resonant wavelength (a) - (c) without and (e) - (f) with the graphene layer, respectively. The asymmetry degree Δβ is varied from 20° to 40° at a step of 10°, as shown in the insets.

Download Full Size | PPT Slide | PDF

The Q of a resonator commonly indicates the rate of the stored energy and the energy loss in the resonator. With the absence of the graphene layer, increasing the Δβ yields a decrease in the magnitude of the displacement current density indicating the decrease of the stored energy in the metasurface on one hand, On the other hand, increasing the Δβ yields increase of coupling to free space and therefore the energy loss [38]. As a result, the Q of the resonance decreases with the increase of Δβ, as shown in Figs. 5(b)-5(d). With the absence of the graphene layer, as shown in Figs. 7(a)-7(c), increasing the Δβ yields the decrease of the magnitude of the displacement current density indicating the decrease of field enhancement, which will make the degree of graphene absorption enhancement reduce when the graphene layer is introduced [39]. What’s more, the real conductivity of the graphene decreases slowly as the toroidal dipolar resonant wavelength increase with the increase of the Δβ, which lead to the absorption of the graphene layer decrease a little. As a result, the absorption of graphene and the interaction between the field and the graphene layer decrease with the increase of the Δβ leading to the increase of the magnitude of the displacement current density as shown in Figs. 7(d)-7(f), and the decrease of the strength of transmission amplitude modulation by the graphene layer.

4. Summary and conclusion

In this paper, we demonstrated the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consisted of two mirrored asymmetric Fano resonators which could support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702), contrast ratio (~100%). Numerical simulation results showed that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer was integrated with the dielectric metasurface, and the max transmission coefficient difference up to 78% was achieved. The toroidal dipolar resonant wavelength red-shifted and the efficiency of transmission amplitude modulation of graphene decreased with the increase of the asymmetry degree of the proposed metasurface. Our results may provide potential applications in optical modulator, optical filter and bio-chemical sensing.

Funding

National Natural Science Foundation of China (Grant Nos. 61505052, 61775055, 61176116, 11074069).

References and links

1. I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).

2. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010). [PubMed]  

3. Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012). [PubMed]  

4. Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

5. Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

6. M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

7. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012). [PubMed]  

8. H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

9. Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015). [PubMed]  

10. M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

11. H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

12. A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

13. M. V. Cojocari, K. I. Schegoleva, and A. A. Basharin, “Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution,” Opt. Lett. 42(9), 1700–1703 (2017). [PubMed]  

14. P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017). [PubMed]  

15. J. Li, J. Shao, Y. H. Wang, M. J. Zhu, J. Q. Li, and Z. G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express 23(22), 29138–29144 (2015). [PubMed]  

16. W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015). [PubMed]  

17. A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

18. A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

19. G. D. Liu, X. Zhai, L. L. Wang, Q. Lin, S. X. Xia, X. Luo, and C. J. Zhao, “A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface,” Plasmonics, https://doi.org/10.1007/s11468-016-0478-9 (2017).

20. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).

21. W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016). [PubMed]  

22. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [PubMed]  

23. H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

24. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017). [PubMed]  

25. H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

26. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016). [PubMed]  

27. G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

28. S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

29. S. Y. Xiao, T.Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” arXiv:1705.09082 (2017).

30. X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017). [PubMed]  

31. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013). [PubMed]  

32. C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015). [PubMed]  

33. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016). [PubMed]  

34. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

35. W. Zhao, X. Leng, and Y. Jiang, “Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning,” Opt. Express 23(5), 6858–6866 (2015). [PubMed]  

36. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011). [PubMed]  

37. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007), Chap. 1.

38. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [PubMed]  

39. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015). [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).
  2. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
    [PubMed]
  3. Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
    [PubMed]
  4. Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).
  5. Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).
  6. M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).
  7. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
    [PubMed]
  8. H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
  9. Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
    [PubMed]
  10. M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).
  11. H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).
  12. A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).
  13. M. V. Cojocari, K. I. Schegoleva, and A. A. Basharin, “Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution,” Opt. Lett. 42(9), 1700–1703 (2017).
    [PubMed]
  14. P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017).
    [PubMed]
  15. J. Li, J. Shao, Y. H. Wang, M. J. Zhu, J. Q. Li, and Z. G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express 23(22), 29138–29144 (2015).
    [PubMed]
  16. W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
    [PubMed]
  17. A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
  18. A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).
  19. G. D. Liu, X. Zhai, L. L. Wang, Q. Lin, S. X. Xia, X. Luo, and C. J. Zhao, “A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface,” Plasmonics, https://doi.org/10.1007/s11468-016-0478-9 (2017).
  20. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).
  21. W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
    [PubMed]
  22. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [PubMed]
  23. H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).
  24. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [PubMed]
  25. H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
  26. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
    [PubMed]
  27. G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).
  28. S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).
  29. S. Y. Xiao, T.Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” arXiv:1705.09082 (2017).
  30. X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
    [PubMed]
  31. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
    [PubMed]
  32. C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
    [PubMed]
  33. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
    [PubMed]
  34. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  35. W. Zhao, X. Leng, and Y. Jiang, “Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning,” Opt. Express 23(5), 6858–6866 (2015).
    [PubMed]
  36. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [PubMed]
  37. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007), Chap. 1.
  38. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [PubMed]
  39. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
    [PubMed]

2017 (9)

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

M. V. Cojocari, K. I. Schegoleva, and A. A. Basharin, “Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution,” Opt. Lett. 42(9), 1700–1703 (2017).
[PubMed]

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42(4), 835–838 (2017).
[PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
[PubMed]

2016 (4)

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[PubMed]

2015 (9)

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

W. Zhao, X. Leng, and Y. Jiang, “Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning,” Opt. Express 23(5), 6858–6866 (2015).
[PubMed]

J. Li, J. Shao, Y. H. Wang, M. J. Zhu, J. Q. Li, and Z. G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express 23(22), 29138–29144 (2015).
[PubMed]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[PubMed]

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

C. Argyropoulos, “Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene,” Opt. Express 23(18), 23787–23797 (2015).
[PubMed]

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
[PubMed]

2014 (1)

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

2013 (3)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

2012 (3)

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

2011 (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

2010 (1)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

2008 (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

1958 (1)

I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Argyropoulos, C.

Arju, N.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Bao, Y.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Baryshnikova, K. V.

Basharin, A. A.

M. V. Cojocari, K. I. Schegoleva, and A. A. Basharin, “Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution,” Opt. Lett. 42(9), 1700–1703 (2017).
[PubMed]

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Cai, W.

Cao, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Chan, C. T.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Chen, H.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Chen, X.

Cheng, L.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Chuguevsky, V.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

Cojocari, M. V.

Cong, L.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Cumming, B. P.

Ding, G. W.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Dong, J.

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Dong, Z. G.

Du, L.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Economou, E. N.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

Evlyukhin, A. B.

Fan, W.

Fan, Y.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Fang, Z.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Fedotov, V. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Fozdar, D. Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Ge, L.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Gu, M.

Guo, L.

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Gupta, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Han, D.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Han, J.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).

Hao, Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Hu, H.

Huang, Y.

Huang, Z. R.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Jiang, T.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Jiang, X.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Jiang, Y.

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Kafesaki, M.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Karabchevsky, A.

Khanikaev, A. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Kholmanov, I.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Lei, B.

Leng, X.

Li, H.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Li, H. J.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Li, H. M.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Li, J.

Li, J. Q.

J. Li, J. Shao, Y. H. Wang, M. J. Zhu, J. Q. Li, and Z. G. Dong, “Toroidal dipolar response by a dielectric microtube metamaterial in the terahertz regime,” Opt. Express 23(22), 29138–29144 (2015).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Li, M.

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Li, Q.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Lin, Q.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Liu, G. D.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Liu, J. Q.

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Liu, L.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Liu, S. B.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Liu, S. Y.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Liu, W.

Liu, Y.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Lu, C.

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Lu, H.

Luo, W.

Manjappa, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Meng, H. Y.

Miroshnichenko, A. E.

Mousavi, S. H.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Ni, P.

Ögüt, B.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Papasimakis, N.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Purtseladze, D.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Ren, M.

Rho, J.

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Ruoff, R. S.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Savinov, V.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Schegoleva, K. I.

Shalin, A. S.

Shang, X. J.

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Shao, J.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Shvets, G.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Sigle, W.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Singh, R.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Soukoulis, C. M.

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Srivastava, Y. K.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

Suk, J. W.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Sun, B.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Talebi, N.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Tasolamprou, A. C.

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

Tatar, K.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

Terekhov, P. D.

Tian, Z.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Tsai, D. P.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Tsilipakos, O.

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

van Aken, P. A.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Vogelgesang, R.

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Volsky, N.

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

Wang, B.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Wang, B. X.

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Wang, L.

Wang, L. L.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Wang, S. Y.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Wang, T.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Wang, Y. H.

Wei, Z.

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Wen, S. C.

Xia, S. X.

Xiang, H.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Xiang, Y.

Xiao, S.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Xiao, S. Y.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Xu, C.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Xu, J.

Xu, N.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Xue, X.

Yan, X.

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Yang, H.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Yin, X.

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Yu, Z. Y.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Zel’Dovich, I. B.

I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Zhai, X.

H. Y. Meng, L. L. Wang, G. D. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[PubMed]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

Zhang, H. F.

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Zhang, J.

Zhang, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Zhang, X.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[PubMed]

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Zhang, Z. Q.

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

Zhao, W.

Zheludev, N. I.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Zhu, J.

Z. G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

Zhu, M. J.

Zhu, X.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

M. Li, L. Guo, J. Dong, and H. Yang, “Resonant transparency in planar metamaterial with toroidal moment,” Appl. Phys. Express 7(8), 082201 (2014).

Appl. Phys. Lett. (4)

H. M. Li, S. B. Liu, S. Y. Liu, S. Y. Wang, G. W. Ding, H. Yang, Z. Y. Yu, and H. F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).

Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterials,” Appl. Phys. Lett. 101(14), 144105 (2012).

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterials,” Appl. Phys. Lett. 110(12), 121108 (2017).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 824 (2013).

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 19912 (2008).

J. Phys. D Appl. Phys. (1)

S. Y. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, and C. Xu, “Strong interaction between graphene layer and Fano resonance in terahertz metamaterials,” J. Phys. D Appl. Phys. 50(19), 195101 (2017).

Nano Lett. (2)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[PubMed]

B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, and P. A. van Aken, “Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible,” Nano Lett. 12(10), 5239–5244 (2012).
[PubMed]

Nanoscale (1)

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[PubMed]

Opt. Express (5)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Phys. Rev. B (4)

H. Xiang, L. Ge, L. Liu, T. Jiang, Z. Q. Zhang, C. T. Chan, and D. Han, “A minimal discrete model for toroidal moments and its experimental realization,” Phys. Rev. B 95(4), 045403 (2017).

A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, “Extremely high Q-factor metamaterials due to anapole excitation,” Phys. Rev. B 95(3), 035104 (2017).

A. C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Toroidal eigenmodes in all-dielectric metamolecules,” Phys. Rev. B 94(20), 205433 (2016).

Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87(11), 115417 (2013).

Phys. Rev. Lett. (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[PubMed]

Phys. Rev. X (1)

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Plasmonics (1)

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable fano resonance based on a t-shaped graphene nanodimer,” Plasmonics 11(2), 381–387 (2015).

Sci. Rep. (1)

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5, 11793 (2015).
[PubMed]

Science (2)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

Sov. Phys. JETP (1)

I. B. Zel’Dovich, “Electromagnetic interaction with parity violation,” Sov. Phys. JETP 6(6), 1184–1186 (1958).

Other (4)

G. D. Liu, X. Zhai, L. L. Wang, Q. Lin, S. X. Xia, X. Luo, and C. J. Zhao, “A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface,” Plasmonics, https://doi.org/10.1007/s11468-016-0478-9 (2017).

S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007), Chap. 1.

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

S. Y. Xiao, T.Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” arXiv:1705.09082 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of the unit cell for (a) the dielectric metasurface and (b) the hybrid graphene-dielectric metasurface. The proposed structures are composed of a pair of asymmetric Si split-ring resonators (ASSRRs) which are of mirror symmetry about yz and xz plane. Corresponding electromagnetic excitation configuration (with polarization direction along the y axis) and geometric parameters are denoted by black letters in Fig. 1 (a).
Fig. 2
Fig. 2 (a) Transmission spectrum of the dielectric metasurface without a graphene layer. (b) Scattered power and (c) phases of the five major multipoles of the dielectric metasurface, including electric dipoles (P), magnetic dipoles (M), toroidal dipoles (T), electric quadrupoles (Q)e, and magnetic quadrupoles (Q)m. The log scale in the y axis of Fig. 1(b) is chosen so as to reveal more clearly the contribution of the M and Qe as well. The magnetic field Hz components (d) and the displacement current density Jz components (e) at the resonant wavelength of 1310.86 nm are also simulated. Arrows indicate instantaneous directions of the displacement current flow.
Fig. 3
Fig. 3 (a) – (d) Simulated transmission spectra without and with the graphene layer, showing the active modulation of toroidal dipolar resonance, respectively. (e) – (h) Corresponding distributions of the displacement current density |(J)| at resonant wavelength for (a) – (d), respectively.
Fig. 4
Fig. 4 The wavelength dependent (a) the real part (b) the imaginary part of graphene conductivity. The Fermi energy is varied from 0.4 eV to 0.6 eV, as shown in the insets.
Fig. 5
Fig. 5 (a) - (d) Simulated transmission spectra of the dielectric metasurface without and with graphene layer (EF = 0.4 eV). (e) - (h) Computed percentage of the absolute value of the transmission coefficient difference versus the incident wavelength. The asymmetry degree is varied from 0° to 40°, as shown in the insets.
Fig. 6
Fig. 6 Simulated the z-component of the displacement current density Jz at the wavelength λ = 1310.86 nm (a) without and (b) with graphene layer while asymmetry degree is Δβ = 0°.
Fig. 7
Fig. 7 Simulated the displacement current density |(J)| distributions at the resonant wavelength (a) - (c) without and (e) - (f) with the graphene layer, respectively. The asymmetry degree Δβ is varied from 20° to 40° at a step of 10°, as shown in the insets.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ( ω )=  2 e 2 T π i ω + i τ 1 log[ 2cosh( E F 2 K B T ) ] +  e 2 4 [H( ω/2 )+ 4iω π 0 dε H( ϵ )  H(ω/2) ω 2   4 ε 2 ] ,
electric dipole moment:P=  1 iω J d 3 r
magnetic dipole moment:M=  1 2c (r×J) d 3 r
toroidal dipole moment:T=  1 10c [(rJ)r2 r 2 J] d 3 r
electric quadrupole moment: Q αβ =  1 iω [ r α J β + r β J α 2 3 (rJ)] d 3 r
and magnetic quadrupole moment: M αβ =  1 3c [ ( r×J ) α r β + (r×J) β r α ] d 3 r

Metrics