Abstract

A tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling. Similarly, as for a bulk dual-junction tandem system on a silicon bottom cell, a bandgap of approximately 1.7 eV is optimum for the nanowire top cell. First, we consider a simplified system of bare, uncoated III-V nanowires on the silicon substrate and optimize the absorption in the nanowires. We find that an optimum absorption in 2000 nm long nanowires is reached for a dense array of approximately 15 nanowires per square micrometer. However, when we coat such an array with a conformal indium tin oxide (ITO) top contact layer, a substantial absorption loss occurs in the ITO. This ITO could absorb 37% of the low energy photons intended for the silicon subcell. By moving to a design with a 50 nm thick, planarized ITO top layer, we can reduce this ITO absorption to 5%. However, such a planarized design introduces additional reflection losses. We show that these reflection losses can be reduced with a 100 nm thick SiO2 anti-reflection coating on top of the ITO layer. When we at the same time include a Si3N4 layer with a thickness of 90 nm on the silicon surface between the nanowires, we can reduce the average reflection loss of the silicon cell from 17% to 4%. Finally, we show that different approximate models for the absorption in the silicon substrate can lead to a 15% variation in the estimated photocurrent density in the silicon subcell.

© 2017 Optical Society of America

1. Introduction

Silicon is presently the dominating material for the photovoltaics market, and an efficiency of 26.3% has been achieved with a single junction crystalline silicon cell [1]. To enhance the efficiency, a tandem design with a GaInP subcell on top of a Si subcell has reached an efficiency of 30.5% [1,2].

Compared to planar layers, nanowires offer the possibility of direct, monolithic fabrication of III-V semiconductors on silicon, despite possible lattice mismatch [3]. Recently, an efficiency of 11.4% was demonstrated in a tandem cell consisting of a GaAs nanowire-array subcell grown epitaxially on top of a silicon subcell [4]. In addition, the efficiency of single-junction III-V nanowire array solar cells has shown rapid increase [5–11], with current record efficiencies of 13.8% and 15.3% for epitaxially grown InP and GaAs nanowire arrays [5,6], and 17.8% for top-down fabricated InP nanowire arrays [12]. Thus, there is prospect for future applications with III-V-nanowire-array-on-silicon tandem solar cells, and such nanowire array on silicon structure can be achieved, by selective area growth, even on industry-standard silicon (100) substrates [13].

The nanowire-array-on-silicon tandem cell has attracted much interest also from the modeling side [14–21]. First, the emphasis was on the electrical aspects of the tandem cell [14], and the absorption in the nanowires was approximated with that in a bulk layer. Later, the diffraction of light was included in the optics analysis [15–21]. Then, it was shown that the photocurrent density in the nanowire subcell and the silicon subcell can be optimized and matched by tuning the diameter of the nanowires and the pitch of the nanowire array [15–21]. However, typically a significant reflection of about 20%-30% shows up in the wavelength region between the bandgap of the nanowires and the bandgap of the silicon [20,21]. Furthermore, in these previous optics studies, the focus was on a bare nanowire array [15–20] or on a bare nanowire array with a dielectric shell [21], and the effect of additional processing layers was not considered. Thus, there exists a need for a dedicated study of light-management in a nanowire-array-on-silicon design, which includes the effect of processing and anti-reflection layers.

In this work, we study through electromagnetic modeling the optical response of a III-V-nanowire-array-on-Si dual junction solar cell. First, we optimize the geometry of the nanowires for absorption in the nanowire array. Then, we discuss the impact of varying configurations of an indium tin oxide (ITO) top contact layer on the optical response. We show that a conformal ITO layer can absorb 37% of the low energy photons intended for absorption in the silicon subcell. By moving to a 50 nm planarized contacting scheme, this absorption loss in the ITO can be reduced by 86%.

Note that we consider the specific case of a planar silicon cell underneath the nanowire array together with the planar ITO contact design. In this case, the reflection problem for this nanowire array on silicon tandem system is different from single junction nanowire array solar cells [5] and nanowire arrays with a dual junction in the nanowires themselves [22]. We show that an anti-reflection coating (ARC) design with one ARC at the top of the nanowire layer and one ARC on top of the silicon surface can reduce this reflection loss by 77%.

We analyze also the impact of varying models for the absorption in the silicon subcell. In one model, we assume that the silicon subcell is infinitely thick. In this case, all the incident above-bandgap photons that can couple into the silicon cell will be absorbed. In another model, we assume that the silicon cell is 300 μm thick and that light propagates only once through it without additional scattering back into the silicon cell. Thus, we assume a single-pass absorption as described by the Beer-Lambert law. These two models, which describe maximum and minimum light-trapping, lead to a 15% difference in the estimated photocurrent density in the silicon subcell. Finally, we include the light-trapping caused by the scattering of light from the nanowire array at the top side and a diffraction grating at the bottom side with the help of OPTOS [23]. As expected, the results from this rigorous modeling fall between the results of the two extreme cases above. Our optics study is a natural starting point for future full opto-electronic studies.

2. Device structure

We consider three different configurations for a square array of III-V nanowires on top of a silicon substrate as shown in Fig. 1. There are three geometry parameters in such a nanowire array: the diameter D of the nanowires, the length L of the nanowires, and the pitch P of the square array, which is the distance between the centers of neighboring nanowires. Structure 1 in Fig. 1(a) is a system with a bare nanowire array, which is the geometrically simplest system to start with. For Structure 2 in Fig. 1(b), we have included a conformal ITO top contact over the nanowires and the substrate. In Structure 3, we consider a planar ITO top contact with a SiO2 layer of refractive index n~1.5 between the nanowires to planarize the array. Note that the results with such a SiO2 layer are applicable also for other n~1.5 materials, such as polymers, which are often used for planarizing nanowire array cells [7]. Furthermore, in Structure 3, we use an anti-reflection coating (ARC) of SiO2 on top of the ITO and a second ARC of Si3N4 on the substrate surface between the nanowires.

 

Fig. 1 Schematics of a nanowire array on a silicon substrate. (a) Bare nanowire array. (b) Nanowire array with conformal ITO layer. (c) Nanowire array with planarized ITO layer together with a top and a bottom ARC.

Download Full Size | PPT Slide | PDF

3. Method for modeling the optical response of nanowire arrays

We model the optical response of the nanowire array with the Maxwell equations [24]. In this way, we include the diffraction and interference of light due to the three-dimensional geometry of the nanowires and the processing layers around the nanowires. The optical response of the constituent materials is included through the wavelength dependent refractive index n(λ) of each material. From this modeling, we extract the reflectance R(λ) of the system, the transmittance T(λ) into the silicon substrate, and the absorptance ANW(λ) and AITO(λ) of the nanowires and the ITO, respectively. Note that R(λ), T(λ), and A(λ) denote the fraction of incident light at wavelength λ that is reflected, transmitted, or absorbed.

We used for the modeling alternatively the scattering matrix method [24] and the finite element method (through Comsol Multiphysics). For example, for Structures 1 and 3, the scattering matrix method was preferred due to computational speed. But to discriminate spatially between the absorption in the radial direction between the nanowire and the radial ITO shell in Structure 2, the finite element method was faster. Both methods solve the same Maxwell equations, and we ascertained that they give equivalent results, enabling us to interchangeably use which ever method was most convenient.

Unless explicitly stated otherwise, we assume a semi-infinite silicon substrate that can absorb all of the above bandgap light that enters it. In that case, the absorption in the silicon substrate is given by ASi(λ) = T(λ) for λ < λbg,Si where λbg,Si = hc/Ebg,Si = 1107 nm with Ebg,Si = 1.12 eV the bandgap energy of silicon, h the Planck constant, and c the speed of light in vacuum. Note that we discuss possible below-bandgap contribution to the photocurrent density in Section 9.

4. Choice for nanowire material

The bandgap of the nanowire material affects the wavelength range from which the nanowires can absorb light, setting an upper limit on the photocurrent density in the nanowire-array subcell. Similarly, the nanowire bandgap affects how much of the incident light that can reach the silicon substrate without being absorbed in the nanowires, limiting the photocurrent density in the silicon cell. In this work, for the choice of the nanowire material, we assumed a monolithically connected 2-terminal tandem cell. In such a tandem cell, we have a requirement on current matching between the top and the bottom cell: The current in the tandem cell is set by the subcell that shows the lowest current [25]. For this case, the Shockley-Queisser detailed balance analysis [26] yields an optimum bandgap of 1.74 eV for the nanowires under the AM1.5G spectrum [27], when assuming perfect absorption of above bandgap photons in both the nanowire array and in the silicon. When we instead consider experimentally measured external quantum efficiency of nanowire solar cells and silicon cells [5,6,28], we estimate that a slightly lower nanowire bandgap of 1.64 eV gives a better current matching. Therefore, in this work, we investigate three different bandgaps of Ebg,NW = 1.64, 1.7 and 1.74 eV for the nanowire top cell. We chose to consider GaxIn1−xP and GaAsxP1−x for the nanowires, which cover this bandgap range [29]. For n(λ) for these ternaries, we used an interpolation from tabulated data for GaAs, InP and GaP [30].

5. Optimization of the geometry of the nanowire array

We performed an optimization of the geometry of the nanowires in Structure 1 and Structure 3 (see Fig. 1 for schematics of the structures) in terms of the photocurrent density jNWs of the nanowires. Specifically, we assumed that each absorbed photon with energy above the bandgap gives rise to an electron-hole pair that contributes to the photocurrent density:

jNWs=ehcλstartλbg,NWsλIAM1.5GANWs(λ)dλ
Here, IAM1.5G is the incident intensity of the AM1.5G solar spectrum [27], λstart = 280 nm is the wavelength below which the AM1.5G spectrum shows negligible intensity, and λbg,NW = hc/Ebg,NW is the bandgap wavelength of the nanowires.

We consider nanowires of a length of either 2 or 3 μm, which have been used for single-junction nanowire array solar cells to reach strong absorption [5,6]. In the optimization of the remaining geometry parameters, we allowed for a variation of the nanowire diameter D and the array pitch P, with the nanowires placed in a square array. For the planarized Structure 3, we fill in between the nanowire with n~1.5 material. Regarding the Si3N4 ARC layer in Structure 3, the absorptance in the nanowires is almost independent of the thickness of the Si3N4 layer (see Appendix A). As a result, the thickness of the Si3N4 layer does not affect noticeably the optimized values of the other parameters. We studied this Si3N4 thickness as an independent parameter and optimized this layer according to the reflection of the tandem solar cell. Similarly, we considered the thickness of the SiO2 ARC layer on the top side as an independent parameter in the optimization. In the optimization of Structure 3, we used a fixed thickness of 100 nm and 90 nm for the SiO2 and the Si3N4 ARC layers, respectively, and a thickness of 50 nm for the ITO top contact layer. More details of the optimization can be found in Appendix B and in [22]. The resulting optimized diameter and pitch are given in Table 1 and Table 2 of Appendix B for varying material, and consecutively bandgap, of the nanowires. For example, we find optimized absorption for a nanowire diameter in the range of 100-200 nm, depending on the nanowire length and material. For such an optimized diameter, the optimum pitch corresponds to approximately 16 nanowires per square micrometer.

Tables Icon

Table 1. Optimized nanowire diameter D and array pitch P for Structure 1 (see Fig. 1 for a schematic). The values for jNWs, jT, and jR are calculated with Eq. (2).

Tables Icon

Table 2. Optimized nanowire diameter D and array pitch P for Structure 3 (see Fig. 1 for a schematic). The values for jNWs, jITO, jT, and jR are calculated with Eq. (2).

In this work, to enable easier analysis and discussion of varying reflection, transmission, and absorption processes, we translated the corresponding spectrum to an equivalent photocurrent density:

jx=ehcλX,startλX,endλIAM1.5GX(λ)dλ
For X(λ) = T(λ) in Eq. (2), that is, for jX = jT, we considered the silicon cell and used λX,start = 280 nm and λX,end = λbg,Si = 1107 nm. For X(λ) = AITO(λ), that is, for jX = jITO, and for X(λ) = R(λ), that is, for jX = jR, we considered the loss of photons that could have been absorbed in the dual junction cell, either in the nanowire or the silicon subcell, and used therefore λX,start = 280 nm and λX,end = λbg,Si. In the last column of Tables 1 and 2, we show also values for X(λ) = R(λ) for λX,start = λbg,NWs and λX,end = λbg,Si, which is the reflection loss of photons dedicated exclusively for absorption in the silicon cell.

In Table 1 and Table 2, we show the geometry parameters that optimize jNWs for the bandgap of 1.64, 1.70, and 1.74 eV for the nanowire material. For most designs, jNWs is larger than jT, the photocurrent density in the silicon subcell as calculated from the transmission spectrum of light entering the silicon substrate. A design with jNWs > jT can be motivated by the fact that nanowire array cells have shown a lower EQE relative to that of silicon cells, as mentioned in Section 4 [6,31]. In the optimization tables (Table 1 and Table 2), bare nanowires with air between the nanowires show an optimized diameter of 140 nm. In [22] we discussed that the product of Eg, the bandgap energy, ng, the refractive index in the vicinity of the bandgap, and Dres, the resonance diameter that optimizes broadband absorption, is a constant. For InP, the resonance diameter of the HE11 mode is 180 nm, with ng = 3.5 and Eg = 1.34 eV. From these values, we can calculate the expected optimum diameter for the nanowire array with a bandgap of 1.7 eV to be 140 nm. However, when we consider here the array where SiO2 planarizes the space between the nanowires, this diameter shifts to 170 nm, as seen in Table 2. The reason for this shift can be assigned to the smaller refractive index difference in nanowire/SiO2 system than in nanowire/air system. The smaller difference makes the optical resonance weaker and the HE11 resonance diameter shifts to a higher value.

6. Benefit of a planar ITO over a conformal ITO for optimized geometry

In this section, we show a practical merit of Structure 3 compared to Structure 1. We start with Structure 1 and proceed, through Structure 2, to Structure 3 (see Fig. 1 for a schematic). For this demonstration, we focus on the 1.7 eV bandgap GaInP nanowire array with 2000 nm long nanowires. For Structures 1 and 2, we used a diameter of 140 nm and a pitch of 260 nm (as for the optimized geometry of Structure 1, which is marked by * in Table 1). For Structure 3, we used a diameter of 170 nm and a pitch of 240 nm (as for the optimized geometry of Structure 3, which is marked by * in Table 2). This optimized geometry gives an upper bound of 21.3 mA/cm2 to the current density.

First, to make Structure 1 more realistic for solar cell applications, we include an ITO top contact layer. In the modeling, we used the values for the refractive index of ITO given in the Supplementary Material of [5]. We start by considering a conformally coated ITO layer, which leads us to Structure 2 in Fig. 1(b). Note that in experiments, such a conformal ITO layer requires an insulating layer like SiO2 [5]. However, here, for simplicity, we directly coat the nanowires with ITO in the form of a 38 nm thick radial shell, a 100 nm thick layer at the top of the nanowires, and a 50 nm thick layer on top of the substrate. These thicknesses were inspired by experiments [5]. However, we should note that, due to the much smaller pitch-to-diameter ratio in our optimization compared to experiments [5], the conformal coating in Structure 2 leads to a quite large volume of ITO. Actually, the volume of ITO corresponds to a 700 nm thick planar layer, and 90% of this ITO is on the sidewalls of the nanowires.

Such a large volume of ITO results in an ITO absorption which is on average 37% in the wavelength range between the nanowire bandgap and the silicon bandgap as shown in Fig. 2(a). The absorption loss in the ITO corresponds to a loss of jITO = 9.4 mA/cm2 in the photocurrent density, as calculated from Eq. (2). We note that this ITO absorption loss can be reduced to jITO = 4.7 mA/cm2 by moving to a larger nanowire diameter (see Fig. 7 in Appendix C).

 

Fig. 2 Optical response of (a) Structure 2 and (b) Structure 3 as for the optimized system marked by (*) in Table 1 and Table 2, respectively. The ITO absorption in (a) corresponds to a photocurrent density of 9.4 mA/cm2 through Eq. (2).

Download Full Size | PPT Slide | PDF

Alternatively, by moving to a design with a planarized ITO top contact, jITO can be further reduced. We show in Fig. 2(b) the spectrum for the optimized nanowire array diameter, pitch and length in Structure 3 with a planar ITO of 50 nm in thickness. The absorption loss in the ITO corresponds to jITO = 1.3 mA/cm2 as shown in Fig. 2(b). Thus, we can decrease the absorption in the ITO, in terms of jITO, by 86% by moving from the conformal ITO coating to the 50 nm thick planar ITO layer.

7. Effect of thickness of planar ITO layer

Next, we consider the absorption loss in the planar ITO of Structure 3 as a function of ITO thickness as shown in Fig. 3(a). First, for a thin ITO layer, with increasing thickness, the absorption in the ITO increases and the reflection of the system decreases. We assign this increased ITO absorption to the increasing volume of absorbing ITO. The reduced reflection we assign in turn to the ITO layer acting as a partially absorbing ARC. Interestingly, the nanowire absorption and the transmission to the silicon substrate are kept almost constant up to an ITO thickness of 50 nm. Thus, here, the increasing anti-reflection effect of the ITO layer compensates for the increasing absorption loss in the ITO. Therefore, from the optical point of view, an ITO thickness up to 50 nm is preferable.

 

Fig. 3 (a) Absorption in the nanowires and in the ITO, reflection loss, and transmission into the silicon substrate for varying ITO thickness in Structure 3 marked by (*) in Table 2. Note that these results are translated into equivalent photocurrent density values through Eq. (1) and Eq. (2). (b) ITO absorptance AITO(λ) for the varying ITO thicknesses considered in (a).

Download Full Size | PPT Slide | PDF

However, in an actual solar cell, resistive electrical losses occur in the ITO layer, and these decrease with a thicker, more conductive ITO layer. To reduce the resistive losses in the ITO layer, metallic contact fingers can be used for spreading the current. However, such contact fingers shadow part of the solar cell. The combined optimization of ITO layer thickness, absorption loss in the ITO layer, and contact finger design is beyond the scope of the present work. However, we can state that for the 50 nm thick ITO, which is the thickness recommended from the above optics modeling, we expect a resistive loss of approximately 1% with a contact finger separation of 4.7mm. This loss was calculated with Eq. (8.23) from [32] assuming a sheet resistance of 50 ohms square, which can be reached in a 50 nm thick ITO layer [5].

In Fig. 3(b), the absorption spectrum of the ITO layer as a function of ITO thickness is shown. When the ITO thickness is above 100 nm, the ITO absorptance AITO(λ) shows a high value of above 80% for λ < 300 nm. However, the incident photon flux of the AM1.5G spectrum is almost negligible in this wavelength region. With 50 nm and 100 nm ITO thickness, the average ITO absorption for λbg,NWs < λ < λbg,Si is less than 5% and 10%, respectively.

8. Benefit of single-layer ARC

Above, we discussed the effect of the absorption loss in the ITO layer. Reflection is another loss mechanism that reduces the photocurrent-density potential of the nanowire-array-on-silicon tandem cell. For example, the bare nanowire array of Structure 1 shows a 10-30% reflectance for λbg,NWs < λ < λbg,Si, red line in Fig. 4(a). In this case, the reflection loss corresponds to a photocurrent density of jR = 4.7 mA/cm2 through Eq. (2). Actually, if we fill the space between the nanowires with SiO2 and add a planar ITO layer, that is, when we consider Structure 3 but without the SiO2 and Si3N4 ARC layers, the reflection loss increases to jR = 5.8 mA/cm2, see dashed red line in Fig. 4(b) for the corresponding reflection spectrum. Thus, there is a clear need for ARC layers in Structure 3. We note that for normally incident light of a single wavelength λ, we can suppress with a single-layer ARC the reflection to zero for a system consisting of a single interface between materials of refractive index n1 and n2. For this case, the optimized ARC has a refractive index of nARC = (n1n2)1/2 and a thickness of tARC = λ /(4nARC) [33].

 

Fig. 4 (a) Reflection of Structure 1 and 3 with optimized diameter and pitch (as marked by (*) in Table 1 and Table 2, respectively). (b) Reflection of Structure 3 with varying configuration of the ARC layers. (c) Absorption in the nanowire array and the silicon substrate in Structure 3 of (a). We show here results for three different assumptions for the absorption in the silicon.

Download Full Size | PPT Slide | PDF

To reduce the reflection loss of the tandem solar cell, we aimed to reduce the reflection by moving to Structure 3 from Structure 1. Two ARC layers are used. The top (bottom) ARC layer is designed to reduce the reflection of above bandgap photons in the nanowire array (silicon substrate). We optimized the ARCs for the wavelengths of 600 nm and 1000 nm, respectively. At these two wavelengths, Structure 1 shows in Fig. 4(a) the highest reflection above the nanowire material bandgap and between nanowire material and silicon bandgaps, respectively. This rough estimate agrees with the spectrum-weighted reflection study of ARC thickness as shown in Appendix A.

At this wavelength of λ ≈600, ITO has a refractive index of 2.0, which asks for nARC = 1.41, reasonably close to the n = 1.46 of SiO2 at λ = 600 nm. Therefore, we chose SiO2 for the top ARC material, and we used tARC = 100 nm (as approximated from nARC ≈1.5). Note that we used this 100 nm thickness throughout the optimization leading to the values in Table 2.

In contrast, for the interface into the silicon substrate, we chose to minimize the reflection for λ = 1000 nm in order to optimize the transmission of the long wavelength light, which is not absorbed in the nanowires. Note that we chose to use SiO2 to fill the space between the nanowires, and Si3N4 can be used as a growth mask on top of the silicon surface [4]. Actually, the Si3N4 has a refractive index of 2.0 at 1000 nm, which is a good match for an ARC material for an interface between SiO2 and silicon. From the above discussion, we would use tARC = 125 nm for a planar Si3N4 ARC at λ = 1000 nm. However, note that the ARC layer does not entirely consist of Si3N4 due to the nanowires. We studied the thickness dependence of spectrum-weighted reflection in Appendix A. The estimation from a simple linear effective refractive index equation agrees with the parameter sweep study very well. The linear equation can be written as neff = (1-x)nSiN + x∙nNW. Here, x = π(D/2)2/P2 is the area coverage of nanowires in the array. For the considered nanowire array of D = 170 nm and P = 240 nm (marked by * in Table 2), we find x = 0.39. With nNW ≈3.5 at λ = 1000 nm, we would expect that a Si3N4 thickness of 96 nm minimizes the reflection. Full three-dimensional modeling yields an optimum thickness of 90 nm, in good agreement with this simplified estimate (see Appendix A for details). We used this 90 nm thickness throughout the optimization leading to the values in Table 2.

Compared to Structure 1, with these SiO2 and Si3N4 ARC layers included in Structure 3, the reflection is suppressed significantly from a maximum value of 27% to a maximum value of 9% for λbg,NWs < λ < λbg,Si as shown in Fig. 4(a). With these ARCs, the reflection loss for λ < λbg,Si corresponds to a photocurrent density of jR = 4.7 mA/cm2 for Structure 1 and jR = 1.1 mA/cm2 for Structure 3. Thus, a 77% reduction of the photon loss, in terms of reduction of jR, is achieved by the use of the ARC layers.

To further analyze the anti-reflection effect, we consider the reflection spectrum of Structure 3 with and without these two ARC layers in Fig. 4(b). We see that with a single layer of either SiO2 or Si3N4, the reflection reduces significantly at the corresponding wavelength of 600 nm and 1000 nm. This reduction shows the validity of our above design. Further analysis can be done with the spectrum-weighted reflection: Without any ARCs, the amount of reflected photons correspond to a photocurrent density of jR = 5.9 mA/cm2, as calculated from Eq. (2). After inserting the top side SiO2 ARC layer, this value goes down to 1.8 mA/cm2. Finally, it goes down to the above stated 1.1 mA/cm2 by inserting the 90 nm thick Si3N4 ARC onto the substrate surface. If only this Si3N4 ARC is used, the reflection loss drops from jR = 5.8 mA/cm2 to jR = 5.3 mA/cm2. Note that the design with only the Si3N4 ARC layer present improves only slightly the reflection properties compared to the design without any ARC layers. However, the thickness of this Si3N4 layer was fixed to 90 nm, which is optimized for the case of both ARC layers present. Furthermore, the Si3N4 layer is placed at the bottom of the nanowire array. Thus, the Si3N4 layer is not optimized as a stand-alone ARC layer. Importantly for our purposes, with both ARC layers, the average reflection goes down from 17% to 4% between the bandgap of silicon and the bandgap of the nanowire material.

In the solar spectrum-weighted reflection calculation in Appendix A, we studied the thickness of the Si3N4 layer separately from the thickness of the SiO2 top ARC thickness and the thickness of the ITO layer. The final result of this optimization gives an average of 4% reflection for wavelengths between the bandgap of silicon and the bandgap of the nanowire material.

9. Impact of different models for the absorption in the silicon substrate

Above, we optimized first the absorption of high-energy photons in the nanowires. After that, we discussed the transmission of low-energy photons into the silicon substrate for varying configurations of processing layers. However, the absorption of the transmitted photons depends on the exact geometrical configuration of the silicon substrate. The simplest case is given by assuming full absorption of all photons with λ < λbg,Si that can couple into the silicon [15, 16]. This approximation corresponds to tSi → ∞ with tSi the thickness of the silicon substrate or, alternatively, to the use of X(λ) = T(λ) = ASi(λ) in Eq. (2). We show in Fig. 4(c) (red circles) the results for this approximation for Structure (*) of Table 2.

Alternatively, we could assume a finite thickness for the silicon substrate and use the Beer-Lambert law to calculate a single-pass absorption ASi(λ) = T(λ)[1-exp(-αSi(λ)tSi)] with αSi(λ) the absorption length in silicon [21]. We show in Fig. 4(c) (green line) results for tSi = 300 μm.

Finally, we include the effect of light trapping due to scattering of light at the top and bottom interface of the silicon substrate more accurately. In the case of tSi = 300 μm, we need to consider that the sunlight [34] loses coherence within the silicon substrate. Therefore, we applied the OPTOS formalism [23] that includes incoherent light propagation within the bulk of the silicon substrate. However, the diffractive back-scattering from the nanowire array at the top interface was included through the (fully coherent) Maxwell equations [24]. At the bottom interface of the silicon, we placed a diffraction grating in the form of a checkboard pattern of silicon nanosquares on top of a perfect mirror (with n = 0 leading to R = 100%). The side length of the squares was 1000/21/2 nm, and every second square was raised by 200 nm. This checkboard pattern was rotated by 45° relative to the nanowire array.

The results from this OPTOS calculation of the light-trapping in the silicon substrate, which is textured by the nanowire array at the top interface and the nanosquare grating at the bottom interface, are shown with the magenta line in Fig. 4(c). As expected, these results fall between the results for the approximation of perfect light trapping (as given by tSi → ∞) and the approximation of no light trapping (as given by the single-pass absorption for tSi = 300 μm through the Beer-Lambert law).

Measured EQE of silicon solar cells can show values of 60% and 20% at wavelengths of 1100 and 1150 nm [31]. Comparable values of 55% and 35% were calculated by OPTOS in our designed system at wavelengths of 1100 and 1150 nm. However, the thickness of the silicon cell in our modeling is twice that in the experimental single-junction silicon cell [31], indicating that the light-trapping in the fabricated silicon cell might have been more efficient than in our modeled cell.

In our modeling, for wavelengths below 950 nm, almost all of the light is absorbed before reaching the rear side grating, and all the three above approximations give almost identical results in Fig. 4(c). However, for λ = 1100 nm, which is very close to the bandgap of 1107 nm of silicon, the tSi → ∞ assumption yields ASi = 88.7%, the OPTOS formalism yields ASi = 55.1%, and the single-pass absorption yields ASi = 8.8%. From Eq. (2), we find for these three approximations the respective values of jSi = 20.0, 19.1, and 16.9 mA/cm2 for the photocurrent density in the silicon subcell above silicon bandgap of λbg,Si = 1107 nm. Therefore, to optimize the current in the dual junction cell, it is of large importance to consider how the absorption in the silicon cell is modeled. Such considerations become even more important if current matching between the top and the bottom cell is required in a series connected tandem cell, since, as seen above, the estimated photocurrent density in the silicon cell can vary by 15% depending on the approximation. To further illustrate this difference, we calculated the Shockley-Queisser detailed balance efficiency limit from the NW array and Si absorptance curves shown in Fig. 4 (c) [22]. We found that the OPTOS result, where jNWs = 21.3 mA/cm2 and jSi = 19.1 mA/cm2, leads to an efficiency limit of 37.1% for the tandem structure, which is the upper limit for the efficiency potential of our design. By contrast, the single pass approximation, where jNWs = 21.3 mA/cm2 and jSi = 16.9 mA/cm2, gives a 4% lower efficiency limit of 33% in this tandem structure, mainly due to the worse current-matching between the subcells. We recommend to perform an accurate modeling of the light-trapping in the silicon subcell, for example through the OPTOS formalism [23].

Finally, note that in Fig. 4(c), there is noticeably below-bandgap absorption in the OPTOS calculation still at the longest considered wavelength of λ = 1170 nm, which is beyond λbg,Si = 1107 nm. Such below-bandgap absorption is in line with external quantum efficiency measurements of Si cells, which can typically show short-circuit-current contribution to approximately λ = 1200 nm [1]. In our case, the absorption in the OPTOS formalism for 1107 nm < λ < 1200 nm corresponds to a photocurrent density of 0.6 mA/cm2.

10. Conclusion

We considered the absorption of light in a III-V-nanowire-array-on-silicon dual junction solar cell through optical modeling. Specifically, we showed that varying processing layers can have a major impact on the absorption performance of the solar cell. For example, the absorption loss in a 50 nm planar ITO top contact can be 86% lower than in a conformal ITO top contact. Also, we showed the benefit of a design with one ARC at the top of the nanowire array and one ARC on top of the substrate surface. With such ARCs, the reflection loss can be reduced by 77%. Finally, we showed that different models for the absorption in the silicon substrate can lead to a 15% difference in the estimated photocurrent density in the silicon subcell.

Appendix A effect of the thickness of the Si3N4 ARC

In Fig. 5(a), the reflection, transmission, and absorption are translated into photocurrent density values through Eq. (2). At a thickness of 0 nm for the bottom ARC, the reflection loss corresponds to 1.8 mA/cm2. This loss decreases to a minimum value of 1.1 mA/cm2 at a thickness of 90 nm. The oscillations in the reflection loss originate from interference effects. Such interference oscillation can be clearly seen in the reflection spectrum as a function of the thickness of the Si3N4 in Fig. 5(b).

 

Fig. 5 (a) Reflection, transmission and absorption as a function of Si3N4 thickness for the structure marked by (*) in Table 2, translated through Eq. (2) into values equivalent to photocurrent density. The inset shows a zoom-in of the reflection. (b) Corresponding reflectance R(λ) for varying Si3N4 thickness.

Download Full Size | PPT Slide | PDF

Appendix B optimized geometry parameters for nanowire arrays

In the geometry optimization, we categorize the optimum diameter as “HE11” or “HE12”, with the diameter at HE11 smaller than the diameter at HE12. These diameters originate from the HE11 and HE12 absorption resonances in individual nanowires [35], which redshift with increasing diameter. When such a resonance is placed close to the bandgap by tuning the diameter, we can enhance there the absorption in the nanowires, which is otherwise typically weak due to the low absorption coefficient close to the bandgap [36]. By choosing such a diameter and by optimizing at the same time the other geometry parameters, we can optimize the overall absorption of sunlight [22,36]. Note that the HE11 resonance shows typically a stronger absorption than the HE12 resonance.

The surface recombination velocity of InP nanowires can be as low as 170 cm/s [37] while bulk GaP and GaAs can show surface recombination velocity up to 2×105 cm/s and 107 cm/s, respectively. Therefore, we expect that GaAsP nanowires might show more issues with surface recombination than InGaP nanowires. For this reason, for the GaAsP nanowires that are exposed to air in Structure 1, we included a 10 nm thick n = 3.5 radial shell on the GaAsP core of diameter D in order to mimic a high-bandgap III-V semiconductor surface passivation layer. Furthermore, we expect that surface effects, like surface recombination, are decreased relative to bulk effects with increasing diameter since the surface-to-volume ratio decreases. Therefore, for GaAsP, we included in Tables 1 and 2 optimization results both for the smaller-diameter HE11 resonance and the larger-diameter HE12 resonance, even though jNWs is higher for the HE11 resonance.

The geometries shown in Tables 1 and 2 were obtained by optimizing both the nanowire diameter and the array pitch in step of 10 nm [36]. We show examples of such parameter sweeps in Fig. 6 for a few selected systems. In each of Fig. 6(a)-(d), the maximum at the smaller (larger) diameter corresponds to the HE11 (HE12) resonance.

 

Fig. 6 Photocurrent density jNWs, through Eq. (1), in the nanowire array of Structure 3 (see Fig. 1 for a schematic), as a function of nanowire diameter and array pitch for 2 μm long GaAsP (a) and GaInP (b); and 3 μm long GaAsP (c) and GaInP (d) nanowires.

Download Full Size | PPT Slide | PDF

Appendix C ITO absorption loss for larger diameter

As discussed in the main text, the smaller-diameter HE11 resonance showed an ITO absorption corresponding to jITO = 9.4 mA/cm2 for Structure 2 in Fig. 2(a). For that structure, the conformal ITO corresponded to a planar ITO layer of 700 nm in thickness. The larger-diameter HE12 resonance can lead to a smaller amount of ITO. For example, the amount of ITO in the system in Fig. 7 corresponds to a planar thickness of 260 nm. In that case, jITO decreases to 4.7 mA/cm2 as shown in Fig. 7.

 

Fig. 7 Structure 2 with GaAsP nanowires of Ebg,NWs = 1.7 eV at the larger-diameter HE12 resonance. The ITO thicknesses are indicated in Fig. 1 (b). The geometry parameters are L = 2000 nm, P = 450 nm and D = 280nm with a 10 nm thick passivation shell of n = 3.5, similarly as for the corresponding Structure 1 in Table 1.

Download Full Size | PPT Slide | PDF

Funding

People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7-People-2013-ITN) under REA grant agreement No 608153, PhD4Energy, and the European Union’s Horizon 2020 Framework Programme under grant agreement No 641023, NanoTandem.

Acknowledgment

This article reflects only the author's view and the Funding Agency is not responsible for any use that may be made of the information it contains. N. Tucher gratefully acknowledges the scholarship support from the Cusanuswerk, Bischöfliche Studienförderung.

References and links

1. K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

2. S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016). [CrossRef]  

3. G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004). [CrossRef]  

4. M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015). [CrossRef]   [PubMed]  

5. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013). [CrossRef]   [PubMed]  

6. I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016). [CrossRef]  

7. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014). [CrossRef]   [PubMed]  

8. G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013). [CrossRef]   [PubMed]  

9. Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013). [CrossRef]   [PubMed]  

10. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009). [CrossRef]  

11. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009). [CrossRef]   [PubMed]  

12. D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016). [CrossRef]   [PubMed]  

13. M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014). [CrossRef]   [PubMed]  

14. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011). [CrossRef]  

15. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012). [CrossRef]  

16. Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013). [CrossRef]   [PubMed]  

17. Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015). [CrossRef]   [PubMed]  

18. A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014). [CrossRef]  

19. A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013). [CrossRef]  

20. S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013). [CrossRef]  

21. X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015). [CrossRef]   [PubMed]  

22. Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016). [CrossRef]   [PubMed]  

23. N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720–A1734 (2015). [CrossRef]   [PubMed]  

24. N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011). [CrossRef]  

25. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980). [CrossRef]  

26. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]  

27. C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002). [CrossRef]  

28. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016). [CrossRef]  

29. I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001). [CrossRef]  

30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.

31. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014). [CrossRef]  

32. M. A. Green, “Solar cells: operating principles, technology, and system applications,” (1982).

33. F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963). [CrossRef]  

34. S. Divitt and L. Novotny, “Spatial coherence of sunlight and its implications for light management in photovoltaics,” Optica 2(2), 95–103 (2015). [CrossRef]  

35. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012). [CrossRef]   [PubMed]  

36. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013). [CrossRef]   [PubMed]  

37. H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).
  2. S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
    [Crossref]
  3. G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
    [Crossref]
  4. M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
    [Crossref] [PubMed]
  5. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  6. I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
    [Crossref]
  7. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
    [Crossref] [PubMed]
  8. G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
    [Crossref] [PubMed]
  9. Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
    [Crossref] [PubMed]
  10. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
    [Crossref]
  11. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
    [Crossref] [PubMed]
  12. D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
    [Crossref] [PubMed]
  13. M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
    [Crossref] [PubMed]
  14. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
    [Crossref]
  15. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
    [Crossref]
  16. Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
    [Crossref] [PubMed]
  17. Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
    [Crossref] [PubMed]
  18. A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
    [Crossref]
  19. A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
    [Crossref]
  20. S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
    [Crossref]
  21. X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
    [Crossref] [PubMed]
  22. Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
    [Crossref] [PubMed]
  23. N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720–A1734 (2015).
    [Crossref] [PubMed]
  24. N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
    [Crossref]
  25. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
    [Crossref]
  26. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  27. C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
    [Crossref]
  28. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
    [Crossref]
  29. I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.
  31. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
    [Crossref]
  32. M. A. Green, “Solar cells: operating principles, technology, and system applications,” (1982).
  33. F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
    [Crossref]
  34. S. Divitt and L. Novotny, “Spatial coherence of sunlight and its implications for light management in photovoltaics,” Optica 2(2), 95–103 (2015).
    [Crossref]
  35. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
    [Crossref] [PubMed]
  36. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
    [Crossref] [PubMed]
  37. H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
    [Crossref] [PubMed]

2017 (1)

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

2016 (5)

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

2015 (5)

2014 (4)

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

2013 (7)

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

2012 (3)

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

2011 (2)

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

2009 (2)

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

2004 (1)

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

2002 (1)

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

2001 (1)

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1980 (1)

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

1963 (1)

F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Abelès, F.

F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
[Crossref]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Åberg, I.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Allebé, C.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Anttu, N.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Arab, S.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

Asoli, D.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Badel, N.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Bakkers, E. P.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Ballif, C.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Barraud, L.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Benali, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Björk, M. T.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Bläsi, B.

Borg, M.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Breslin, C.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bruley, J.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bu, S.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Bucci, D.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Cao, Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cavalli, A.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Chauvin, N.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Chen, Y.

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

Chi, C.-Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cong, S.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cronin, S. B.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

Cui, Y.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Czaban, J. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

Dahlgren, A.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Dapkus, P. D.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Das Kanungo, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

De Vos, A.

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Descoeudres, A.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Despeisse, M.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Divitt, S.

Docherty, C. J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Drouard, E.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Dunlop, E. D.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Eisenlohr, J.

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Essig, S.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Faes, A.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Fave, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Foster, A. P.

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

Fujishima, D.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Fukui, T.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gao, L.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Gao, Q.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Geisz, J. F.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Gendry, M.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Gignac, L.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Gilboy, J. P.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Goldschmidt, J. C.

Gómez Rivas, J.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Gosele, U.

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

Goto, H.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Green, A.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

M. A. Green, “Solar cells: operating principles, technology, and system applications,” (1982).

Gueymard, C. A.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Hara, S.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Hashiguchi, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Hauser, H.

Haverkort, J. E.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

He, J. J.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

He, S.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Herz, L. M.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Hiruma, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Hishikawa, Y.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Ho-Baillie, A. W. Y.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Höhn, O.

Hu, Y.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

Huang, N.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Huffaker, D. L.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Hung, C. H.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Ichihashi, Y.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Jagadish, C.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Johnston, M. B.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Joyce, H. J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Kai, M.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Kaminski-Cachopo, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Kastner, G.

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

Kiefel, P.

LaPierre, R.

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

LaPierre, R. R.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

LaSalvia, V.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Leu, P. W.

Levi, D. H.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Levrat, J.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Li, M.

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

Li, X.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
[Crossref] [PubMed]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Lin, Y.-T.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Liu, G.

Lloyd-Hughes, J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Mariani, G.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Martin, K. E.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Maruyama, E.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Masuko, K.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Matsubara, N.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Meyer, J.

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Michallon, J.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Mishima, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Moselund, K. E.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Motohisa, J.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Müller, C.

Myers, D.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Naseem, U.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Nosaki, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Novotny, L.

Okamoto, S.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Paiman, S.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Paviet-Salomon, B.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Peters, M.

Pistol, M. E.

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

Plissard, S. R.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Povinelli, M. L.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Ram-Mohan, L.

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Regreny, P.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Riel, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Rojo, P.

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Samuelson, L.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Schmid, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Scofield, A. C.

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Seyedi, M. A.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Shi, T.

Shigematsu, M.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Signorello, G.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Steiner, M. A.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Stradins, P.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Sundvall, C.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Svensson, K. E.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Taguchi, M.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Takahama, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Tan, H. H.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Thompson, D. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

Tomioka, K.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Trainor, M.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Tucher, N.

van Dam, D.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

van Hoof, N. J.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

van Veldhoven, P. J.

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

van Veldhoven, R. P.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Verheijen, M. A.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Vescovi, G.

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

Vu, T. T.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Vurgaftman, I.

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wang, B.

Wang, J.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Wang, W.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Wang, Y.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
[Crossref] [PubMed]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Ward, S.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Warta, W.

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Wen, L.

X. Li, T. Shi, G. Liu, L. Wen, B. Zhou, and Y. Wang, “Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells,” Opt. Express 23(19), 25316–25328 (2015).
[Crossref] [PubMed]

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Werner, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Wilson, L. R.

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wong-Leung, J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Xu, H.

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Xu, H. Q.

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Yamaguchi, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Yamanishi, T.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Yao, M.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Yong, C.-K.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Yoshimura, N.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

Young, D. L.

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

Zeng, X.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Zhang, D.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Zhao, Y.

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Zhou, B.

Zhou, C.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

ACS Nano (1)

D. van Dam, N. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. Bakkers, J. Gómez Rivas, and J. E. Haverkort, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Appl. Phys. Express (1)

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009).
[Crossref]

Appl. Phys. Lett. (1)

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, “Optical and electrical simulations of two-junction III-V nanowires on Si solar cell,” Appl. Phys. Lett. 102(3), 031106 (2013).
[Crossref]

Energy Procedia (1)

A. Benali, J. Michallon, P. Regreny, E. Drouard, P. Rojo, N. Chauvin, D. Bucci, A. Fave, A. Kaminski-Cachopo, and M. Gendry, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

IEEE J. Photovolt. (2)

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovolt. 6(1), 185–190 (2016).
[Crossref]

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievenment of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovolt. 4(6), 1433–1435 (2014).
[Crossref]

IEEE,” J. Photovolt. (1)

S. Essig, M. A. Steiner, C. Allebé, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, and D. L. Young, “Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency,” IEEE,” J. Photovolt. 6(4), 1012–1019 (2016).
[Crossref]

J. Appl. Phys. (4)

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

Nano Lett. (6)

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu, R. P. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. Haverkort, and E. P. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design high-efficiency III-V nanowire/Si two-junction solar cell,” Nanoscale Res. Lett. 10(1), 269 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Hu, M. Li, J. J. He, and R. R. LaPierre, “Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell,” Nanotechnology 24(6), 065402 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Mariani, A. C. Scofield, C. H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Philos. Mag. (1)

G. Kastner and U. Gosele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84(35), 3803–3824 (2004).
[Crossref]

Phys. Rev. B (1)

N. Anttu and H. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011).
[Crossref]

Phys. Status Solidi (1)

A. P. Foster and L. R. Wilson, “Design parameters for nanowire‐planar tandem solar cells,” Phys. Status Solidi 210(2), 425–429 (2013).
[Crossref]

Prog. Opt. (1)

F. Abelès, “VI methods for determining optical parameters of thin films,” Prog. Opt. 2, 249–288 (1963).
[Crossref]

Prog. Photovaltaics (1)

K. E. Martin, A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. Ho-Baillie, “Solar cell efficiency table (version 49),” Prog. Photovaltaics 25, 3 (2017).

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Sci. Rep. (1)

Y. Chen, M. E. Pistol, and N. Anttu, “Design for strong absorption in a nanowire array tandem solar cell,” Sci. Rep. 6(1), 32349 (2016).
[Crossref] [PubMed]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Sol. Energy (1)

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vol. 3.

M. A. Green, “Solar cells: operating principles, technology, and system applications,” (1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of a nanowire array on a silicon substrate. (a) Bare nanowire array. (b) Nanowire array with conformal ITO layer. (c) Nanowire array with planarized ITO layer together with a top and a bottom ARC.
Fig. 2
Fig. 2 Optical response of (a) Structure 2 and (b) Structure 3 as for the optimized system marked by (*) in Table 1 and Table 2, respectively. The ITO absorption in (a) corresponds to a photocurrent density of 9.4 mA/cm2 through Eq. (2).
Fig. 3
Fig. 3 (a) Absorption in the nanowires and in the ITO, reflection loss, and transmission into the silicon substrate for varying ITO thickness in Structure 3 marked by (*) in Table 2. Note that these results are translated into equivalent photocurrent density values through Eq. (1) and Eq. (2). (b) ITO absorptance AITO(λ) for the varying ITO thicknesses considered in (a).
Fig. 4
Fig. 4 (a) Reflection of Structure 1 and 3 with optimized diameter and pitch (as marked by (*) in Table 1 and Table 2, respectively). (b) Reflection of Structure 3 with varying configuration of the ARC layers. (c) Absorption in the nanowire array and the silicon substrate in Structure 3 of (a). We show here results for three different assumptions for the absorption in the silicon.
Fig. 5
Fig. 5 (a) Reflection, transmission and absorption as a function of Si3N4 thickness for the structure marked by (*) in Table 2, translated through Eq. (2) into values equivalent to photocurrent density. The inset shows a zoom-in of the reflection. (b) Corresponding reflectance R(λ) for varying Si3N4 thickness.
Fig. 6
Fig. 6 Photocurrent density jNWs, through Eq. (1), in the nanowire array of Structure 3 (see Fig. 1 for a schematic), as a function of nanowire diameter and array pitch for 2 μm long GaAsP (a) and GaInP (b); and 3 μm long GaAsP (c) and GaInP (d) nanowires.
Fig. 7
Fig. 7 Structure 2 with GaAsP nanowires of Ebg,NWs = 1.7 eV at the larger-diameter HE12 resonance. The ITO thicknesses are indicated in Fig. 1 (b). The geometry parameters are L = 2000 nm, P = 450 nm and D = 280nm with a 10 nm thick passivation shell of n = 3.5, similarly as for the corresponding Structure 1 in Table 1.

Tables (2)

Tables Icon

Table 1 Optimized nanowire diameter D and array pitch P for Structure 1 (see Fig. 1 for a schematic). The values for jNWs, jT, and jR are calculated with Eq. (2).

Tables Icon

Table 2 Optimized nanowire diameter D and array pitch P for Structure 3 (see Fig. 1 for a schematic). The values for jNWs, jITO, jT, and jR are calculated with Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

j NWs = e hc λ start λ bg,NWs λ I AM1.5G A NWs (λ)dλ
j x = e hc λ X,start λ X,end λ I AM1.5G X(λ) dλ

Metrics