Abstract

Based on an integrated silicon platform, we present an ultracompact structure to generate optical orbital angular momentum (OAM) modes, where only a waveguide with a specially designed trench is involved. Single-trench waveguide can support two orthogonal LP-like modes whose optical axes are rotated by around 45° with respect to the horizontal and vertical directions. By optimizing the structure parameters, OAM modes with topological charges of + 1 and −1 can be selectively generated by combining two orthogonal LP-like modes with different propagation constants. We study the structure parameters for both x- and y-polarizations over a wide wavelength range from 1.45 µm to 1.65 µm. The average mode purities are close to 90% for x- and y-polarizations. Moreover, we design an on-chip OAM modes (de)multiplexer (OAM0, OAM ± 1) for x-polarization based on trench silicon waveguides. It is shown that the mode extinction ratio can achieve approximately 20 dB from 1.52 µm to 1.58 µm.

© 2017 Optical Society of America

1. Introduction

Angular momentum can be divided into spin angular momentum (SAM) and orbital angular momentum (OAM) in paraxial beams, which are related to circular polarization and spatial distribution, respectively. In recent years, light beams carrying OAM (i.e. OAM modes), also referred to as vortex beams, have attracted more and more attention owing to their distinct characteristics such as the phase singularity at the beam center and the resultant doughnut shape intensity profiles [1, 2]. OAM modes with different topological charge values l, are theoretically unbounded and orthogonal to each other. Similar to other mode bases in free space or fiber, OAM modes are another mode basis with which to represent spatial modes. Different mode bases including OAM modes can be employed in mode-division multiplexing (MDM), which is a subset of space-division multiplexing (SDM). Very recently, OAM modes have shown great potential for MDM both in free space and fiber-based optical communications [3–8]. Vortex beams or OAM modes also provide unique opportunities for manipulation of micro-/nano-particles as they assert torque in addition to forces related to optical intensity gradient, giving rise to orbital and spin movements beyond trapping. Remarkably, for diverse applications of vortex beams in optical communications [3–8], optical tweezers [9], optical trapping [10] and quantum information technology [11], the successful generation of OAM modes is of great importance.

Driven by their distinctive properties and miscellaneous applications, there have been many attempts to generate and manipulate OAM beams. Such attempts include cylindrical lens mode converters, spiral phase plates, q-plates, and spatial light modulators (SLM) [12–15]. Recently, integrated approaches based on fibers or silicon devices are developed due to their outstanding features of small footprint, high speed, low-cost, and adaptation for various applications [16–25]. In 2011, a nanoscale V-shaped antenna meta-surface structure was proposed to generate single OAM beam by adjusting the wavefront parameters of scattered fields [16]. From then on, varieties of optical antenna, including metallic and dielectric metasurface arrays, have been used to generate OAM beams [17–24]. In [25], Cai et al. proposed and demonstrated an OAM beam emitter based on a silicon microring with azimuthally distributed second-order gratings. The operation principle of microring grating is based on the scattering fields, which are generated out-plane and propagated in free space. In addition, it also attracts much attention to fully explore and employ the unique feature of OAM beams in the region of guided optics [26, 27]. However, the generation of OAM beams in-plane on a silicon chip is still challenging and relevant works have not yet been reported much, as the conventional optical waveguide cannot support OAM modes.

In this paper, we present a scheme to generate OAM modes on silicon-on-insulator (SOI) chip by using a single-trench silicon waveguide. Trench structures have been previously employed to enable polarization rotator and mode converter [28–33]. A trench silicon waveguide can support two orthogonal LP-like modes whose optical axes are rotated by around 45° with respect to the horizontal and vertical directions. By combining two eigenmodes with different phase differences, one can selectively convert an input LP-like mode to OAM ± 1 modes at the output terminal of the single-trench waveguide. The proposed trench structure for x- and y-polarizations are optimized, and high mode purity can be achieved over a wide wavelength range from 1.45 µm to 1.65 µm. As one typical example of applications, an on-chip OAM modes (de)multiplexer (OAM0, OAM ± 1) for x-polarization is designed based on the tailored trench structure. Such an on-chip OAM modes (de)multiplexer has a footprint of <100 µm × 4 µm, and the average mode extinction ratio exceeds 20 dB over a wavelength range from 1.52 µm to 1.58 µm.

2. Concept and operation principle

The schematic three-dimensional (3D) structure and the cross-section of a typical single-trench waveguide for OAM generation are shown in Figs. 1(a) and 1(b). In order to generate OAM modes, the waveguide is designed with a trench, which can break the original rotation symmetry and split the mode degeneracy. As indicated in Figs. 1(a) and 1(c), the second-order mode (TE01) in the typical rectangular waveguide can excite two orthogonal LP-like eigenmodes with different propagation constants (β1 and β2) in the single-trench waveguide. The two LP-like eigenmodes can be further synthesized into OAM modes with topological charges of + 1 or −1 through different propagation distances, i.e. L=π/2(β1β2) or L=3π/2(β1β2). The intensity and phase evolutions of the combination of eigenmodes are illustrated in Fig. 1(c) and 1(d). When the phase difference between two LP-like eigenmodes is π/2 and 3π/2, the second-order mode (TE01) in the rectangular waveguide can be converted to OAM ± 1 modes, respectively, at the output of the trench waveguide. Moreover, it could be also a mode rotator with a phase differenceπ as displayed in [33]. In contrast, when the two LP-like eigenmodes are in phase (0 or2π), the output is still a second-order mode (TE01). In this paper, we assume that the proposed OAM mode generator is based on a silicon chip with SiO2 cladding and the refractive index for the SiO2 cladding layer is set to be 1.445.

 figure: Fig. 1

Fig. 1 (a) Concept and principle of OAM beam generator based on a single-trench waveguide. (b) Cross-section of a single-trench waveguide. (c) The field distributions of two eigenmodes of a single-trench waveguide. (d) Intensity and phase evolutions of combination of eigenmodes for x-polarization.

Download Full Size | PPT Slide | PDF

It is noted here that the dominant component of the electric field for TE mode is along x axis (or horizontal axis), while it is along y axis (or vertical axis) for TM mode. The polarization of the emitted OAM mode depends on the polarization of the input mode. Moreover, when the height and the width are equal (W = H), the second-order modes are hybridized and replaced by modes with spatially variant polarization. Therefore, to obtain a clear two-lobe pattern in the input waveguide of the OAM mode generator, the inherent symmetry of the square cross-section of the waveguide needs to be broken. Here, we choose W = 1.1 µm, H = 1 µm for x-polarization (TE mode) and W = 0.9 µm, H = 1 µm for y-polarization (TM mode).

3. Trench waveguide structure design and characterization

First, the dimensions of the waveguide in Fig. 1 should be such that the relevant high-order modes are supported. Next, the trench parameters would be required for the equal excitation of two orthogonal eigenmodes. Two parameters related to the trench such as the width w and the height h would be specially optimized. When the size of the trench is larger, the difference of the propagation constants of two eigenmodes also tend to be larger, leading to a shorter device length. However, crosstalk to undesired modes and undesired back reflections may become higher due to the mode field mismatch at the boundary between the waveguides with and without the trench. Meanwhile, the generated OAM modes may become nonuniform. Thus, w and h should be chosen to relatively small values in order to suppress the crosstalk to undesired modes. At the same time, the purities of the generated modes should be also considered in the design. To obtain more uniform spatial light distribution, the overlap integrals of two eigenmodes with input second-order mode should be both equal to 0.5. Figure 2(a) and 2(b) show w, h dependences of the normalized overlap integrals of two LP-like eigenmodes with the input second-order mode at a wavelength of 1.55 µm, where W = 1.1 µm, H = 1 µm for x-polarization. For y-polarization, the similar curves of w, h dependences are presented in Figs. 2(c) and 2(d).

 figure: Fig. 2

Fig. 2 (a) Trench width w, and (b) height h dependences of normalized overlap integrals of two LP-like eigenmodes for x-polarization at 1.55 µm. (c) and (d) show width w, and height h dependences of normalized overlap integral of two LP-like eigenmodes for y-polarization at 1.55 µm, respectively.

Download Full Size | PPT Slide | PDF

As shown in Fig. 2(a) and 2(b), when the trench width w and height h for x-polarization are chosen to be 0.34 µm and 0.12 µm, the overlap integrals for two eigenmodes with the input mode are close to 0.5 and 0.5, respectively. In such case, single-trench waveguide can support two approximately orthogonal LP-like modes whose optical axes are rotated by around 45 with respect to the horizontal and vertical direction. When the structure parameters mentioned above are selected, two eigenmodes of single-trench waveguide in Fig. 1(c) will be excited equally and the generated OAM modes can possess high purity. Similarly, w = 0.11 µm and h = 0.31 µm are chosen for y-polarization in Figs. 2(c) and 2(d). Thus, two LP-like eigenmodes would be approximately orthogonal and excited equally.

By using the Finite Difference Eigenmode (FDE) method, the effective indices of two orthogonal LP-like modes of single-trench waveguide are depicted as a function of wavelength for x- and y-polarization, respectively. The effective indices are numerically calculated over a wide range of wavelength from 1.45 µm to 1.65 µm. In Fig. 3(a), the effective indices decrease gradually with the increase of wavelength for both polarizations. As shown in Fig. 3(b), the differences of effective indices increase with the wavelength from 1.45 µm to 1.65 µm for both polarizations. At the wavelength of 1.55 µm, the differences of the effective indices are 0.025 and 0.031 for x- and y-polarization, respectively. We first simulate the single-trench waveguide by input a second-order mode as shown in Fig. 1(a), whose lengths corresponding to the generation of OAM ± 1 modes can be determined by the effective index differences,

LOAM+1=π2(β1β2)=λ4Δn
LOAM1=3LOAM+1=3λ4Δn
where Δn indicates the difference of effective indices presented in Fig. 3. Based on the evolution process presented in Fig. 1(d), LOAM+1 and LOAM1 should satisfy Eqs. (1) and (2), respectively.

 figure: Fig. 3

Fig. 3 (a) The effective indices of orthogonal LP-like modes of single-trench waveguide as a function of wavelength for both x- and y-polarizations. (b) The effective index differences of orthogonal LP-like modes of single-trench waveguide as a function of wavelength for both polarizations.

Download Full Size | PPT Slide | PDF

By using the 3-D finite-difference time-domain (FDTD) method, the proposed single-trench waveguide structure in Fig. 1(a) is simulated. The near fields of OAM-1 modes for x-polarization and OAM+1 modes for y-polarization are both monitored and analyzed in Fig. 4. When the trench is located in one side of the silicon waveguide, OAM+1 mode can be generated at the end of the etched waveguide. On the contrary, OAM-1 mode can be emitted with the trench in the other side of the silicon waveguide. That is to say, two ways (the position of trench, and the length of trench) can be used to generate OAM modes with opposite topological charges. Compared to low index materials [33–35], high index differences can lead to shorter trench lengths L, which are set to be 15.5 µm and 12.5 µm for x- and y-polarizations in the simulation, respectively. Intensity profiles and phase distributions of OAM+1 and OAM-1 for x- and y-polarization are displayed in Figs. 4(a) and 4(c), respectively. One can see as expected the doughnut shape intensity profiles and helical phase fronts which successfully proves that it is accessible to employ single-trench waveguide to generate OAM modes. To qualify the quality of the generated OAM modes, the mode purity is calculated by overlap integral

P=|Eo*(x,y)Et(x,y)dxdy|2|Eo(x,y)|2dxdy|Et(x,y)|2dxdy,
Et(x,y)=(2rw)lLpl(2r2w2)exp(ilφ)exp(r2w2ikz),
where Eo(x,y) is the field distribution of the generated OAM mode based on the single-trench waveguide, and Et(x,y) is a Laguerre-Gaussian mode with the same topological charge l [36]. In Eq. (4), r=x2+y2, w is the waist size of the fundamental mode, Lpl(2r2w2) is the associated Laguerre polynomial, p is the radial order (p=0 assumed), l is the topological charge, and φ is the azimuthal angle.

 figure: Fig. 4

Fig. 4 (a) Simulated near-field intensity profiles, phase distributions and (b) mode purity of OAM-1 for x-polarization from 1.45 µm to 1.65 µm. (c) Simulated intensity profiles, phase distributions and (d) mode purity of OAM+1 for y-polarization from 1.45 µm to 1.65 µm. Insets are far-field intensity and phase profiles at 1.55µm.

Download Full Size | PPT Slide | PDF

As presented in Figs. 4(b) and 4(d), single-trench waveguide can operate with high mode purity (close to 90%) for x- and y-polarization over a wide wavelength range from 1.45 µm to 1.65 µm. Meanwhile, it has been numerically confirmed that the undesired back reflection at the boundary between the waveguides with and without the trench is assessed to be less than −30 dB and could be ignored. The dominant insertion loss for OAM mode generation attributes to the facet reflection, which is assessed to be ~3 dB. On one hand, the near-field and far-field intensity profiles are both not very uniform due to high index contrast between silicon waveguide core and silica cladding. On the other hand, high index contrast contributes to decrease the size of the device. Therefore, we make a trade-off between mode conversion efficiency and device footprint in the proposed trench waveguide structure.

4. On-chip OAM modes (de)multiplexer

As one typical example of potential applications, we design an on-chip OAM modes (de)multiplexer (OAM0, OAM ± 1) by using single-trench waveguides for x-polarization. Here we consider the on-chip OAM modes multiplexer and the demultiplexer similarly functions in an opposite way due to the reciprocity principle of light. At the first step, the second-order mode should be generated by adiabatic coupling. As mentioned above, single-trench waveguide can generate OAM modes over a wide wavelength range from 1.45 µm to 1.65 µm. Nevertheless, asymmetric directional coupler (TE00-TE10) has a limited bandwidth. Thus we design an on-chip OAM modes (de)multiplexer (OAM0, OAM ± 1) based on the proposed trench waveguide structure for x-polarization over a wavelength range from 1.52 µm to 1.58 µm. The asymmetric adiabatic coupling (TE00-TE10) relies on the phase matching between the waveguides, i.e. the effective refractive index of TE00 mode of the narrow waveguide should be equal to that of TE10 mode of the wide waveguide at a center wavelength of 1.55 µm.

We calculate the dispersion relationship about the mode effective refractive index and width of the silicon waveguide at height of H = 1 µm. As shown in Fig. 5, width w = 0.335 µm for TE00 mode of the narrow waveguide and width w = 0.7 µm for TE01 mode of the wide waveguide are chosen since their effective indices have almost the same valueneff=2.696.

 figure: Fig. 5

Fig. 5 Structure dispersion relationship about the effective refractive index and width of silicon waveguide with height of H = 1 µm at a center wavelength of 1.55µm.

Download Full Size | PPT Slide | PDF

Figure 6 shows the schematic configuration for the generation and multiplexing of three modes including two OAM ones. The fundamental modes for TE polarization are launched at the inputs, and three modes with different topological charges can be observed at the outputs. From input1, the fundamental mode TE00 is firstly coupled to the second-order mode TE10 via an asymmetric directional coupler. Then a taper with length D is utilized between the narrow waveguide and the wide waveguide with trench to guarantee an adiabatic evolution of the modes. When the total length of the single-trench waveguide satisfies a certain phase difference in Fig. 1(d), the mode TE10 is converted to the mode TE01 through the first trench waveguide, and the mode TE01 is further converted to the OAM-1 mode by the second trench waveguide, i.e. input fundamental mode TE00 to output OAM-1 mode. From input2, the fundamental mode TE00 transmits throughout the whole structure and also appears as the fundamental mode TE00 (i.e. OAM0 mode) at the output, i.e. input fundamental mode TE00 to output OAM0 mode. From input3, the fundamental mode TE00 is coupled to the second-order mode TE10 via an asymmetric directional coupler, and the mode TE10 is further converted to the OAM+1 mode by the second trench waveguide shown in Fig. 6, i.e. input fundamental mode TE00 to output OAM+1 mode. Consequently, the presented structure design shown in Fig. 6 can facilitate on-chip OAM modes multiplexer (OAM0, OAM ± 1) with the inputs compatible with Gaussian modes (single-mode waveguides or single-mode fibers). Additionally, when launching multiplexed OAM modes (OAM0, OAM ± 1) from the right side of the structure, the OAM modes demultiplexing is also achievable.

 figure: Fig. 6

Fig. 6 Schematic structure of an on-chip OAM modes (de)multiplexer (OAM0, OAM ± 1).

Download Full Size | PPT Slide | PDF

In the simulations, the determined values of structure parameters are listed in Table 1. For the adiabatic coupler, w1 and w2 are set as 0.335 µm and 0.7 µm, which satisfy the dispersion relationship in Fig. 5. To obtain a high coupling efficiency, the length d of the coupler is set as 12.8 µm. The width w3 of the trench waveguide is 1.1 µm, and the length of the taper between narrow waveguide and trench waveguide is selected as 5 µm.

Tables Icon

Table 1. Values of structure parameters of on-chip OAM modes (de)multiplexer.

Using Eq. (3), the mode purity of the generated OAM modes is calculated by overlap integral. Despite ~3 dB insertion loss due to the facet reflection, the average extinction ratio up to 20 dB can still be achieved from 1.52 µm to 1.58 µm, as shown in Fig. 7. The obtained simulation results indicate favorable operation performance of efficient generation and multiplexing of OAM modes, which may find potential applications in OAM multiplexing communications for enhanced transmission capacity.

 figure: Fig. 7

Fig. 7 Simulated mode purity and extinction ratio of (a) OAM0, (b) OAM+1 and (c) OAM-1 by calculating the overlap integrals of the generated OAM beams with corresponding Laguerre-Gaussian beams from 1.52 µm to 1.58 µm.

Download Full Size | PPT Slide | PDF

By specially designing the trench waveguide, two orthogonal LP-like eigenmodes with different propagation constants could be synthesized into four different modes (TE01, TE10, OAM ± 1). Such a compact integrated structure provides a feasible approach to realize robust mode conversion. Compared to previous works [22, 26], the proposed device has a smaller footprint of 100 µm×4 µm. In addition, the coupling processes by phase matching are greatly reduced. Limited by the bandwidth of asymmetric directional coupler and vertical coupling grating, the presented OAM modes generator and (de)multiplexer operate efficiently from 1.52 µm to 1.58 µm. With further improvement, OAM modes generator and (de)multiplexer could work more efficiently with a wider wavelength range by employing novel taper couplers [37–39] and edge coupling setup. Moreover, a higher mode conversion efficiency might be also realized by somehow sacrificing the device size with low refractive index materials such as silica, Si3N4 and polymer.

5. Conclusion

In summary, we propose an ultracompact integrated structure to generate optical OAM modes by specially designing a single-trench waveguide. OAM mode generators for x- and y-polarizations are both studied over a wide wavelength range from 1.45 µm to 1.65 µm. Moreover, an on-chip OAM modes (de)multiplexer (OAM0, OAM ± 1) for x-polarization is established, which has a footprint of <100 µm × 4 µm. An average mode extinction ratio exceeding 20 dB can be obtained over a wavelength range from 1.52 µm to 1.58 µm. The presented on-chip OAM mode generator may provide chip-scale solutions to wide OAM-involved applications in optical communications, optical tweezers, optical trapping and quantum information processing.

Funding

Royal Society-Newton Advanced Fellowship; National Natural Science Foundation of China (NSFC) (under grants 61761130082, 11574001, 11274131 and 61222502); National Basic Research Program of China (973 Program) under grant 2014CB340004; National Program for Support of Top-notch Young Professionals; Yangtze River Excellent Young Scholars Program; Program for New Century Excellent Talents in University (NCET-11-0182).

References and links

1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]   [PubMed]  

2. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017). [CrossRef]  

3. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]  

4. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef]   [PubMed]  

5. A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016). [CrossRef]   [PubMed]  

6. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015). [CrossRef]  

7. J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016). [CrossRef]  

8. J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 030005 (2017). [CrossRef]  

9. M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014). [CrossRef]  

10. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38(22), 4919–4922 (2013). [CrossRef]   [PubMed]  

11. D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015). [CrossRef]   [PubMed]  

12. M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993). [CrossRef]  

13. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994). [CrossRef]  

14. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011). [CrossRef]   [PubMed]  

15. A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016). [CrossRef]  

16. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef]   [PubMed]  

17. P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012). [CrossRef]  

18. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). [CrossRef]   [PubMed]  

19. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013). [CrossRef]   [PubMed]  

20. Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013). [CrossRef]   [PubMed]  

21. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014). [CrossRef]   [PubMed]  

22. B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. Yoo, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22(1), 145–156 (2014). [CrossRef]   [PubMed]  

23. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014). [CrossRef]  

24. J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5(1), 9662 (2015). [CrossRef]   [PubMed]  

25. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012). [CrossRef]   [PubMed]  

26. D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013). [CrossRef]  

27. Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015). [CrossRef]   [PubMed]  

28. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008). [CrossRef]  

29. D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photonics J. 3(3), 381–389 (2011). [CrossRef]  

30. A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37(3), 365–367 (2012). [CrossRef]   [PubMed]  

31. S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009). [CrossRef]   [PubMed]  

32. J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).

33. K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing,” Opt. Express 22(16), 19117–19130 (2014). [CrossRef]   [PubMed]  

34. D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015). [CrossRef]  

35. W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016). [CrossRef]   [PubMed]  

36. A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016). [CrossRef]  

37. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013). [CrossRef]   [PubMed]  

38. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016). [CrossRef]   [PubMed]  

39. D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015). [CrossRef]   [PubMed]  

References

  • View by:

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
    [Crossref]
  3. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  4. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  5. A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
    [Crossref] [PubMed]
  6. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  7. J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
    [Crossref]
  8. J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 030005 (2017).
    [Crossref]
  9. M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
    [Crossref]
  10. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38(22), 4919–4922 (2013).
    [Crossref] [PubMed]
  11. D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
    [Crossref] [PubMed]
  12. M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993).
    [Crossref]
  13. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
    [Crossref]
  14. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
    [Crossref] [PubMed]
  15. A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
    [Crossref]
  16. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  17. P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
    [Crossref]
  18. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  19. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref] [PubMed]
  20. Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
    [Crossref] [PubMed]
  21. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  22. B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. Yoo, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22(1), 145–156 (2014).
    [Crossref] [PubMed]
  23. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  24. J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5(1), 9662 (2015).
    [Crossref] [PubMed]
  25. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref] [PubMed]
  26. D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
    [Crossref]
  27. Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015).
    [Crossref] [PubMed]
  28. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [Crossref]
  29. D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photonics J. 3(3), 381–389 (2011).
    [Crossref]
  30. A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37(3), 365–367 (2012).
    [Crossref] [PubMed]
  31. S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009).
    [Crossref] [PubMed]
  32. J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).
  33. K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing,” Opt. Express 22(16), 19117–19130 (2014).
    [Crossref] [PubMed]
  34. D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
    [Crossref]
  35. W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
    [Crossref] [PubMed]
  36. A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
    [Crossref]
  37. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  38. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
    [Crossref] [PubMed]
  39. D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
    [Crossref] [PubMed]

2017 (2)

2016 (7)

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[Crossref] [PubMed]

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).

W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
[Crossref] [PubMed]

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
[Crossref]

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
[Crossref] [PubMed]

2015 (6)

D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
[Crossref] [PubMed]

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015).
[Crossref] [PubMed]

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5(1), 9662 (2015).
[Crossref] [PubMed]

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

2014 (5)

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. Yoo, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22(1), 145–156 (2014).
[Crossref] [PubMed]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

2013 (6)

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref] [PubMed]

D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
[Crossref]

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Dynamics of microparticles trapped in a perfect vortex beam,” Opt. Lett. 38(22), 4919–4922 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

2012 (5)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37(3), 365–367 (2012).
[Crossref] [PubMed]

2011 (3)

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photonics J. 3(3), 381–389 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (1)

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

1993 (1)

M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Allen, L.

M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Arita, Y.

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Baets, R. G.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Beresna, M.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

Bienstman, P.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Bogaerts, W.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Calvo, M. L.

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Capasso, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cappuzzo, M.

Cheben, P.

Chen, D.

Chen, H.

Chen, M.

Chen, S.

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Chen, Y.

Chiang, K. S.

Chigrinov, V.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Cui, K.

D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
[Crossref]

Da Ros, F.

Dai, D.

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Dholakia, K.

Ding, D. S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Ding, Y.

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Drevinskas, R.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

Du, C.

Du, J.

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5(1), 9662 (2015).
[Crossref] [PubMed]

Du, T.

Dudley, A.

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Earnshaw, M.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Feng, X.

D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
[Crossref]

Fernandez, I. M.

Ferrari, C.

Fontaine, N. K.

Forbes, A.

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Frandsen, L. H.

Frellsen, L. F.

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gecevicius, M.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Grattan, K. T. V.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photonics J. 3(3), 381–389 (2011).
[Crossref]

Gu, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Guan, B.

Guo, G. C.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
[Crossref]

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Han, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Hanzawa, N.

Huang, B.

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Huang, Y.

D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
[Crossref]

Ishizaka, Y.

Janz, S.

Jiang, Y. K.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Jin, W.

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Karimi, E.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Kats, M.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kazansky, P. G.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

Keller, B.

Kim, S.-H.

Klemens, F.

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Lapointe, J.

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Leung, D. M. H.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photonics J. 3(3), 381–389 (2011).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Li, S.

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Liu, A.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
[Crossref]

Liu, F.

D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
[Crossref]

Liu, W.

Ma, Z.

Marrucci, L.

Martens, D.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Masumoto, K.

Matsui, T.

Mazilu, M.

McLaren, M.

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Mizumoto, T.

Mo, Q.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Murauski, A.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Ortega-Monux, A.

Ou, H.

Padgett, M. J.

Pathak, S.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Peucheret, C.

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Qin, C.

Rahman, B. M. A.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photonics J. 3(3), 381–389 (2011).
[Crossref]

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ramos, C. A.

Ren, X.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
[Crossref]

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Saitoh, K.

Sakamoto, T.

Santamato, E.

Schmid, J. H.

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Scott, R. P.

Scully, M.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Shi, B. S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Shi, S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Shoji, Y.

Sigmund, O.

Slussarenko, S.

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Su, T.

Subramanian, A. Z.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Takei, R.

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Tian, Z.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Tsujikawa, K.

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Uematsu, T.

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Vachon, M.

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Vanderveen, H.

M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993).
[Crossref]

Vanslembrouck, M.

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

Velasco, A. V.

Wang, A.

Wang, J.

J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 030005 (2017).
[Crossref]

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[Crossref] [PubMed]

J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5(1), 9662 (2015).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, Q.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, X. S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Wang, Z.

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wright, E. M.

Wu, K.

Xiang, G. Y.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Xiao, X.

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Xu, D. X.

Xu, J.

Xue, X.

J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).

Yamamoto, F.

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, Q.

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yoo, S. J.

Yu, N.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, S.

Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Yu, Y.

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, D.

D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
[Crossref]

Zhang, S.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, W.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zhang, X.

J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zhang, Y.

Zhao, D.

J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Z. Zhao, J. Wang, S. Li, and A. E. Willner, “Metamaterials-based broadband generation of orbital angular momentum carrying vector beams,” Opt. Lett. 38(6), 932–934 (2013).
[Crossref] [PubMed]

Zhou, Z. Y.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Zhu, L.

Zou, C. L.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
[Crossref]

Adv. Mater. (1)

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (2)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Appl. Phys. Lett. (3)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. Kats, R. Blanchard, M. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108(18), 181103 (2016).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photonics J. (3)

D. Zhang, X. Feng, K. Cui, F. Liu, and Y. Huang, “Generating in-plane optical orbital angular momentum beams with silicon waveguides,” IEEE Photonics J. 5(2), 2201206 (2013).
[Crossref]

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photonics J. 3(3), 381–389 (2011).
[Crossref]

J. Wang, D. Zhao, J. Xu, X. Xue, and X. Zhang, “High-order mode rotator on the SOI integrated platform,” IEEE Photonics J. 8(2), 1–8 (2016).

IEEE Photonics Technol. Lett. (1)

D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, W. Bogaerts, and R. G. Baets, “Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths,” IEEE Photonics Technol. Lett. 27(2), 137–140 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Nano Lett. (2)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Commun. (2)

M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1), 123–132 (1993).
[Crossref]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Opt. Express (10)

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[Crossref] [PubMed]

B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. Yoo, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22(1), 145–156 (2014).
[Crossref] [PubMed]

Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015).
[Crossref] [PubMed]

S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009).
[Crossref] [PubMed]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
[Crossref] [PubMed]

D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Photonics Res. (1)

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5(1), 9662 (2015).
[Crossref] [PubMed]

Science (3)

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Concept and principle of OAM beam generator based on a single-trench waveguide. (b) Cross-section of a single-trench waveguide. (c) The field distributions of two eigenmodes of a single-trench waveguide. (d) Intensity and phase evolutions of combination of eigenmodes for x-polarization.
Fig. 2
Fig. 2 (a) Trench width w, and (b) height h dependences of normalized overlap integrals of two LP-like eigenmodes for x-polarization at 1.55 µm. (c) and (d) show width w, and height h dependences of normalized overlap integral of two LP-like eigenmodes for y-polarization at 1.55 µm, respectively.
Fig. 3
Fig. 3 (a) The effective indices of orthogonal LP-like modes of single-trench waveguide as a function of wavelength for both x- and y-polarizations. (b) The effective index differences of orthogonal LP-like modes of single-trench waveguide as a function of wavelength for both polarizations.
Fig. 4
Fig. 4 (a) Simulated near-field intensity profiles, phase distributions and (b) mode purity of OAM-1 for x-polarization from 1.45 µm to 1.65 µm. (c) Simulated intensity profiles, phase distributions and (d) mode purity of OAM+1 for y-polarization from 1.45 µm to 1.65 µm. Insets are far-field intensity and phase profiles at 1.55µm.
Fig. 5
Fig. 5 Structure dispersion relationship about the effective refractive index and width of silicon waveguide with height of H = 1 µm at a center wavelength of 1.55µm.
Fig. 6
Fig. 6 Schematic structure of an on-chip OAM modes (de)multiplexer (OAM0, OAM ± 1).
Fig. 7
Fig. 7 Simulated mode purity and extinction ratio of (a) OAM0, (b) OAM+1 and (c) OAM-1 by calculating the overlap integrals of the generated OAM beams with corresponding Laguerre-Gaussian beams from 1.52 µm to 1.58 µm.

Tables (1)

Tables Icon

Table 1 Values of structure parameters of on-chip OAM modes (de)multiplexer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L O A M + 1 = π 2 ( β 1 β 2 ) = λ 4 Δ n
L O A M 1 = 3 L O A M + 1 = 3 λ 4 Δ n
P = | E o * ( x , y ) E t ( x , y ) d x d y | 2 | E o ( x , y ) | 2 d x d y | E t ( x , y ) | 2 d x d y ,
E t ( x , y ) = ( 2 r w ) l L p l ( 2 r 2 w 2 ) exp ( i l φ ) exp ( r 2 w 2 i k z ) ,

Metrics