Abstract

It is well known that the absorption efficiency of a suspended monolayer graphene in the optical wavelength rang is only 2.3%, which limits its optoelectronic applications. In this work, we numerically demonstrate dual-band absorption enhancement of monolayer graphene at optical frequency, with the maximum absorption efficiency reaching to about 70% under optimum conditions. The dual-band absorption enhancement arises from the excitations of surface plasmon polaritons and magnetic dipole resonances in metamaterials. The monolayer graphene is sandwiched between a periodic array of Ag nanodisks and a SiO2 spacer supported on an Ag substrate. The resonance wavelengths of two absorption bands arising from surface plasmon polaritons and magnetic dipole resonances can be easily tuned by the array period and the diameter of the Ag nanodisks, respectively. Our designed graphene light absorber may find some potential applications in optoelectronic devices, such as photodetectors.

© 2017 Optical Society of America

1. Introduction

Monolayer graphene, a two-dimensional honeycomb lattice of carbon atoms, has been drawing increasing attentions in recent years, thanks to its outstanding electrical, mechanical and chemical properties [1]. The complex surface conductivity of graphene can be tuned by doping or gating, which has a wide variety of applications such as photodetection, photovoltage, photocatalyst, and so on [1]. The potential of graphene is also rising in photonics and optoelectronics, plasmonics, and metamaterials [1]. The inter-band optical absorption in a suspended monolayer graphene characterized by its fine-structure constant is known to have a universal value of 2.3% at a normal angle of incidence [2]. Such a poor optical absorption limits the applications of graphene in optoelectronics. Recently, there have been many efforts to enhance the electromagnetic wave absorption of graphene in a wide spectra range including GHz [3, 4], THz [5–20], infrared [21–45], and optical frequency [46–57]. The physical mechanisms behind the absorption enhancement of graphene include propagating or localized surface plasmon resonances [5, 15, 17, 18, 23, 24, 30, 31, 33, 37, 38, 40, 42, 44, 45, 54], guided-mode resonances [22, 28, 29, 50, 51, 55–57], Fabry-Perot cavity resonances [3, 6, 8, 10, 11], interference effects [4, 13, 16, 32], total internal reflection [20, 21, 47–49], magnetic dipole resonances [14, 25, 27, 36, 41, 53], etc. At the same time, there is also increasing interest to make graphene absorbers of electromagnetic waves as efficient and effective as possible through carefully engineering their versatile properties like tunability [8, 10, 12–14, 16, 18, 19, 30–32, 36, 45], broad bandwidth [3, 11, 15, 17, 18, 25, 40, 42, 46, 47], broad incident angle [9, 12, 14, 21, 23, 33, 36, 39, 40, 45, 53,54], and polarization independence [12, 14, 21, 23, 33, 39, 40, 43]. Dual-band or multi-band is also one of the most important performances of graphene absorbers, which has been investigated in THz and infrared regions [5, 9, 11, 14, 15, 17, 18, 23, 25, 27, 32, 33, 36, 40, 42]. However, in visible region, there are only a few researches on dual-band light absorption enhancement of monolayer graphene.

In this work, we will numerically investigate dual-band absorption enhancement of monolayer graphene in visible region, with the maximum absorption efficiency reaching to about 70% under optimum conditions. The dual-band absorption enhancement arises from the excitations of surface plasmon polaritons and magnetic dipole resonances in metamaterials. The monolayer graphene is sandwiched between a periodic array of Ag nanodisks and a SiO2 spacer supported on an Ag substrate. The influences of geometrical parameters on the light absorption of the monolayer graphene are studied in detail. It is found that the resonance wavelengths of two high-absorption bands arising from surface plasmon polaritons and magnetic dipole resonances can be easily tuned by the array period and the diameter of the Ag nanodisks, respectively. Our designed graphene light absorber may find some potential applications in optoelectronic devices such as photodetectors.

2. Results and discussions

Figure 1 shows schematically the unit cell of the designed metamaterials for dual-band light absorption enhancement of monolayer graphene. The monolayer graphene is sandwiched between the Ag nanodisk and the SiO2 spacer supported on an Ag substrate. The Ag nanodisk is supposed to lie on the xy plane, with the coordinate origin located at the center of the SiO2 spacer. Light is normally incident in the negative z-axis direction, with its polarization along the x-axis direction. The commercial software package“EastFDTD”, which is based on finite difference time domain (FDTD) method [58], is used to calculate the reflection and absorption spectra, and the electromagnetic field distributions. In numerical calculations, the frequency-dependent relative permittivity of Ag is taken from experimental data [59], and the refractive index of SiO2 is taken to be 1.45. Under the random-phase approximation, the surface conductivity σ of graphene includes the intraband term σintra and the interband term σinter [60, 61], where

σintra=ie2kBTπ2(ω+i/τ)(EfkBT+2ln(eEfkBT+1)),σinter=ie24πln(2Ef(ω+i/τ)2Ef+(ω+i/τ)).
Here, ω is the frequency of the incident light, e is the electron charge, ħ is the reduced Planck’s constants, Ef is the Fermi energy (or chemical potential), τ is electron-phonon relaxation time, kB is the Boltzmann constant, and T is a temperature in K. The graphene’s effective permittivity εg could be written as εg = 1 + /(ε0ωtg), where ε0 is the permittivity in the vacuum, tg is the thickness of graphene sheet. In our calculations, Ef = 0.50 eV, τ = 0.50 ps, T = 300 K, tg = 0.35 nm. Although this work focuses on numerical investigation, the designed graphene metamaterials may be realized experimentally by the following procedures [62]: the SiO2 spacer is first coated on the Ag substrate through thermal evaporation, and then the monolayer graphene is coated on the top of the SiO2 spacer after a chemical vapor deposition (CVD), finally the Ag nanodisk array is fabricated on the monolayer graphene with sufficiently high quality factors.

 figure: Fig. 1

Fig. 1 Schematic of metamaterials for dual-band light absorption enhancement of monolayer graphene. px and py are the array periods along the x and y directions. t is the thickness of the SiO2 spacer. d and h are the diameter and the height of the Ag nanodisk. Ein, Hin, and Kin are the electric field, magnetic field, and wave vector of the incident light, which are along the x, y, and z axes, respectively.

Download Full Size | PPT Slide | PDF

Figure 2 shows the calculated absorption spectra of graphene, Ag, and total metamaterials, under normal incidence of light. Two resonance modes are found, which are centered at wavelengths of λ1 = 545.5 nm and λ2 = 784.5 nm. For resonance mode λ1, the normalized absorptions of graphene, Ag, and total metamaterials are 0.35, 0.55, and 0.90, respectively. For resonance mode λ2, the corresponding normalized absorptions are 0.72, 0.15, and 0.87, respectively. It is well-known that the absorption efficiency of a suspended monolayer graphene in the optical wavelength rang is only 2.3%, which limits its optoelectronic applications [2]. Obviously, the absorption efficiency of the monolayer graphene in our designed metamaterials is enhanced noticeably. We hope that the designed graphene light absorber could find some potential applications in optoelectronic devices, such as photodetectors. However, for practical applications of photodetectors, high light absorption in graphene is only a necessary condition, there are still many steps ahead [63, 64]. For example, the electrodes must be deliberately integrated into the graphene absorbers.

 figure: Fig. 2

Fig. 2 Normal-incidence absorption spectra of graphene (black square), Ag (red circle), and total metamaterials (green triangle) in the wavelength range from 500 to 1000 nm. Geometrical parameters: d = 150 nm, h = 50 nm, t = 30 nm, px = py = 500 nm.

Download Full Size | PPT Slide | PDF

In order to well understand the physical mechanisms underlined two resonance modes, in Fig. 3 we plot the electric and magnetic field distributions at the resonance wavelengths of λ1 and λ2. For resonance mode λ1, in Figs. 3(a) and 3(b) one can see that parallel electromagnetic field bands stretching along the y-axis direction are formed, although they are disturbed near the Ag nanodisk. In fact, such electromagnetic field distributions correspond to the excitation of surface plasmon polaritons [65]. For resonance mode λ2, in Figs. 3(c) and 3(d) it is clearly seen that the electric fields are mainly concentrated near the edge of the Ag nanodisk, with two field “hotspots” on the left and right sides extending into the SiO2 spacer; and the magnetic fields are highly confined within the SiO2 spacer, with a maximum under the Ag nanodisk. Such distribution properties of electromagnetic fields are the typical characteristics of a magnetic dipole resonance [66].

 figure: Fig. 3

Fig. 3 Normalized electric field intensity (E/Ein)2 and magnetic field intensity (H/Hin)2 on the xoz plane across the center of the SiO2 spacers, at the resonance wavelengths of λ1 and λ2 labeled in Fig. 2. Red arrows represent the field direction, and colors show the field strength.

Download Full Size | PPT Slide | PDF

In the following, we will investigate in detail the influences of geometrical parameters on the graphene absorption. We firstly investigate the influences of the size of the Ag nanodisk. For this purpose, Fig. 4 presents the normal-incidence absorption spectra of a series of graphene metamaterials, with the diameter d of the Ag nanodisk decreased from 150 to 110 nm in steps of 10 nm. When d is decreased, resonance mode λ2 will have an obvious blue-shift, while resonance mode λ1 almost has no shift. This is because resonance mode λ2 is related to a magnetic dipole resonance whose position depends strongly on the diameter of the Ag nanodisk, and resonance mode λ1 origins from surface plasmon polaritons whose excitation wavelength is determined by the period of the Ag nanodisk array. At the same time, the monolayer graphene retains the light absorptions of about 35% and 70% for two resonance modes, respectively.

 figure: Fig. 4

Fig. 4 Normal-incidence absorption spectra of monolayer graphene in the wavelength range from 500 to 1000 nm. The diameter d of the Ag nanodisk is varied from 150 to 110 nm, and the other geometrical parameters are the same as those in Fig. 2.

Download Full Size | PPT Slide | PDF

Then, we investigate the influences of the period of the Ag nanodisk array on the light absorption of the monolayer graphene. To do this, in Fig. 5 we present the normal-incidence absorption spectra of a series of graphene metamaterials, with the period px along the x-axis direction increased from 500 to 700 nm in steps of 50 nm. With increasing period px, resonance mode λ1 will be red-shifted noticeably because the excitation wavelength of surface plasmon polaritons becomes larger, and the light absorption of the monolayer graphene is enhanced from 35% to 60%. For the period px to be increased continuously, however, resonance mode λ2 is only red-shifted slightly, since the excitation wavelength of the magnetic dipole resonance is insensitive to the period of the Ag nanodisk array. Simultaneously, the graphene absorption has a slight enhancement when the period px is increased.

 figure: Fig. 5

Fig. 5 Normal-incidence absorption spectra of monolayer graphene in the wavelength range from 500 to 1000 nm. The period px along the x-axis direction is varied from 500 to 700 nm, and the other geometrical parameters are the same as those in Fig. 2.

Download Full Size | PPT Slide | PDF

To further confirm that resonance mode λ1 is closely related to the excitations of surface plasmon polaritons, in Fig. 6 we compare the resonance wavelengths of surface plasmon polaritons and absorption peak λ1 for the period along the x-axis direction px = 500, 550, 600, 650, and 700 nm. It is clearly seen that surface plasmon polaritons are also red-shifted when px is increased, which are on the whole consistent with absorption peak λ1 in resonance positions. The differences of the resonance wavelengths of surface plasmon polaritons and absorption peak λ1 are mainly because of the inhomogeneous superstrate of Ag substrate.

 figure: Fig. 6

Fig. 6 The resonance wavelengths of surface plasmon polaritons (SPPs) and absorption peak λ1 labeled in Fig. 5. The period px along the x-axis direction is varied from 500 to 700 nm in steps of 50 nm, and the other geometrical parameters are the same as those in Fig. 2.

Download Full Size | PPT Slide | PDF

3. Conclusion

In summary, we have numerically investigated dual-band absorption enhancement of monolayer graphene at optical frequency, origining from surface plasmon polaritons and magnetic dipole resonances in metamaterials. The monolayer graphene is sandwiched between a periodic array of Ag nanodisks and a SiO2 spacer supported on an Ag substrate. We have studied in detail the influences of geometrical parameters on the light absorption of the monolayer graphene. The resonance wavelength of the absorption peak origining from surface plasmon polaritons can be easily tuned by the array period, and the light absorption of the monolayer graphene can be enhanced from about 35% to 60%. The resonance wavelength of the absorption peak origining from magnetic dipole resonances can be easily tuned by the diameter of the Ag nanodisk, and the monolayer graphene retains the light absorptions of about 70%. We hope that our designed graphene metamaterials could find some potential applications in optoelectronic devices, such as photodetectors.

Funding

National Natural Science Foundation of China (NSFC) (11304159 and 11104136); Natural Science Foundation of Zhejiang Province (LY14A040004); Natural Science Foundation of Jiangsu Province (BK20161512); Qing Lan Project of Jiangsu Province; Specialized Research Fund for the Doctoral Program of Higher Education of China (20133223120006); NUPTSF (NY217045); Open Project of State Key Laboratory of Millimeter Waves (No. K201821).\

References and links

1. A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015). [CrossRef]   [PubMed]  

2. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008). [CrossRef]  

3. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015). [CrossRef]   [PubMed]  

4. K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016). [CrossRef]  

5. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).

6. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012). [CrossRef]   [PubMed]  

7. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013). [CrossRef]   [PubMed]  

8. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013). [CrossRef]   [PubMed]  

9. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express 21(10), 11618–11627 (2013). [CrossRef]   [PubMed]  

10. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013). [CrossRef]   [PubMed]  

11. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013). [CrossRef]   [PubMed]  

12. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014). [CrossRef]   [PubMed]  

13. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014). [CrossRef]   [PubMed]  

14. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015). [CrossRef]   [PubMed]  

15. S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015). [CrossRef]   [PubMed]  

16. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015). [CrossRef]   [PubMed]  

17. X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016). [CrossRef]   [PubMed]  

18. P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption,” Phys. Rev. Appl. 6(4), 044019 (2016). [CrossRef]  

19. N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016). [CrossRef]  

20. Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe II, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017). [CrossRef]  

21. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef]   [PubMed]  

22. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012). [CrossRef]   [PubMed]  

23. T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012). [CrossRef]  

24. A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012). [CrossRef]  

25. S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013). [CrossRef]   [PubMed]  

26. I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013). [CrossRef]  

27. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014). [CrossRef]  

28. Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014). [CrossRef]  

29. J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014). [CrossRef]  

30. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014). [CrossRef]   [PubMed]  

31. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014). [CrossRef]  

32. V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015). [CrossRef]   [PubMed]  

33. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015). [CrossRef]   [PubMed]  

34. T. H. Xiao, L. Gan, and Z. Y. Li, “Efficient manipulation of graphene absorption by a simple dielectric cylinder,” Opt. Express 23(15), 18975–18987 (2015). [CrossRef]   [PubMed]  

35. F. Liu, L. Chen, Q. Guo, J. Chen, X. Zhao, and W. Shi, “Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths,” Opt. Express 23(16), 21097–21106 (2015). [CrossRef]   [PubMed]  

36. S. Lee, T. Q. Tran, M. Kim, H. Heo, J. Heo, and S. Kim, “Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect,” Opt. Express 23(26), 33350–33358 (2015). [CrossRef]   [PubMed]  

37. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015). [CrossRef]   [PubMed]  

38. M. Jablan and D. E. Chang, “Multiplasmon Absorption in Graphene,” Phys. Rev. Lett. 114(23), 236801 (2015). [CrossRef]   [PubMed]  

39. M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015). [CrossRef]   [PubMed]  

40. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015). [CrossRef]   [PubMed]  

41. L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016). [CrossRef]   [PubMed]  

42. B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016). [CrossRef]   [PubMed]  

43. C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016). [CrossRef]  

44. H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016). [CrossRef]   [PubMed]  

45. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016). [CrossRef]   [PubMed]  

46. J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012). [CrossRef]  

47. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013). [CrossRef]   [PubMed]  

48. Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013). [CrossRef]  

49. W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013). [CrossRef]   [PubMed]  

50. J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014). [CrossRef]  

51. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014). [CrossRef]   [PubMed]  

52. T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014). [CrossRef]   [PubMed]  

53. Y. J. Cai, J. F. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015). [CrossRef]  

54. J. Niu, M. Luo, J. Zhu, and Q. H. Liu, “Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method,” Opt. Express 23(4), 4539–4551 (2015). [CrossRef]   [PubMed]  

55. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015). [CrossRef]   [PubMed]  

56. G. Zheng, H. Zhang, L. Xu, and Y. Liu, “Enhanced absorption of graphene monolayer with a single-layer resonant grating at the Brewster angle in the visible range,” Opt. Lett. 41(10), 2274–2277 (2016). [CrossRef]   [PubMed]  

57. Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016). [CrossRef]   [PubMed]  

58. Website, www.eastfdtd.com.

59. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

60. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013). [CrossRef]   [PubMed]  

61. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014). [CrossRef]   [PubMed]  

62. B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014). [CrossRef]  

63. X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013). [CrossRef]  

64. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014). [CrossRef]   [PubMed]  

65. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]  

66. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
    [Crossref] [PubMed]
  2. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
    [Crossref]
  3. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
    [Crossref] [PubMed]
  4. K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
    [Crossref]
  5. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
  6. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  7. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref] [PubMed]
  8. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  9. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express 21(10), 11618–11627 (2013).
    [Crossref] [PubMed]
  10. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
    [Crossref] [PubMed]
  11. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  12. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  13. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref] [PubMed]
  14. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
    [Crossref] [PubMed]
  15. S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
    [Crossref] [PubMed]
  16. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015).
    [Crossref] [PubMed]
  17. X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
    [Crossref] [PubMed]
  18. P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
    [Crossref]
  19. N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
    [Crossref]
  20. Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
    [Crossref]
  21. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  22. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
    [Crossref] [PubMed]
  23. T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
    [Crossref]
  24. A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
    [Crossref]
  25. S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
    [Crossref] [PubMed]
  26. I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013).
    [Crossref]
  27. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]
  28. Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
    [Crossref]
  29. J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
    [Crossref]
  30. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  31. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
    [Crossref]
  32. V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
    [Crossref] [PubMed]
  33. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref] [PubMed]
  34. T. H. Xiao, L. Gan, and Z. Y. Li, “Efficient manipulation of graphene absorption by a simple dielectric cylinder,” Opt. Express 23(15), 18975–18987 (2015).
    [Crossref] [PubMed]
  35. F. Liu, L. Chen, Q. Guo, J. Chen, X. Zhao, and W. Shi, “Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths,” Opt. Express 23(16), 21097–21106 (2015).
    [Crossref] [PubMed]
  36. S. Lee, T. Q. Tran, M. Kim, H. Heo, J. Heo, and S. Kim, “Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect,” Opt. Express 23(26), 33350–33358 (2015).
    [Crossref] [PubMed]
  37. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
    [Crossref] [PubMed]
  38. M. Jablan and D. E. Chang, “Multiplasmon Absorption in Graphene,” Phys. Rev. Lett. 114(23), 236801 (2015).
    [Crossref] [PubMed]
  39. M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
    [Crossref] [PubMed]
  40. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
    [Crossref] [PubMed]
  41. L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
    [Crossref] [PubMed]
  42. B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
    [Crossref] [PubMed]
  43. C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
    [Crossref]
  44. H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
    [Crossref] [PubMed]
  45. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
    [Crossref] [PubMed]
  46. J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
    [Crossref]
  47. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref] [PubMed]
  48. Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
    [Crossref]
  49. W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013).
    [Crossref] [PubMed]
  50. J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  51. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
    [Crossref] [PubMed]
  52. T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
    [Crossref] [PubMed]
  53. Y. J. Cai, J. F. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
    [Crossref]
  54. J. Niu, M. Luo, J. Zhu, and Q. H. Liu, “Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method,” Opt. Express 23(4), 4539–4551 (2015).
    [Crossref] [PubMed]
  55. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
    [Crossref] [PubMed]
  56. G. Zheng, H. Zhang, L. Xu, and Y. Liu, “Enhanced absorption of graphene monolayer with a single-layer resonant grating at the Brewster angle in the visible range,” Opt. Lett. 41(10), 2274–2277 (2016).
    [Crossref] [PubMed]
  57. Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
    [Crossref] [PubMed]
  58. Website, www.eastfdtd.com .
  59. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  60. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
    [Crossref] [PubMed]
  61. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
    [Crossref] [PubMed]
  62. B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014).
    [Crossref]
  63. X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
    [Crossref]
  64. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  65. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  66. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]

2017 (1)

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

2016 (11)

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
[Crossref] [PubMed]

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
[Crossref] [PubMed]

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref] [PubMed]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

G. Zheng, H. Zhang, L. Xu, and Y. Liu, “Enhanced absorption of graphene monolayer with a single-layer resonant grating at the Brewster angle in the visible range,” Opt. Lett. 41(10), 2274–2277 (2016).
[Crossref] [PubMed]

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

2015 (17)

Y. J. Cai, J. F. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

J. Niu, M. Luo, J. Zhu, and Q. H. Liu, “Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method,” Opt. Express 23(4), 4539–4551 (2015).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
[Crossref] [PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

T. H. Xiao, L. Gan, and Z. Y. Li, “Efficient manipulation of graphene absorption by a simple dielectric cylinder,” Opt. Express 23(15), 18975–18987 (2015).
[Crossref] [PubMed]

F. Liu, L. Chen, Q. Guo, J. Chen, X. Zhao, and W. Shi, “Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths,” Opt. Express 23(16), 21097–21106 (2015).
[Crossref] [PubMed]

S. Lee, T. Q. Tran, M. Kim, H. Heo, J. Heo, and S. Kim, “Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect,” Opt. Express 23(26), 33350–33358 (2015).
[Crossref] [PubMed]

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
[Crossref] [PubMed]

M. Jablan and D. E. Chang, “Multiplasmon Absorption in Graphene,” Phys. Rev. Lett. 114(23), 236801 (2015).
[Crossref] [PubMed]

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
[Crossref] [PubMed]

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015).
[Crossref] [PubMed]

2014 (13)

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014).
[Crossref]

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
[Crossref] [PubMed]

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

2013 (12)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013).
[Crossref] [PubMed]

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[Crossref] [PubMed]

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express 21(10), 11618–11627 (2013).
[Crossref] [PubMed]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

2012 (7)

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
[Crossref]

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

2010 (1)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

2008 (1)

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ahn, J. H.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Ajayan, P. M.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Aközbek, N.

Alaee, R.

Altan, H.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Amin, M.

Andryieuski, A.

Anugrah, Y.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Assefa, S.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Atwater, H. A.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Bachtold, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Bagci, H.

Balci, O.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Ballerini, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Barbone, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Batrakov, K.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Belov, P. A.

I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013).
[Crossref]

Berini, P.

B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014).
[Crossref]

Bianco, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Bianco, G. V.

Bøggild, P.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Bonaccorso, F.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Borini, S.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Brar, V. W.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Brongersma, M. L.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Bruno, G.

Cai, Y. J.

Y. J. Cai, J. F. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Capolino, F.

Chadha, A.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Chang, D. E.

M. Jablan and D. E. Chang, “Multiplasmon Absorption in Graphene,” Phys. Rev. Lett. 114(23), 236801 (2015).
[Crossref] [PubMed]

Chen, J.

Chen, L.

Chen, P.

Chen, Q.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Chen, X. D.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Chen, Y. Q.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Cheng, X.

Choi, M.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Coleman, J. N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Colombo, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Cui, Y.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Cumming, B. P.

D’Orazio, A.

Dai, X.

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

de Abajo, F. J. G.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

de Ceglia, D.

De Vittorio, M.

Dekker, C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Deng, B.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Deng, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Deng, Z. C.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Di Matteo, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Duan, X. F.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Englund, D.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Fal’ko, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Fan, S. H.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Fan, Y.

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Farhat, M.

Farmer, D. B.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Feng, X.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Feng, Y.

Ferrari, A. C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Ferreira, A.

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

Fert, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Galiotis, C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Gan, L.

Gan, Q.

Gan, X.

Gan, X. T.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Gao, Y. D.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

García de Abajo, F. J.

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Garcia-Hernandez, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).

Garrido, J. A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Ge, L.

George, P.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Ghamsari, B. G.

B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014).
[Crossref]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Gómez-Santos, G.

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Grande, M.

Grigorenko, A. N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Gu, C. Q.

Gu, M.

Guclu, C.

Guinea, F.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).

Guo, C. C.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Guo, J.

Guo, Q.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

F. Liu, L. Chen, Q. Guo, J. Chen, X. Zhao, and W. Shi, “Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths,” Opt. Express 23(16), 21097–21106 (2015).
[Crossref] [PubMed]

Hakonen, P.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Han, D.

Han, S. J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Harada, Y.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Hasdeo, E. H.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Heinz, T. F.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Heo, H.

Heo, J.

Hone, J.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Hong, B. H.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Hu, C.

Hu, J. H.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Hu, X.

Hu, X. H.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
[Crossref]

Huang, C.

Huang, H.

Huang, J.-H.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Huang, Y. Q.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Hwang, H. Y.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Iorsh, I. V.

I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013).
[Crossref]

Jablan, M.

M. Jablan and D. E. Chang, “Multiplasmon Absorption in Graphene,” Phys. Rev. Lett. 114(23), 236801 (2015).
[Crossref] [PubMed]

Jang, M. S.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Jia, B.

Jia, Y. C.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Jian, S.

Jiang, T.

Jin, L.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Jing Li, X.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kakenov, N.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Kang, J. H.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Kaplas, T.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Katsnelson, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Ke, S.

Kik, P. G.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Kim, J. M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Kim, L.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Kim, M.

Kim, S.

S. Lee, T. Q. Tran, M. Kim, H. Heo, J. Heo, and S. Kim, “Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect,” Opt. Express 23(26), 33350–33358 (2015).
[Crossref] [PubMed]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Kinaret, J.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Kinloch, I. A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Kis, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Kivioja, J.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013).
[Crossref]

Kocabas, C.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Koester, S. J.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Kong, J.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Kong, X. T.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Kono, J.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Konstantatos, G.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Koppens, F. H. L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Kuzhir, P.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Lambin, Ph.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Lavrinenko, A. V.

Lederer, F.

Lee, S.

Li, C.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Li, H.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Li, J.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Li, M.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Li, Y.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Li, Z.

Li, Z. Y.

Lidorikis, E.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Lin, Z.

Ling, X.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Liu, F.

Liu, J.-T.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, K.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Liu, N.-H.

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

Liu, Q. H.

J. Niu, M. Luo, J. Zhu, and Q. H. Liu, “Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method,” Opt. Express 23(4), 4539–4551 (2015).
[Crossref] [PubMed]

Y. J. Cai, J. F. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, X. H.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
[Crossref]

Liu, Y.

Liu, Y. H.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Liu, Z. B.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Löfwander, T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Loiseau, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Long, H.

Long, Y.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Lopez, J. J.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Lu, H.

Lu, P.

Lu, Z.

Luo, M.

Luo, X.

Ma, Z. Q.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Maksimenko, S.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Mao, D.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Marinelli, C.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Martin-Moreno, L.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).

Menon, L.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Meric, I.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Milaninia, K. M.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Morandi, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Morpurgo, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Neil, S. R. T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Neumaier, D.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Nicolosi, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Nikitin, A. Yu.

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).

Niu, J.

Niu, Z. Y.

Noe, G. T.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Nugraha, A. R. T.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Occhipinti, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Olivieri, A.

B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014).
[Crossref]

Othman, M. A. K.

Ozkan, V. A.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Paddubskaya, A.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Palermo, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Papasimakis, N.

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Pellegrini, V.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Peres, N. M. R.

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

Petruzzelli, V.

Piper, J. R.

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Polini, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Prato, M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Pu, M.

Pugno, N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Qin, S.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
[Crossref] [PubMed]

Qin, S. Q.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Quesnel, E.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Rana, F.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Ren, G.

Ren, X. M.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Roche, S.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Rockstuhl, C.

Rupesinghe, N.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Ryhänen, T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Saito, R.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Sakai, Y.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Scalora, M.

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Schneider, G. F.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Seyller, T.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Shadrivov, I. V.

I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013).
[Crossref]

Shen, L.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Shepard, K.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Sherrott, M. C.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Shi, K.

Shi, W.

Shi, X.

Shiue, R. J.

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Shuai, Y. C.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Song, S.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Sordan, R.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Srinivasan, S. K.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Stauber, T.

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Stomeo, T.

Strait, J.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Su, Z.

Sun, F.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Sun, Z.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Svirko, Yu.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Takan, T.

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Tang, D.

Tang, L.

Tannock, Q.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Teo, K.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Thareja, V.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tian, J. G.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Tran, T. Q.

Tredicucci, A.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Treossi, E.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Tsai, D. P.

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Ukhtary, M. S.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Vajtai, R.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Valusis, G.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

van der Zant, H.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

van Wees, B. J.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Vandersypen, L.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Variola, F.

B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014).
[Crossref]

Veksler, D.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Vincenti, M. A.

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Volynets, N.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Voronovich, S.

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Wang, B.

Wang, C.

Wang, H.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Wang, J.

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015).
[Crossref] [PubMed]

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, K.

Wang, L.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Wang, M. J.

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Wang, Q.

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Wang, W.

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express 21(10), 11618–11627 (2013).
[Crossref] [PubMed]

Wei, W.

Wei, Z.

Wen, S.

Wen, X.

Williams, G. M.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Wu, P. C.

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Xia, F.

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

Xia, F. N.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Xiang, Y.

Xiao, T. H.

Xing, F.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Xiong, F.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
[Crossref] [PubMed]

Xu, B. Z.

Xu, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Xu, L.

Xu, W.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Yang, H. J.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Yang, Y.

Ye, Q.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Ye, W. M.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Yi, S.

Yin, J.

Yu, Z.

Yuan, H.

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Yuan, X.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
[Crossref] [PubMed]

Yuan, X. D.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zhai, X.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Zhan, T. R.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
[Crossref]

Zhang, C. P.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, J.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
[Crossref] [PubMed]

Zhang, J. F.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Zhang, L.

Zhang, M.

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

Zhang, X.

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

Zhang, Y.

Zhang, Z. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, B.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, D. Y.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhao, F. Y.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
[Crossref]

Zhao, J.

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, Q.

Zhao, W.

Zhao, X.

Zhao, Z.

Zheng, G.

Zheng, S.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, M.

Zhou, W. D.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhou, W. Y.

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Zhu, B.

Zhu, J.

Zhu, J. F.

Y. J. Cai, J. F. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Zhu, Z.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
[Crossref] [PubMed]

Zhu, Z. H.

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Zi, J.

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
[Crossref]

Zirath, H.

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

ACS Nano (2)

B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref] [PubMed]

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

J. R. Piper and S. H. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

N. Kakenov, O. Balci, T. Takan, V. A. Ozkan, H. Altan, and C. Kocabas, “Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene,” ACS Photonics 3(9), 1531–1535 (2016).
[Crossref]

Y. Harada, M. S. Ukhtary, M. J. Wang, S. K. Srinivasan, E. H. Hasdeo, A. R. T. Nugraha, G. T. Noe, Y. Sakai, R. Vajtai, P. M. Ajayan, R. Saito, and J. Kono, “Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry,” ACS Photonics 4(1), 121–126 (2017).
[Crossref]

Adv. Opt. Mater. (1)

C. C. Guo, Z. H. Zhu, X. D. Yuan, W. M. Ye, K. Liu, J. F. Zhang, W. Xu, and S. Q. Qin, “Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures,” Adv. Opt. Mater. 4(12), 1955–1960 (2016).
[Crossref]

Appl. Phys. Lett. (10)

Q. Ye, J. Wang, Z. B. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Y. J. Cai, J. F. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101(5), 052104 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

J. H. Hu, Y. Q. Huang, X. F. Duan, Q. Wang, X. Zhang, J. Wang, and X. M. Ren, “Enhanced absorption of graphene strips with a multilayer subwavelength grating Structure,” Appl. Phys. Lett. 105(22), 221113 (2014).
[Crossref]

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

K. Batrakov, P. Kuzhir, S. Maksimenko, N. Volynets, S. Voronovich, A. Paddubskaya, G. Valusis, T. Kaplas, Yu. Svirko, and Ph. Lambin, “Enhanced microwave-to-terahertz absorption in graphene,” Appl. Phys. Lett. 108(12), 123101 (2016).
[Crossref]

Nano Lett. (2)

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik, and M. L. Brongersma, “Electrically tunable coherent optical absorption in graphene with ion gel,” Nano Lett. 15(3), 1570–1576 (2015).
[Crossref] [PubMed]

Nanophotonics (1)

B. G. Ghamsari, A. Olivieri, F. Variola, and P. Berini, “Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission,” Nanophotonics 3(6), 363–371 (2014).
[Crossref]

Nanoscale (2)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale 7(11), 4598–4810 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

X. T. Gan, R. J. Shiue, Y. D. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Opt. Express (20)

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002–20009 (2016).
[Crossref] [PubMed]

J. Niu, M. Luo, J. Zhu, and Q. H. Liu, “Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method,” Opt. Express 23(4), 4539–4551 (2015).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

T. H. Xiao, L. Gan, and Z. Y. Li, “Efficient manipulation of graphene absorption by a simple dielectric cylinder,” Opt. Express 23(15), 18975–18987 (2015).
[Crossref] [PubMed]

F. Liu, L. Chen, Q. Guo, J. Chen, X. Zhao, and W. Shi, “Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths,” Opt. Express 23(16), 21097–21106 (2015).
[Crossref] [PubMed]

S. Lee, T. Q. Tran, M. Kim, H. Heo, J. Heo, and S. Kim, “Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect,” Opt. Express 23(26), 33350–33358 (2015).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

X. Shi, L. Ge, X. Wen, D. Han, and Y. Yang, “Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale,” Opt. Express 24(23), 26357–26362 (2016).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express 21(10), 11618–11627 (2013).
[Crossref] [PubMed]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. Appl. (1)

P. C. Wu, N. Papasimakis, and D. P. Tsai, “Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption,” Phys. Rev. Appl. 6(4), 044019 (2016).
[Crossref]

Phys. Rev. B (6)

A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B 86(16), 165416 (2012).
[Crossref]

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

I. V. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Cavity-enhanced absorption and Fano resonances in graphene nanoribbons,” Phys. Rev. B 88(19), 195422 (2013).
[Crossref]

Phys. Rev. Lett. (3)

T. Stauber, G. Gómez-Santos, and F. J. García de Abajo, “Extraordinary absorption of decorated undoped graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

M. Jablan and D. E. Chang, “Multiplasmon Absorption in Graphene,” Phys. Rev. Lett. 114(23), 236801 (2015).
[Crossref] [PubMed]

Sci. Rep. (5)

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping,” Sci. Rep. 5(1), 16998 (2015).
[Crossref] [PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref] [PubMed]

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Other (1)

Website, www.eastfdtd.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of metamaterials for dual-band light absorption enhancement of monolayer graphene. px and py are the array periods along the x and y directions. t is the thickness of the SiO2 spacer. d and h are the diameter and the height of the Ag nanodisk. Ein, Hin, and Kin are the electric field, magnetic field, and wave vector of the incident light, which are along the x, y, and z axes, respectively.
Fig. 2
Fig. 2 Normal-incidence absorption spectra of graphene (black square), Ag (red circle), and total metamaterials (green triangle) in the wavelength range from 500 to 1000 nm. Geometrical parameters: d = 150 nm, h = 50 nm, t = 30 nm, px = py = 500 nm.
Fig. 3
Fig. 3 Normalized electric field intensity ( E / E in )2 and magnetic field intensity ( H / H in )2 on the xoz plane across the center of the SiO2 spacers, at the resonance wavelengths of λ1 and λ2 labeled in Fig. 2. Red arrows represent the field direction, and colors show the field strength.
Fig. 4
Fig. 4 Normal-incidence absorption spectra of monolayer graphene in the wavelength range from 500 to 1000 nm. The diameter d of the Ag nanodisk is varied from 150 to 110 nm, and the other geometrical parameters are the same as those in Fig. 2.
Fig. 5
Fig. 5 Normal-incidence absorption spectra of monolayer graphene in the wavelength range from 500 to 1000 nm. The period px along the x-axis direction is varied from 500 to 700 nm, and the other geometrical parameters are the same as those in Fig. 2.
Fig. 6
Fig. 6 The resonance wavelengths of surface plasmon polaritons (SPPs) and absorption peak λ1 labeled in Fig. 5. The period px along the x-axis direction is varied from 500 to 700 nm in steps of 50 nm, and the other geometrical parameters are the same as those in Fig. 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ int r a = i e 2 k B T π 2 ( ω + i / τ ) ( E f k B T + 2 ln ( e E f k B T + 1 ) ) , σ int e r = i e 2 4 π ln ( 2 E f ( ω + i / τ ) 2 E f + ( ω + i / τ ) ) .

Metrics