Abstract

We address the propagation dynamics of the spiraling elliptic beams in nonlocal nonlinear media with losses based on the variational approach. It is found that the spiraling elliptic beams exhibit complicated behaviors, which result from the combined effects of the losses and orbital angular momentum (OAM). The OAM brings in an effective anisotropic diffraction and rotation for the spiraling elliptic beams. However, due to the losses, the rotation of the spiraling beams slows down. Besides, the ellipticity of the spiraling elliptic beams is greatly affected by the lossesand the OAM. When the OAM is not equal to its critical value, a periodic oscillation of the ellipticity is found in the presence of losses. However, when the OAM is equal to the critical one, the ellipticity of the spiraling elliptic beam remains unchanged during propagation regardless of the loss factor. The comparisons between our approximate analytic solutions and numerical simulations confirm our results.

© 2017 Optical Society of America

1. Introduction

The technologies associated with orbital angular momentum (OAM), including spatial light modulators and hologram design, have found their own applications ranging from optical tweezers to microscopy [1]. A kind of spiraling elliptic beams carrying the OAM have attracted quite a lot of interest in recent years [2–7]. It was demonstrated in [2] that the contribution of OAM to the dynamics of elliptic beams in nonlinear self-focusing media is twofold. First, it effectively strengthens the diffraction against self-focusing, which can suppress collapse in Kerr media. Second, it preserves the elliptic profile of stably rotating solitons in optical media with collapse-free nonlinearities. The role of OAM in the formation of the spiraling elliptic beams was then systematically discussed in [3], where it was found that the OAM results in the effective anisotropic diffraction. The OAM enhances the diffraction in the major axis direction and weakens the diffraction in the minor axis direction. The dynamical properties of the spiraling elliptic beams in nonlocal nonlinear media were analytically discussed in [4], and the exact analytical solution was derived in the strongly nonlocal nonlinear limit (called the Snyder-Mitchell model [8]). Very recently, the spiraling elliptic soliton in a finite nematic liquid crystal cell was studied in [5], which shows that a shelf of radiation forms under the spiraling elliptic solitons radiating momentum. In addition, the dynamics of spiraling elliptic beams were discussed in the saturable nonlinear media with linear anisotropy, where the linear anisotropy exhibits an important effect on the dynamics of spiraling elliptic beams. The rotation and the molecule-like libration were predicated for small and large linear anisotropy, respectively.

To observe the spiraling elliptic solitons experimentally, a factor that must be considered is the losses, which more or less affect the propagation properties of spiraling elliptic solitons obtained in lossless situation. To our knowledge the propagation dynamics of the spiraling elliptic beams in lossy nonlinear media have not been reported. In this paper, taking into the loss factor, we discuss the propagation properties of spiraling elliptic beams in nonlocal nonlinear media. Our theoretical analysis will pave the way for the experimental observation of the spiraling elliptic solitons in nonlocal nonlinear media, such as nematic liquid crystal (NLC) [9–12], lead glass [13,14], and thermal nonlinear liquid [15].

2. Model

The propagation of the (1+2)-dimensional optical beams in nonlocal nonlinear media with losses is described by the nonlocal nonlinear Schrödinger equation (NNLSE) with damping

iφz+122φ+Δnφ+iφ=0,
where
Δn=++R(rr)|φ(r)|2d2r
is the nonlinear perturbation of refractive index, the transverse coordinate vector r and the longitudinal coordinate z are scaled to the input beam width and Rayleigh length, respectively, 2=2x2+2y2 is the transverse Laplacian operator, is the loss factor, R is the response function of the media, which takes the form of the Gaussian function in the paper, i.e. [16,17]
R(x,y)=12πwm2exp(r22wm2),
where wm is the width of the response function.

By introducing the transformation [18,19]

φ(r,z)=ψ(r,z)exp(z),
NNLSE (1) is changed to
iψz+122ψ+exp(2z)Δnψ=0.
In the case of strongly nonlocal nonlinear (SNN) media we only need to keep the first two terms of the expansion of Δn. Then the NNLSE is simplified to the Snyder-Mitchell model [8, 20] with a lossy term
iψz+122ψ12γPexp(2z)r2ψ=0,
where γ=x2R(x,y)|x=0,y=0=y2R(x,y)|x=0,y=0, and P = ∬ |ψ(r′)|2d2r′ is the input optical power. The Snyder-Mitchell model (6) can be stated as a variational problem in terms of the following Lagrangian density [18,19]
l=i2(ψ*ψzψψ*z)12(|ψx|2+|ψy|2)γP4exp(2z)r2|ψ|2.

3. Variational solution

We introduce a trial function [2,3]

ψ(x,y,z)=Pπb(z)c(z)exp[X22b2(z)Y22c2(z)]exp(iϕ),
where P = ∫ |ψ|2d2r is the optical power, b(z) and c(z) are the semi-axes of the elliptic beam, ϕ = B(z)X2 + Θ(z)XY + Q(z)Y2 + ϑ(z) is the phase, and the rotating coordinates such as X and Y are defined as X = x cos β(z) + y sin β(z), Y = −x sin β(z) + y cos β(z), where β is angle between the semi-axes of the elliptic beam and the x-axis or the y-axis. When β = 0 or π/2, the beam (8) is of a standard ellipse, whose semi-axes are parallel to the x-axis and y-axis, respectively. But for the general case the shape of the beam (8) is an oblique ellipse. It should be noted that a cross term ΘXY exists in the expression of the phase ϕ. We have shown that the cross term in the phase results in the rotation of the optical beam [3]. The optical beam in the form of Eq. (8) owns the OAM
M=Imψ*(r×ψ)d2r=P2(b2c2)Θ.
Substitution of the ansatz (8) into the Lagrangian density and performing the integral over the transverse section yield the Lagrangian as follows
L=ld2r=P4b2P4c2+18Pc2[exp(2z)Pγ8Q22Θ24Q4Θβ]+18Pb2[exp(2z)Pγ8B22Θ24B+4Θβ]Pϑ,
where the primes indicate derivatives with respect to the variable z. Then, following the standard procedures of the variational approach, we obtain Euler-Lagrangian equations for the parameters of the trial-function ψ
dPdz=0,
dMdz=0,
dβdz=(b2+c2)Θb2c2,
dbdz=2Bb,
dcdz=2Qc,
2+b4[exp(2z)Pγ8B22Θ24dBdz+4Θdβdz]=0,
2+c4[exp(2z)γ8Q22Θ24dQdz4Θdβdz]=0.
It should be noted here that Eq.(11) in fact does not represent the conservation of the optical power for the beam φ. It can be seen from Eq.(4) that the decay of the optical power for the beam φ is included in the exponential exp(−∊z). However, it can be found in the following that the OAM in lossy media is conserved. Indicated by the Schrödinger equation in quantum mechanics, it is found that the NNLSE (1) can be restated as i∂z φ = Ĥφ, where Hamiltonian operator H^=(1/2)2Δni. In addition, the OAM operator can be expressed as [21] Ô = −i(x∂yy∂x). It can be proven that the commutator [Ô, Ĥ] = 0 in a similar way used in [21], which reveals that the OAM is a conserved quantity. In fact, it is well known that every conserved quantity corresponds to a kind of symmetry [22]. The NNLSE (1) owns the exchange symmetry between x and y in the transverse, which demonstrates the conservation of OAM. The angular velocity of the spiraling elliptic beams is obtained from Eq. (13)
ω=dβdz=(b2+c2)Θb2c2.
Substitutions of Eqs. (13) (14) and (15) into Eqs. (16) and (17) yield
d2bdz2=1b3+4σ2b3(b2c2)3+b2[24σ2c3(b2c2)3Pγexp(2z)],
d2cdz2=1c3+4σ2c3(c2b2)3+c2[24σ2b2(c2b2)3Pγexp(2z)],
where
σMP=b2c22Θ
is also a conserved quantity.

4. Discussions

In this section, the effects of the losses on the intensity(= |φ|2), the semi-axes, the angular velocity, and the ellipticity of the spiraling elliptic beams will be discussed analytically and numerically. The method of numerical simulation for the NNLSE (1) used here is the split-step Fourier method.

By setting d2bdz2=d2cdz2=0 and = 0, we can obtain the lossless soliton, which preserves its beam width unchanged when the input power and the input OAM are equal to their critical values, i.e.

Pc=(b2+c2)24γb4c4,
σc=(b2c2)24b2c2.
By selecting parameters = 0.01, P = Pc, σ = σc, b = 2, c = 1, and wm = 20, we obtain the evolutions of the lossy spiraling elliptic soliton shown in Fig. 1. Although both the input power and the input OAM are equal to their critical values, the beam still diffracts due to the losses, which results in the linear diffraction overcoming nonlinear focusing. As a result of the losses, the optical intensity decays and the semi-axes b and c expand, as shown in Fig. 2(a)–2(c). From Fig. 2(d), it is found that the angular velocity decreases as the nonlinearity decays due to the losses. The reasons for these phenomena can be stated as follows. Inserting Eqs. (21) and (23) into (18), we have
ω=12(1b2+1c2).
Obviously, the expansion of semi-axes b and c as a result of the losses weakens the angular velocity of the lossy spiraling elliptic soliton. The decrease of the angular velocity is confirmed by the numerical simulations, as shown in Fig. 1.

 figure: Fig. 1

Fig. 1 Numerical simulations of the NNLSE (1) for the case of strong nonlocality. The different figures represent the intensity distributions at different propagation distances given in the top of the figures, where the beam rotates counter-clockwise. The parameters are P = Pc, σ = σc, b = 2, c = 1, = 0.01, and wm = 20. To observe the decay of the intensity apparently, the three dimensional profiles of z = 0 and z = 20 are plotted in (a) and (i).

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 Evolutions of the optical intensity (a), the semi-axes (b) and (c), and the angular velocity (d) of the lossy spiraling elliptic soliton(curved lines) and the lossless solitons(green dashed straight lines). The parameters are the same as those in Fig. 1. Variational solutions agree well with the numerical simulations for the case of strong nonlocality, as shown in (a), where the red dashed line corresponds to the numerical simulation and the yellow solid line represents the variational solution.

Download Full Size | PPT Slide | PDF

For the general cases that PPc or σσc, we can explore the lossy spiraling elliptic breather by solving Eqs. (19) and (20). Fig. 3 presents the evolutions of the optical intensity, the semi-axes, and the angular velocity of the lossy spiraling elliptic breather, where we keep the input OAM equals to the critical value but the input optical power does not. Comparing Fig. 3 with Fig. 2, it is found that the optical intensity, the semi-axes, and the angular velocity of the lossy spiraling elliptic breather all exhibit more severe vibrations than those of the lossy spiraling elliptic soliton. Besides, when P > Pc, the initial nonlinear focusing overcomes the linear diffraction, so the optical intensity increases, the semi-axes decrease, and the angular velocity increases initially. The opposite happens for the case that P < Pc. Regardless of the input power, all the spiraling beams finally diffract and the rotation slows down due to the losses. Fig. 4 shows the evolutions of the optical intensity, the semi-axes, and the angular velocity of the lossy spiraling elliptic breather, where we keep the input optical power equals to the critical value but the input OAM does not. It is shown that the OAM introduces an effective diffraction into the spiraling elliptic beams [3]. Therefore, with the increase of the input OAM, the linear diffraction will overcome the nonlinear focusing and the spiraling elliptic beams diffracts as a whole. Conversely, when we decrease the input OAM, the spiraling elliptic beams converges as a whole. Besides, it is noted that the angular velocity increases when the input OAM increases. But regardless of the input OAM, all the spiraling beams finally diffract and the rotation slows down due to the losses.

 figure: Fig. 3

Fig. 3 Evolutions of the optical intensity (a), the semi-axes (b) and (c), and the angular velocity (d) of the lossy spiraling elliptic breather. Variational solutions agree well with the numerical simulations for the case of strong nonlocality, as shown in (a), where the red dashed line corresponds to the numerical simulation and the blue solid line is the variational solution. The parameters are chosen as PPc, σ = σc, b = 2, c = 1, = 0.01, and wm = 20 for all cases.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Same as Fig. 3 but the parameters are chosen as P = Pc, σσc, b = 2, c = 1, and wm = 20 in all the lines.

Download Full Size | PPT Slide | PDF

We now discuss the ellipticity under the influence of the loss, which is a key parameter of the elliptic beam. It is interesting to find that the ellipticity of the spiraling elliptic beam remains unchanged, regardless of the loss factor , during propagation when the initial OAM equals to the critical value, as shown in Fig. 5 (a). The reason is stated as follows. It is well known that the larger the beam width, the weaker the diffraction is. Therefore, for the elliptic beams, the diffraction is stronger in the minor axis and weaker in the major axis. We have shown that the OAM weakens the diffraction in the minor-axis direction and enhance the diffraction in the major-axis direction [3]. Then, it is well expected that for appropriate OAM, the diffraction of the elliptic beams equals in all directions, and the ellipticity remains unchanged, where the appropriate OAM is just the critical value mentioned above. When σσc the ellipticity of the spiraling elliptic beam changes periodically with the period increasing at the first stage of the evolutions for the nonzero loss factor , and then it approaches to a saturation, as shown in Fig. 5 (b). Periodic changes of the ellipticity is due to the combined effects of the isotropic nonlinearity and the effective anisotropic diffraction resulting from the OAM. Due to the losses, the nonlinear effect becomes weaker and weaker as the beam propagates in the lossy media. Therefore, the periodic changes of the ellipticity disappear when the nonlinear effect is negligible. Fig. 6 shows the evolutions of the ellipticity of the spiraling elliptic beam before the disappearance of periodicchanges for different loss factors. The loss factor determines the oscillating frequencies of ellipticity. As can be seen from Fig. 6 that the ellipticity oscillates more rapidly for smaller loss factors, which can be explained as follows. The evolutions of b and c are governed by Eqs.(19) and (20), which are similar to the Newton’s second law formally. The last term − exp(−2∊z) acts as an elastic force (restoring force) of non-harmonic oscillator, and determines the oscillating frequency. The amplitude of the ellipticity is determined by the OAM, which results from the fact that the OAM leads to the effective anisotropic diffraction [3]. When the initial OAM is larger than the critical value, the ellipticity oscillates between the value b(0)/c(0) and a larger one, as shown in Fig. 6(a) and 6(b). When the initial OAM is smaller than the critical value, the ellipticity oscillates between the value b(0)/c(0) and a smaller one, as shown in Fig. 6(c) and 6(d).

 figure: Fig. 5

Fig. 5 Evolutions of the ellipticity of the spiraling elliptic beam. (a) PPc, σ = σc for any . (b) P = Pc, σ = 1.3σc for = 0.1.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 Evolutions of the ellipticity of the spiraling elliptic beam for different loss factors. The initial OAM is larger than the critical value, i.e. σ = 1.3σc, for (a) and (b), the loss factors are 0.01 and 0.1 in (a) and (b), respectively. The initial OAM is smaller than the critical value, i.e. σ = 0.7σc, for (c) and (d), the loss factors are 0.01 and 0.1 in (c) and (d), respectively. The input optical power equals to the critical value for all figures.

Download Full Size | PPT Slide | PDF

5. Conclusion

We have discussed the propagation properties of the spiraling elliptic beams in nonlocal nonlinear media with losses. Based on the variational approach, we obtained the lossy spiraling elliptic solitons and breathers, which are the approximate analytical solutions of the nonlocal nonlinear Schrödinger equation in the presence of the losses. The optical intensity, the beam width, and specially the angular velocity are analytically and numerically discussed in detail. Due to the losses, the spiraling beams finally diffract independent of the input power, and the rotation slows down regardless of the input OAM. The numerical simulations agree well with the variational approximate solutions. The theoretical analysis in the paper will pave the way for the experimental observation of the spiraling elliptic solitons in nonlocal nonlinear media.

Funding

National Natural Science Foundation of China (NSFC) (11604199); Key Research Fund of Higher Education of Henan Province, China (16A140030).

References and links

1. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 24, 1–15 (2008).

2. A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010). [CrossRef]   [PubMed]  

3. G. Liang and Q. Guo, “Spiraling elliptic solitons in nonlocal nonlinear media without anisotropy,” Phys. Rev. A 88, 043825 (2013). [CrossRef]  

4. G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015). [CrossRef]  

5. A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015). [CrossRef]  

6. G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014). [CrossRef]  

7. G. Liang and H. G. Li, “Polarized vector spiraling elliptic solitons in nonlocal nonlinear media,” Opt.Commun. 352, 39 (2015).

8. A.W. Snyder and D.J. Mitchell, “Accessible Solitons,” Science 276, 1538 (1997). [CrossRef]  

9. C. Conti, M. Peccianti, and G. Assanto, “Route to Nonlocality and Observation of Accessible Solitons,” Phys. Rev. Lett. 91, 073901 (2003). [CrossRef]   [PubMed]  

10. C. Conti, M. Peccianti, and G. Assanto, “Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004). [CrossRef]   [PubMed]  

11. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004). [CrossRef]  

12. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000). [CrossRef]  

13. C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005). [CrossRef]  

14. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006). [CrossRef]  

15. A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006). [CrossRef]   [PubMed]  

16. Z. Dai and Q. Guo, ”Spatial soliton switching in strongly nonlocal media with longitudinally increasing optical lattices,” J. Opt. Soc. Am. B 28, 134 (2011). [CrossRef]  

17. Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016). [CrossRef]  

18. D. Anderson, “High transmission rate communication systems using lossy optical solitons,” Opt. Commun. 48, 107 (1983). [CrossRef]  

19. Y. Huang, Q. Guo, and J. N. Cao, “Optical beams in lossy non-local Kerr media,” Opt. Commun. 261, 175 (2005). [CrossRef]  

20. X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.

21. S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007). [CrossRef]  

22. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Higher Education Press, 2005).

References

  • View by:
  • |
  • |
  • |

  1. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 24, 1–15 (2008).
  2. A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010).
    [Crossref] [PubMed]
  3. G. Liang and Q. Guo, “Spiraling elliptic solitons in nonlocal nonlinear media without anisotropy,” Phys. Rev. A 88, 043825 (2013).
    [Crossref]
  4. G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
    [Crossref]
  5. A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015).
    [Crossref]
  6. G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014).
    [Crossref]
  7. G. Liang and H. G. Li, “Polarized vector spiraling elliptic solitons in nonlocal nonlinear media,” Opt.Commun. 352, 39 (2015).
  8. A.W. Snyder and D.J. Mitchell, “Accessible Solitons,” Science 276, 1538 (1997).
    [Crossref]
  9. C. Conti, M. Peccianti, and G. Assanto, “Route to Nonlocality and Observation of Accessible Solitons,” Phys. Rev. Lett. 91, 073901 (2003).
    [Crossref] [PubMed]
  10. C. Conti, M. Peccianti, and G. Assanto, “Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004).
    [Crossref] [PubMed]
  11. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
    [Crossref]
  12. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
    [Crossref]
  13. C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
    [Crossref]
  14. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006).
    [Crossref]
  15. A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
    [Crossref] [PubMed]
  16. Z. Dai and Q. Guo, ”Spatial soliton switching in strongly nonlocal media with longitudinally increasing optical lattices,” J. Opt. Soc. Am. B 28, 134 (2011).
    [Crossref]
  17. Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
    [Crossref]
  18. D. Anderson, “High transmission rate communication systems using lossy optical solitons,” Opt. Commun. 48, 107 (1983).
    [Crossref]
  19. Y. Huang, Q. Guo, and J. N. Cao, “Optical beams in lossy non-local Kerr media,” Opt. Commun. 261, 175 (2005).
    [Crossref]
  20. X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.
  21. S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007).
    [Crossref]
  22. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Higher Education Press, 2005).

2016 (1)

Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
[Crossref]

2015 (3)

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015).
[Crossref]

G. Liang and H. G. Li, “Polarized vector spiraling elliptic solitons in nonlocal nonlinear media,” Opt.Commun. 352, 39 (2015).

2014 (1)

G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014).
[Crossref]

2013 (1)

G. Liang and Q. Guo, “Spiraling elliptic solitons in nonlocal nonlinear media without anisotropy,” Phys. Rev. A 88, 043825 (2013).
[Crossref]

2011 (1)

2010 (1)

A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010).
[Crossref] [PubMed]

2008 (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 24, 1–15 (2008).

2007 (1)

S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007).
[Crossref]

2006 (2)

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006).
[Crossref]

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[Crossref] [PubMed]

2005 (2)

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[Crossref]

Y. Huang, Q. Guo, and J. N. Cao, “Optical beams in lossy non-local Kerr media,” Opt. Commun. 261, 175 (2005).
[Crossref]

2004 (2)

C. Conti, M. Peccianti, and G. Assanto, “Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
[Crossref]

2003 (1)

C. Conti, M. Peccianti, and G. Assanto, “Route to Nonlocality and Observation of Accessible Solitons,” Phys. Rev. Lett. 91, 073901 (2003).
[Crossref] [PubMed]

2000 (1)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

1997 (1)

A.W. Snyder and D.J. Mitchell, “Accessible Solitons,” Science 276, 1538 (1997).
[Crossref]

1983 (1)

D. Anderson, “High transmission rate communication systems using lossy optical solitons,” Opt. Commun. 48, 107 (1983).
[Crossref]

Alfassi, B.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006).
[Crossref]

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 24, 1–15 (2008).

Anderson, D.

D. Anderson, “High transmission rate communication systems using lossy optical solitons,” Opt. Commun. 48, 107 (1983).
[Crossref]

Assanto, G.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
[Crossref]

C. Conti, M. Peccianti, and G. Assanto, “Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Route to Nonlocality and Observation of Accessible Solitons,” Phys. Rev. Lett. 91, 073901 (2003).
[Crossref] [PubMed]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

Bang, O.

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[Crossref] [PubMed]

Buccoliero, D.

A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010).
[Crossref] [PubMed]

Cao, H.

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

Cao, J. N.

Y. Huang, Q. Guo, and J. N. Cao, “Optical beams in lossy non-local Kerr media,” Opt. Commun. 261, 175 (2005).
[Crossref]

Carmon, T.

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[Crossref]

Chen, X.

X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.

Cheng, W.

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

Cohen, O.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006).
[Crossref]

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[Crossref]

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
[Crossref]

C. Conti, M. Peccianti, and G. Assanto, “Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Route to Nonlocality and Observation of Accessible Solitons,” Phys. Rev. Lett. 91, 073901 (2003).
[Crossref] [PubMed]

Dai, Z.

Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
[Crossref]

Z. Dai and Q. Guo, ”Spatial soliton switching in strongly nonlocal media with longitudinally increasing optical lattices,” J. Opt. Soc. Am. B 28, 134 (2011).
[Crossref]

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
[Crossref]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

De Rossi, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

Dennis, M. R.

A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010).
[Crossref] [PubMed]

Desyatnikov, A. S.

A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010).
[Crossref] [PubMed]

Dreischuh, A.

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[Crossref] [PubMed]

Franke-Arnold, S.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 24, 1–15 (2008).

Goldstein, H.

H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Higher Education Press, 2005).

Guo, Q.

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014).
[Crossref]

G. Liang and Q. Guo, “Spiraling elliptic solitons in nonlocal nonlinear media without anisotropy,” Phys. Rev. A 88, 043825 (2013).
[Crossref]

Z. Dai and Q. Guo, ”Spatial soliton switching in strongly nonlocal media with longitudinally increasing optical lattices,” J. Opt. Soc. Am. B 28, 134 (2011).
[Crossref]

S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007).
[Crossref]

Y. Huang, Q. Guo, and J. N. Cao, “Optical beams in lossy non-local Kerr media,” Opt. Commun. 261, 175 (2005).
[Crossref]

X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.

Huang, Y.

Y. Huang, Q. Guo, and J. N. Cao, “Optical beams in lossy non-local Kerr media,” Opt. Commun. 261, 175 (2005).
[Crossref]

Khoo, I. C.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

Kivshar, Y. S.

A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010).
[Crossref] [PubMed]

Królikowski, W.

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[Crossref] [PubMed]

Lan, S.

S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007).
[Crossref]

Li, H. G.

G. Liang and H. G. Li, “Polarized vector spiraling elliptic solitons in nonlocal nonlinear media,” Opt.Commun. 352, 39 (2015).

Liang, G.

G. Liang and H. G. Li, “Polarized vector spiraling elliptic solitons in nonlocal nonlinear media,” Opt.Commun. 352, 39 (2015).

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014).
[Crossref]

G. Liang and Q. Guo, “Spiraling elliptic solitons in nonlocal nonlinear media without anisotropy,” Phys. Rev. A 88, 043825 (2013).
[Crossref]

Ling, X.

Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
[Crossref]

Manela, O.

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[Crossref]

Minzonia, A. A.

A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015).
[Crossref]

Mitchell, D.J.

A.W. Snyder and D.J. Mitchell, “Accessible Solitons,” Science 276, 1538 (1997).
[Crossref]

Neshev, D.

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[Crossref] [PubMed]

Ouyang, S.

S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007).
[Crossref]

Padgett, M.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 24, 1–15 (2008).

Pang, Z.

Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
[Crossref]

Peccianti, M.

C. Conti, M. Peccianti, and G. Assanto, “Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
[Crossref]

C. Conti, M. Peccianti, and G. Assanto, “Route to Nonlocality and Observation of Accessible Solitons,” Phys. Rev. Lett. 91, 073901 (2003).
[Crossref] [PubMed]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

Petersen, D. E.

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[Crossref] [PubMed]

Poole, C.

H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Higher Education Press, 2005).

Ren, Z.M.

G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014).
[Crossref]

Rotschild, C.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006).
[Crossref]

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[Crossref]

Safko, J.

H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Higher Education Press, 2005).

Sciberras, L. W.

A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015).
[Crossref]

Segev, M.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006).
[Crossref]

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[Crossref]

She, W.

X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.

Shou, Q.

G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014).
[Crossref]

Smythc, N. F.

A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015).
[Crossref]

Snyder, A.W.

A.W. Snyder and D.J. Mitchell, “Accessible Solitons,” Science 276, 1538 (1997).
[Crossref]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
[Crossref]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

Worthyb, A. L.

A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015).
[Crossref]

Wu, L.

S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007).
[Crossref]

Wu, P.

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

Yang, Z.

Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
[Crossref]

Yin, N.

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

Zeng, H.

X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.

Zhang, G.

X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.

Zhang, S.

Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
[Crossref]

Ann. Phys. (1)

Z. Dai, Z. Yang, X. Ling, S. Zhang, and Z. Pang, “Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality,” Ann. Phys. 366, 13(2016).
[Crossref]

Appl. Phys. Lett. (1)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7 (2000).
[Crossref]

Chin. Phys. (1)

S. Ouyang, Q. Guo, L. Wu, and S. Lan, “Convervation laws of the generalized nonlocal nonlinear Schrödinger equation,” Chin. Phys. 16, 2331 (2007).
[Crossref]

J. Opt. (1)

G. Liang, Q. Guo, Q. Shou, and Z.M. Ren, “Dynamics of elliptic breathers in saturablenonlinear media with linear anisotropy,” J. Opt. 16, 085205 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 24, 1–15 (2008).

Nat. Phys. (1)

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2, 769 (2006).
[Crossref]

Nature (London) (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature (London) 432, 733 (2004).
[Crossref]

Opt. Commun. (2)

D. Anderson, “High transmission rate communication systems using lossy optical solitons,” Opt. Commun. 48, 107 (1983).
[Crossref]

Y. Huang, Q. Guo, and J. N. Cao, “Optical beams in lossy non-local Kerr media,” Opt. Commun. 261, 175 (2005).
[Crossref]

Opt. Express. (1)

G. Liang, Q. Guo, W. Cheng, N. Yin, P. Wu, and H. Cao, “Spiraling elliptic beam in nonlocal nonlinear media,” Opt. Express. 23, 21462 (2015).
[Crossref]

Opt.Commun. (1)

G. Liang and H. G. Li, “Polarized vector spiraling elliptic solitons in nonlocal nonlinear media,” Opt.Commun. 352, 39 (2015).

Phys. Rev. A (1)

G. Liang and Q. Guo, “Spiraling elliptic solitons in nonlocal nonlinear media without anisotropy,” Phys. Rev. A 88, 043825 (2013).
[Crossref]

Phys. Rev. Lett. (5)

C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of conherent elliptic solitons and vortex-ring solitons,” Phys. Rev. Lett. 95, 213904 (2005).
[Crossref]

C. Conti, M. Peccianti, and G. Assanto, “Route to Nonlocality and Observation of Accessible Solitons,” Phys. Rev. Lett. 91, 073901 (2003).
[Crossref] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, “Observation of Optical Spatial Solitons in a Highly Nonlocal Medium,” Phys. Rev. Lett. 92, 113902 (2004).
[Crossref] [PubMed]

A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of Collapse for Spiraling Elliptic Solitons,” Phys. Rev. Lett. 104, 053902 (2010).
[Crossref] [PubMed]

A. Dreischuh, D. Neshev, D. E. Petersen, O. Bang, and W. Królikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett. 96, 043901 (2006).
[Crossref] [PubMed]

Physica D (1)

A. A. Minzonia, L. W. Sciberras, N. F. Smythc, and A. L. Worthyb, “Elliptical optical solitary waves in a finite nematic liquid crystal cell,” Physica D 301–302, 59 (2015).
[Crossref]

Science (1)

A.W. Snyder and D.J. Mitchell, “Accessible Solitons,” Science 276, 1538 (1997).
[Crossref]

Other (2)

X. Chen, Q. Guo, W. She, H. Zeng, and G. Zhang, Advances in Nonlinear Optics, Chapter 4 (Nonlocal spatial optical solitons), (De Gruyter, Berlin, 2015), p.p.277–306.

H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Higher Education Press, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Numerical simulations of the NNLSE (1) for the case of strong nonlocality. The different figures represent the intensity distributions at different propagation distances given in the top of the figures, where the beam rotates counter-clockwise. The parameters are P = Pc, σ = σc, b = 2, c = 1, = 0.01, and wm = 20. To observe the decay of the intensity apparently, the three dimensional profiles of z = 0 and z = 20 are plotted in (a) and (i).
Fig. 2
Fig. 2 Evolutions of the optical intensity (a), the semi-axes (b) and (c), and the angular velocity (d) of the lossy spiraling elliptic soliton(curved lines) and the lossless solitons(green dashed straight lines). The parameters are the same as those in Fig. 1. Variational solutions agree well with the numerical simulations for the case of strong nonlocality, as shown in (a), where the red dashed line corresponds to the numerical simulation and the yellow solid line represents the variational solution.
Fig. 3
Fig. 3 Evolutions of the optical intensity (a), the semi-axes (b) and (c), and the angular velocity (d) of the lossy spiraling elliptic breather. Variational solutions agree well with the numerical simulations for the case of strong nonlocality, as shown in (a), where the red dashed line corresponds to the numerical simulation and the blue solid line is the variational solution. The parameters are chosen as PPc, σ = σc, b = 2, c = 1, = 0.01, and wm = 20 for all cases.
Fig. 4
Fig. 4 Same as Fig. 3 but the parameters are chosen as P = Pc, σσc, b = 2, c = 1, and wm = 20 in all the lines.
Fig. 5
Fig. 5 Evolutions of the ellipticity of the spiraling elliptic beam. (a) PPc, σ = σc for any . (b) P = Pc, σ = 1.3σc for = 0.1.
Fig. 6
Fig. 6 Evolutions of the ellipticity of the spiraling elliptic beam for different loss factors. The initial OAM is larger than the critical value, i.e. σ = 1.3σc, for (a) and (b), the loss factors are 0.01 and 0.1 in (a) and (b), respectively. The initial OAM is smaller than the critical value, i.e. σ = 0.7σc, for (c) and (d), the loss factors are 0.01 and 0.1 in (c) and (d), respectively. The input optical power equals to the critical value for all figures.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

i φ z + 1 2 2 φ + Δ n φ + i φ = 0 ,
Δ n = + + R ( r r ) | φ ( r ) | 2 d 2 r
R ( x , y ) = 1 2 π w m 2 exp ( r 2 2 w m 2 ) ,
φ ( r , z ) = ψ ( r , z ) exp ( z ) ,
i ψ z + 1 2 2 ψ + exp ( 2 z ) Δ n ψ = 0 .
i ψ z + 1 2 2 ψ 1 2 γ P exp ( 2 z ) r 2 ψ = 0 ,
l = i 2 ( ψ * ψ z ψ ψ * z ) 1 2 ( | ψ x | 2 + | ψ y | 2 ) γ P 4 exp ( 2 z ) r 2 | ψ | 2 .
ψ ( x , y , z ) = P π b ( z ) c ( z ) exp [ X 2 2 b 2 ( z ) Y 2 2 c 2 ( z ) ] exp ( i ϕ ) ,
M = Im ψ * ( r × ψ ) d 2 r = P 2 ( b 2 c 2 ) Θ .
L = l d 2 r = P 4 b 2 P 4 c 2 + 1 8 P c 2 [ exp ( 2 z ) P γ 8 Q 2 2 Θ 2 4 Q 4 Θ β ] + 1 8 P b 2 [ exp ( 2 z ) P γ 8 B 2 2 Θ 2 4 B + 4 Θ β ] P ϑ ,
d P d z = 0 ,
d M d z = 0 ,
d β d z = ( b 2 + c 2 ) Θ b 2 c 2 ,
d b d z = 2 B b ,
d c d z = 2 Q c ,
2 + b 4 [ exp ( 2 z ) P γ 8 B 2 2 Θ 2 4 d B d z + 4 Θ d β d z ] = 0 ,
2 + c 4 [ exp ( 2 z ) γ 8 Q 2 2 Θ 2 4 d Q d z 4 Θ d β d z ] = 0 .
ω = d β d z = ( b 2 + c 2 ) Θ b 2 c 2 .
d 2 b d z 2 = 1 b 3 + 4 σ 2 b 3 ( b 2 c 2 ) 3 + b 2 [ 24 σ 2 c 3 ( b 2 c 2 ) 3 P γ exp ( 2 z ) ] ,
d 2 c d z 2 = 1 c 3 + 4 σ 2 c 3 ( c 2 b 2 ) 3 + c 2 [ 24 σ 2 b 2 ( c 2 b 2 ) 3 P γ exp ( 2 z ) ] ,
σ M P = b 2 c 2 2 Θ
P c = ( b 2 + c 2 ) 2 4 γ b 4 c 4 ,
σ c = ( b 2 c 2 ) 2 4 b 2 c 2 .
ω = 1 2 ( 1 b 2 + 1 c 2 ) .

Metrics