Abstract

This work presents a detailed analysis of the morphology of femtosecond laser-induced changes in bulk lithium niobate (LiNbO3) – one of the most common host materials in photonics – using second-harmonic generation microscopy and scanning electron microscopy. It is shown that focused linearly polarized near-infrared pulses can produce two or three distinct axially separated regions of modified material, depending on whether the pulse propagation is along or perpendicular to the optical axis. When laser writing in LiNbO3 is conducted in multi-shot irradiation mode and the focused light intensity is kept near the bulk damage threshold, periodic planar nanostructures aligned perpendicular to the laser polarization are produced inside the focal volume. These results provide a new perspective to laser writing in crystalline materials, including the fabrication of passive and active waveguides, photonic crystals, and optical data storage devices.

© 2016 Optical Society of America

1. Introduction

For many years lithium niobate (LiNbO3) has been among the most widely used artificial materials in photonics [1]. The continuing popularity of LiNbO3 in this area originates from its highly desirable properties, such as large electro-optic, acousto-optic, piezoelectric, and nonlinear optical coefficients, and also an important fact that this ferroelectric can be rather easily produced in a single-domain state [2, 3].

The significant progress in micro-structuring of LiNbO3 crystals by means of electric field poling [4], metal diffusion [5], proton exchange [6], low- and high-energy ion implantation [7], focused ion beam milling [8], reactive ion etching [9], wet etching [10], optical grade dicing [11], and light-mediated domain engineering [12] has enabled the fabrication of various photonic devices. However, none of these techniques offers genuine capability to microstructure LiNbO3 crystals in 3-D. Indeed, electric field poling allows only z-cut crystals to be efficiently poled [13], while the remaining techniques (except dicing), are inherently restricted to shallow (i.e., less than 10 μm) near-surface layers.

The technique of direct femtosecond laser writing can potentially overcome all these issues. The 3-D writing capability is derived from nonresonant multiphoton absorption of laser light inside transparent media. For instance, linear absorption in LiNbO3, both pure and doped, is extremely weak in the near-infrared [14] and hence two or more photons must be absorbed simultaneously to bridge the relatively wide energy bandgap (~4 eV) of this material. The high intensity required for this nonlinear process is achieved by focusing the femtosecond pulses tightly. The material surrounding the focal volume then remains unaffected by the light passing through it, which allows one to inscribe structures at any depth in 3-D fashion [15]. As far as LiNbO3 is concerned, this fundamental concept has been widely exploited in laser writing of Y-splitters [16], Bragg gratings [17, 18], optical waveguides [19–26], voxels for 3-D data storage [27, 28], photonic crystals [29, 30], structures for quasi phase matching [31], and ferroelectric domain engineering [32].

Despite the extensive literature on femtosecond laser writing in bulk LiNbO3, high-resolution studies of the laser-induced modification morphology inside this material are still scant [33–35] and the very fact that the writing actually takes place in a birefringent medium is mostly ignored with some rare exceptions [36].

In an attempt to fill in the mentioned gaps, we firstly employ second-harmonic generation (SHG) microscopy to investigate how the morphology of laser-induced changes in crystalline LiNbO3 samples is affected by the orientation of the pulse propagation direction with respect to the crystal optical axis. The theoretical model presented in the text allows us to accurately predict the shape and size of the laser-modified regions in LiNbO3 when the focused light intensity of the laser pulses is near the threshold for modification and their peak power does not exceed the self-focusing threshold. Secondly, by using scanning electron microscopy (SEM) we demonstrate that laser writing performed in multi-shot irradiation mode results in the formation of polarization-sensitive periodic planar nanostructures inside both pure and MgO-doped LiNbO3.

2. Theory

The LiNbO3 crystal is a member of the trigonal crystal system wherein two different unit cells – hexagonal or rhombohedral – can be chosen. To describe the optical properties of LiNbO3 it is more natural to use the hexagonal unit cell characterized by the c-axis about which the crystal exhibits three-fold rotation symmetry [2]. The c-axis coincides with the optical axis of this negative uniaxial crystal.

Propagation of plane electromagnetic waves in anisotropic media, including uniaxial crystals, is a standard topic in textbooks on optics. Without exception, the pertinent analysis is restricted to the propagation of a single wave and therefore generally unsuitable to describe the behavior of laser beams, which represent a superposition of an infinite number of plane waves whose wave vectors are oriented along different directions.

Journal articles offer several approaches to address this problem. Paraxial wave equations for beam propagation along an arbitrary direction inside uniform uniaxially anisotropic media were derived as early as 1983 [37]. It was shown that an ordinary-wave beam obeys a standard paraxial equation, whereas an extraordinary-wave beam is described by a paraxial equation that introduces both a transverse shift in the beam position and a rescaling of the transverse coordinate in the principal plane. Much later, Ciattoni et al obtained a plane-wave angular-spectrum representation of a vector beam inside uniaxially anisotropic media [38]. They also deduced paraxial expressions for its ordinary and extraordinary field components, and presented two decoupled parabolic equations that they obey [38]. In principle, the angular-spectrum representation allows one to obtain the distribution of a light field in the half-space z > 0 if the field is known at the reference plane z = 0. In reality, this and other relevant papers of Ciattoni et al [39–42] exclusively concentrate on the evolution of diverging beams inside uniaxial media as the z = 0 plane always coincides with the respective beam waists. Focusing of electromagnetic waves through a plane interface into a uniaxial medium with an arbitrary orientation of the optical axis was considered by Stamnes et al [43], where the authors derived explicit, albeit analytically complex and difficult to manipulate, expressions for the dyadic Green’s functions associated with the transmitted fields and obtained integral representations suitable for asymptotic analysis and numerical simulations.

Notwithstanding the obvious fact that some important laser applications (e.g., parametric light conversion, laser writing, nonlinear microscopy) deal with beam focusing inside optically anisotropic media, it was not until the late 2000’s that sequences of 2-D intra-focal intensity distributions inside different uniaxial crystals were clearly shown for two basic situations when a laser beam propagates along or perpendicular to their optical axes [44, 45].

Here, we consider these two most common geometries of beam propagation in the context of direct laser writing inside uniaxial media. We specifically concentrate on finding analytical expressions, which would allow one to straightforwardly estimate the light intensity distribution in the focal volume and predict how it may affect the capabilities of this technique. We also note that the previous analysis of the orientation-dependent femtosecond laser writing in uniaxial media (i.e., differently oriented LiNbO3 crystals) [35], is generally inadequate to describe the situation when the pulses propagate along the optical axis and in contradiction to theory when the pulses propagate perpendicular to the optical axis [42–45].

In this work, the model equations governing the propagation of femtosecond laser pulses in LiNbO3 crystals do not include any nonlinear terms. Many aspects of nonlinear pulse propagation in different isotropic media, such as gases and transparent solids, can be found in a review article by Couairon and Mysyrowicz [46]. However, applying the more rigorous models discussed in Reference [46] to an optically anisotropic medium would involve very complex numerical simulations, which could obscure the essence of the easily observable effects (see the experimental section) that directly follow from our linear model.

Our analysis of laser beam propagation in uniaxial media is performed in Cartesian coordinates (x, y, z) for the negative LiNbO3 crystal, for which the ordinary refractive index no is larger than the extraordinary refractive index ne (no < ne for positive uniaxial crystals, e.g., MgF2, YVO4, GdVO4, YLiF4). The z-axis is always oriented parallel to the optical axis and the front surface of the crystal is cut perpendicular to the beam propagation direction.

A linearly polarized Gaussian beam is focused through a planar interface separating an ambient optically isotropic medium (vacuum) and a LiNbO3 crystal, giving rise to a transmitted beam propagating inside the crystal. The propagation characteristics of this beam are analyzed in the paraxial approximation for two cases: the incident Gaussian beam impinges on the crystal 1) parallel and 2) perpendicular to its optical axis. The first case is somewhat simpler as it is insensitive to how the plane of polarization of the incident Gaussian beam is oriented – the transmitted beam remains completely unaffected by rotations of the crystal about the optical axis (i.e., z-axis). This is not true of the second case.

1) The transverse electric field vector E of a beam propagating inside a uniaxial crystal along its optical axis, as shown in Fig. 1, can be written as E=E˜ei(knozωt), where the complex amplitude E˜ is a solution of the paraxial wave equation for a linear medium [47]:

(2+2iknoz)E˜=α(E˜)
In the above expressions, k = /λ is the wave number in vacuum (λ is the wavelength in vacuum), ω = c/k is the angular frequency (c is the speed of light in vacuum), α=(no2ne2)/ne2, and =ex/x+ey/y(ex and ey denote Cartesian unit vectors). Without loss of generality, we assume that the incident Gaussian beam is polarized along the x-axis. Each of the Cartesian components Ex and Ey of E (i.e., E=Exex+Eyey) can then be presented as a superposition of beams with Gaussian envelopes G1 and G2 [48–50]:
Ex=12[(G1+G2){(1+r2w02ξ1)G1(1+r2w02ξ2)G2}cos2φ]ei(knozωt)
Ey=12{(1+r2w02ξ1)G1(1+r2w02ξ2)G2}sin2φei(knozωt),
where G1=(E0/ξ1)exp{r2/(w02ξ1)}, G2=(E0/ξ2)exp{r2/(w02ξ2)}, ξ1=1+iλ(zc1)/(πnow02), ξ2=1+iλno(zc2)/(πne2w02), w0 is the beam waist radius of the incident Gaussian beam, r2=x2+y2is the radial coordinate measured from the z-axis, φ=arctan(y/x) is the polar angle measured from the x-axis, E0 denotes the peak amplitude of the electric field. The constants c1 and c2 determine the waist positions of G1 and G2 with respect to the reference point z = 0, which we will define below.

 

Fig. 1 Beam splitting inside a negative uniaxial crystal when a focused Gaussian beam impinges on the crystal parallel to its optical axis. The incident beam always splits into two beams denoted by red and blue (Gaussian beams G1 and G2 in the text, respectively). The effective refractive index of the crystal for the red (blue) beam is no (ne2/no < no). As a consequence, the red beam is focused farther from the front face of the crystal than the blue one. (E) denotes the electric field vector.

Download Full Size | PPT Slide | PDF

It appears that after entering the crystal the incident Gaussian beam splits into two separate vector (i.e., inhomogeneously polarized) beams, as shown in the Fig. 2. The distances from the front face of the crystal to their waists are different because G1 and G2 have different Rayleigh ranges, which are respectively given by πw02λ1noand πw02λ1ne2no1. For this geometry we define the focusing depth d as the distance measured along the z-axis from the front face of the crystal to the point lying halfway between the waists of these vector beams. This mid-point defines the reference point z = 0 and thus allows us to write c1=c2a, wherea=d(no2ne2)/(no2+ne2). For the sake of brevity, all the beams in this text are identified by their Gaussian envelopes; hence the beams G1 and G2.

 

Fig. 2 Beam splitting inside a negative uniaxial crystal when a focused Gaussian beam impinges on the crystal perpendicular to its optical axis. Generally, the incident beam splits into three beams denoted by red, blue and green (beams G, g1, and g2 in the text, respectively). The effective refractive index of the crystal is no for the red beam, ne for the blue beam, and no2/ne for the green beam. The effective refractive indices determine the corresponding beam waist positions inside the crystal.

Download Full Size | PPT Slide | PDF

2) The Cartesian components of the transverse electric field vector of a beam propagating inside a uniaxial crystal perpendicular to its optical axis (see Fig. 2) can be written as Ex=E˜xei(knoyωt) and Ez=E˜zei(kneyωt)eiΔϕ, where the complex amplitudes E˜x and E˜z satisfy the following two paraxial wave equations [42]:

(2/x2+2/z2+2iknoy)E˜x=0,
(ne12/x2+neno22/z2+2iky)E˜z=0
and Δϕ is the relative phase shift between Ex and Ez. Keeping in mind that the incident beam is a Gaussian beam, the solutions of Eq. (3)a) should also have the form of a beam with a Gaussian envelope E˜x=G=(E0/ξ)exp{(x2+z2)/(w02ξ)}. For this geometry we define the focusing depth d as the distance measured along the y-axis from the front face of the crystal to the waist of G. The reference point y = 0 is affixed to the waist of G and ξ is therefore given by ξ=1+iλy/(πnow02).

The form of Eq. (3)b) suggests that we can write E˜z as E˜z(x,y,z)=g1(x,y)g2(z,y), where the functions g1 and g2 obey the one-dimensional equations (2/x2+2ikney)g1(x,y)and (2/z2+2ikne1no2y)g2(z,y), respectively. As above, the Gaussian nature of the incident beam implies that the solutions of these equations are Gaussian envelopes g1=(E0/ξx)1/2exp{x2/(w02ξx)} and g2=(E0/ξz)1/2exp{z2/(w02ξz)}, where ξx=1+iλ(y+a2)/(πnew02), ξz=1+iλne(ya1)/(πno2w02), and the constants a1 and a2 determine the positions of the waists of g1 and g2. Since the reference point y = 0 coincides with the waist of G, a1=d(none)/ne and a2=d(none)/no.

When the incident beam is linearly polarized and the plane of polarization makes an angle γ with the optical axis (i.e., the z-axis) the Cartesian components Ex and Ez of the field inside the crystal can be written as:

Ex=(E0sinγ/ξ)exp{(x2+z2)/(w02ξ)}ei(knoyωt)
Ez=(E0cosγ/ξxξz)exp{x2/(w02ξx)z2/(w02ξz)}exp(ikd(neno)/no)ei(kneyωt).

One can see that the incident beam after entering the crystal splits into a superposition of two linearly polarized (i.e., homogeneously polarized) beams. The superposition now consists of a regular Gaussian beam G (expression (4a)) and an astigmatic beam (expression (4b)) represented as a product of two “one-dimensional” Gaussian beams g1 and g2. The Rayleigh ranges of G, g1, and g2 are πw02λ1no, πw02λ1ne, and πw02λ1no2ne1, respectively.

The expressions (2) and (4) provide a remarkably simple tool to analyze light distributions in uniaxial media produced by converging linearly polarized Gaussian beams. Moreover, these expressions can also be easily extended to the case when the incident Gaussian beam has an arbitrary homogeneous polarization state.

Some of the important characteristics of the transformations occurring with a linearly polarized Gaussian beam when it enters a crystal of pure LiNbO3 along and perpendicular to its optical axis are presented in Fig. 3. To match the numerical simulations in Fig. 3 with our experimental conditions (see below), the wavelength and the waist radius of the incident beam are λ = 0.8 μm and w0 = 0.4 μm, respectively. This implies that the numerical aperture (NA) of our focusing optic is NA = 0.65. The ordinary (extraordinary) refractive index of pure LiNbO3 at this wavelength is no = 2.255 (ne = 2.176) [51].

 

Fig. 3 Simulations of focus splitting inside a LiNbO3 crystal when a linearly polarized Gaussian beam enters the crystal (a) along and (b) perpendicular to the optical axis (i.e., z-axis). In (a) and (b) the peak light intensity is normalized to unity at each focusing depth. The incident polarization is along the x-axis in (a) and at an angle γ = π/14 with respect to the optical axis in (b). The bottom panels of (a) and (b) show cross sectional intensity distributions of the respective vector beams at d = 300 μm. Intensity profiles after an analyzing polarizer, as indicated by the orientation of (E), are also provided. k denotes the beam propagation direction.

Download Full Size | PPT Slide | PDF

Strictly speaking, a beam whose minimum spot size is comparable with the wavelength of light becomes nonparaxial, with the degree of nonparaxiality being determined by a parameter f=(kw0)1 [52, 53].

Nevertheless, it was shown that the electric field of a weakly nonparaxial beam (f < 0.5) propagating in a uniaxial crystal can be presented as a sum of the dominant component corresponding to the fully paraxial case and a small correction caused by the nonparaxiality [42], which we neglect. We also note that the expressions (2) and (4) provide physically accurate results only when the focal volume of the transmitted beam is well inside a birefringent medium. To avoid a scenario when one half of the focal volume is confined inside a LiNbO3 crystal, whereas the other half is in vacuum, the minimum focusing depth in Fig. 3 is 10 μm.

The most salient feature of the intensity distributions shown in Fig. 3 is focus splitting along the beam propagation direction. For clarity, we again consider the propagation 1) along and 2) perpendicular to the optical axis separately.

1) If a converging linearly polarized Gaussian beam enters a LiNbO3 crystal along its optical axis, two foci identified with the waists of G1 and G2 are always produced no matter how the electric field vector of the incident Gaussian beam is oriented in the xy-plane (Fig. 3(a)). On the other hand, distinct focus splitting takes place only when the separation between the two foci (i.e., Eq. (2)a)), which linearly grows with the focusing depth d, exceeds the sum of the Rayleigh ranges of G1 and G2.

The intensity profiles in the xy-plane show that the front focus, which lies closest to the front face of the crystal, is elongated perpendicular to the polarization of the incident beam, whereas the back focus is elongated along it (bottom panel of Fig. 3(a)). The two orthogonally oriented ellipsoidal foci can be rotated about the optical axis as a single object by rotating the plane of polarization of the incident beam.

The spatial confinement of both the foci perpendicular to the beam propagation direction does not appreciably depend on d and is comparable to that of a Gaussian focus inside an isotropic medium with the refractive index ne < n <no. The extent of the front and back focus along the beam propagation direction does not depend on d and is determined by the Rayleigh range of the beam G2 and G1, respectively.

The maximum intensity in each focus is observed on the beam axis where the polarization is purely linear and aligned parallel to the incident polarization, i.e., x-polarization in this case. Our simulations also show that the maximum intensity in the y-polarized four-petal patterns is approximately ten times weaker than on the beam axis (bottom panel of Fig. 3(a)).

2) If a converging linearly polarized Gaussian beam impinges on a LiNbO3 crystal perpendicular to its optical axis, three foci identified with the beam waists of G, g1, and g2 are generally produced (Fig. 3(b)). This interesting phenomenon will always take place unless the polarization of the incident beam is oriented either perpendicular or parallel to the optical axis. In the first situation a single focus is produced by the beam G, whereas in the other situation two foci are generated by the beams g1 and g2.

The intensity distribution in the focal volume critically depends on the orientation of the input polarization with respect to the optical axis and the focusing depth d. The latter determines the longitudinal separation between the front, central and back focus via a1 and a2, respectively.

When the foci are well-separated the maximum intensity in the front focus is always ~10% higher than that in the back focus. The top panel of Fig. 3(b) presents a sequence of 3-D focal intensity distributions when the incident polarization makes an angle γ = π/14 with the optical axis. This angle is chosen to make the maximum intensity in the front, central and back focus approximately equal at d = 300 μm and clearly visualize the production of three distinct foci.

The front focus is always elongated along the z-axis, while the back focus is elongated perpendicular to it, independent of the orientation of the incident polarization (bottom panels of Fig. 3(b)). The transverse elongation grows with focusing depth and can become very pronounced. On the other hand, the extent of both the front and back focus along the beam propagation direction does not change with d and is determined by the Rayleigh range of the beam g1 and g2, respectively. The dimensions of the central focus do not depend on d at all because this focus is produced by nothing else but a converging standard Gaussian beam G whose propagation is not affected at all by the optical anisotropy of LiNbO3.

When the three foci are well separated the polarization in the front and back focus is nearly linear and aligned along the z-axis, while the central focus is predominantly x-polarized. The scale bars in the bottom panel of Fig. 3(b) present the relative light intensities of the x- and z-polarized beam components.

Figure 4 shows how the intra-focal intensity distribution inside a LiNbO3 crystal varies with the focusing depth d for a fixed waist radius w0 of the incident beam (Figs. 4(a)-4(c)) and also how the intensity depends on w0 if d is kept fixed (Figs. 4(d)-4(f)).

 

Fig. 4 Parametric analysis of focus splitting inside a LiNbO3 crystal. A linearly polarized Gaussian beam enters a LiNbO3 crystal along the optical axis in (a) and (d), and perpendicular to the optical axis in (b), (c), (e), and (f). On-axis intensity distributions along the beam propagation direction are shown as a function of the focusing depth d at a fixed beam waist radius w0 = 0.4 μm in (a)–(c) and as a function of w0 at a fixed d = 300 μm in (d)–(f). The incident linear polarization is arbitrary-angle in (a) and (d), parallel to the optical axis in (b) and (e), and at an angle γ = π/14 with respect to the optical axis in (c) and (f). In each panel the peak intensity is normalized to the total power in the beam P, which is kept constant in each case. Under this condition, the electric field amplitude is given by E0=2P/(w02πcε0), where ε0 is the vacuum permittivity.

Download Full Size | PPT Slide | PDF

When a converging linearly polarized Gaussian beam enters a LiNbO3 crystal along its optical axis the on-axis peak intensity quickly drops as d changes from 0 to 50 μm and then asymptotically tends to ~1/4 of the peak intensity at d = 0 (Fig. 4(a)). The existence of this well-defined limit is a direct consequence of the constant spatial confinement of both the front and back focus, which is approximately equal to that of a Gaussian focus inside an isotropic medium, as discussed earlier in the text.

When the propagation takes place perpendicular to the optical axis and the incident polarization is aligned parallel to the optical axis the peak intensity in the front and back focus steadily decreases with d as the foci become more and more elongated perpendicular to the light propagation direction (Fig. 3(b)). On the other hand, if the incident polarization is set at an angle γ with respect to the optical axis, the central focus (beam G), whose peak intensity is proportional to sin2γ, will appear. The ratio of the peak intensities in the front/back and central focus varies with the focusing depth and at sufficiently large d’s the highest intensity will be observed in the central focus (Fig. 4(c)) because its peak intensity does not change with d.

Another parameter that strongly affects the intra-focal intensity pattern inside LiNbO3, as well as any uniaxial media, is w0. In Figs. 4(d)-4(f), this dependence is presented for d = 300 μm. At this focusing depth, distinct focus splitting in LiNbO3 occurs even for a relatively loosely focused incident beam if it propagates along the optical axis. Conversely, to observe this effect for light propagation perpendicular to the optical axis the incident beam needs to be focused relatively tightly. This becomes especially true if there is even a small angle γ between the incident polarization and the optical axis (Fig. 4(f)).

The large difference between no and ne in LiNbO3 allows focus splitting to take place at moderate NA’s of the focusing optics and small focusing depths, representing the parameter space within which femtosecond laser writing in this material is usually carried out. For negative optically uniaxial materials with a stronger birefringence, such as CaCO3, focus splitting will be easy to observe at even smaller focusing angles and shallower depths. On the other hand, sapphire – an important negative crystal – has an order of magnitude lower birefringence than LiNbO3 and to observe focus splitting and other effects associated therewith in this case the beam has to be focused several hundreds of micrometers below the surface.

We note that although we do not specifically discuss any arbitrary states of polarization of the incident Gaussian beam, except linear state of polarization, it is assumed that the effect of arbitrary elliptical polarization can be seen as a superposition of two linearly polarized states of the same beam. The effect of each of these states separately is described by the expressions (2) and (4). We also note that the expressions (2) and (4) can be used to analyze intra-focal light distributions inside positive uniaxial media.

Finally, we would like to mention that the vacuum-LiNbO3 interface introduces spherical aberration, which distorts the wave front of the incident beam and can cause significant spreading of the intensity distribution along the beam propagation direction near the focus. This interface-induced spherical aberration, which takes place irrespective of whether a beam is focused into an isotropic or anisotropic medium, has been extensively studied both theoretically and experimentally [54–57]. In the above simulations we assume that a predetermined wave front distortion has been imposed onto the incident wave front in order to compensate for the interface-induced aberration. In laser writing it is done by using either specialty objectives that allow adjustable compensation for spherical aberration or spatial light modulators [30, 58].

3. Results and discussion

To check how accurately the above theoretical model can predict the shape and size of laser-induced changes in bulk LiNbO3 we used both z-cut samples (i.e., the z-axis is perpendicular to the front face) and y-cut samples (i.e., the y-axis is perpendicular to the front face). The laser writing was performed in ambient air using two different Ti:sapphire regenerative amplifiers. One operated at a central wavelength of 800 nm, pulse duration τp = 250 fs (FWHM) and pulse repetition rate of 100 kHz, whereas the other operated at a central wavelength of 775 nm, τp = 200 fs and pulse repetition rate of 10 Hz. In each case, the linearly polarized output beam was spatially filtered and then focused inside different LiNbO3 samples with a NA = 0.65 microscope objective (O1) allowing depth-dependent compensation of spherical aberration induced by the air-LiNbO3 planar interface (Fig. 5(a)). This objective (i.e.,LCPLN50XIR) is designed for inspecting internal structures in silicon (Si) wafers and has a correction collar that adjusts for varying thicknesses of silicon (and glass) substrates. The correction collar calibration for LiNbO3 was obtained by maximizing the peak intensity of the reflected signal from the front and back surface of a LiNbO3 sample of known thickness.

 

Fig. 5 (a) Schematic of the laser-writing setup: G – Glan polarizer, λ/2 – achromatic half-wave plate, O1 – NA = 0.65 microscope objective allowing depth-dependent compensation of spherical aberration. (b) Schematic of the scanning SHG microscopy setup: O2 – NA = 0.85 dry microscope objective to focus the 830 nm excitation beam, O3 – NA = 0.9 objective to collect the 415 nm SHG signal, F – band-pass optical filter to remove the excitation light, PMT – photomultiplier tube to detect the SHG signal. In (a) and (b) CR denotes a MgO-doped LiNbO3 crystal.

Download Full Size | PPT Slide | PDF

To vary the pulse energy Ep and the orientation of the plane of polarization of the incident pulses with respect to the crystal axes we used a Glan polarizer (G) sandwiched between two achromatic half-wave plates (λ/2). The low pulse repetition rate amplifier was used to conveniently induce single-spot modification with a low number of pulses (i.e., 1-10 pulses per spot), whereas the high pulse repetition rate amplifier allowed us to write either continuously by moving the sample with respect to the focused laser beam or induce single-spot modification with a large number of pulses (i.e., ~105 pulses per spot).

A) To visualize laser-modified regions we employed scanning SHG microscopy, which was previously shown to be able to map the naturally occurring distribution of second-order nonlinearity and microstructure inside LiB3O5 crystals, such as regions of amorphized material and crystal fracture defects [59]. SHG microscopy was also successfully used in the characterization of He+-implanted KTiOPO4 waveguides [60] and, which is directly relevant to our studies, ultrafast laser-written waveguiding structures in LiTaO3 [61] and in a Nd:YVO4 + KTiOPO4 hybrid system [62].

Our commercial scanning SHG microscopy setup is schematically presented in Fig. 5(b). Linearly polarized pulses at a repetition rate of 80 MHz generated with a Ti:sapphire oscillator were focused onto the sample using a NA = 0.85 dry microscope objective (O2). The central wavelength of the pulses was 830 nm. The pulse duration at the sample was minimized to the nominal 80 fs FWHM by means of the oscillator’s dispersion compensation scheme designed to cancel the chromatic dispersion of the optical elements – mainly the focusing microscope objective – in the beam path. The forward-propagating light, which included the 830 nm excitation beam and the SHG signal at 415 nm, was collected with a NA = 0.9 objective (O3) and after a band-pass optical filter (F) directed to a photomultiplier tube (PMT) for detection. The detected light originated from an illuminated volume element within the sample. 2-D SHG images from selected depths were acquired by scanning the excitation laser beam. To produce a 3-D SHG image of the sample from the 2-D SHG images captured at different depths, the sample was translated along the excitation beam propagation direction by predetermined increments. The lateral and axial resolutions of the setup are estimated at ~0.5 μm and ~3 μm, respectively.

Obviously, the propagation of a focused excitation beam in LiNbO3 should be influenced by the birefringence of this material in the context of our previous theoretical analysis. In the case of z-cut LiNbO3, any homogeneously polarized excitation beam always produces two foci, which detrimentally affects the point spread function (PSF) of the SHG microscopy setup. Only when the excitation beam is radially or azimuthally polarized can a single focus be produced inside a uniaxial medium at any focusing depth d [41]. To minimize the deterioration of the PSF caused by d-dependent focus splitting, the excitation beam in our SHG microscopy studies of z-cut LiNbO3 was always focused through the surface lying closest to the laser-induced modification. Specifically, i) in order to image modification produced near the front surface, the excitation beam was focused through the front surface (i. e., small d for both the laser-writing and excitation beam), ii) to image modification produced near the back surface the excitation beam was focused through the back surface (i. e., large d for the writing beam and small d for the excitation beam).

On the other hand, we could completely avoid these issues in our studies of y-cut LiNbO3 by simply aligning the polarization of the excitation beam perpendicular to the optical axis of the samples. By definition, this polarization ensures that the excitation beam has a single focus irrespective of d.

Figure 6 shows 3-D SHG microscopy images of laser-modified regions in 5mol% MgO-doped z-cut LiNbO3 crystals. The addition of MgO to LiNbO3 significantly increases its resistance to the photorefractive damage and thus makes it suitable for high-power practical applications [1–3]. The structures were produced by irradiating single spots inside the material with five 200 fs FWHM pulses generated by the low pulse repetition rate amplifier. The images clearly show the presence of a single modified region near the front surface (i.e., d = 10 μm) and two distinct laser-modified regions aligned along the writing beam propagation direction at a large focusing depth (i.e., d = 340 μm), as predicted. The modification near the front surface was written at a pulse energy of 20 nJ, whereas the two-component structure near the back surface was produced with 80 nJ pulses. This scaling factor in the pulse energy Ep was introduced because the predicted peak intensity in the laser focus near the front surface is ~4 times higher than that in each of the two foci (beams G1 and G2) formed deep inside the sample. Under our experimental conditions, permanent structural changes that cannot be removed by annealing the sample for one hour at 250°C occurred at Ep ~10 nJ near the front surface and at Ep ~40 nJ at d > 50 μm. Additionally, we found that the separation between the two components of the laser-induced modification could indeed be predicted using the expression 2a=2d(no2ne2)/(no2+ne2) (see Fig. 1), with the ordinary and extraordinary refractive indices for 5mol% MgO-doped LiNbO3 being no = 2.252 and ne = 2.167, respectively [50]. We note that the peak power P ~Ep/τp even in 80 nJ pulses did not significantly exceed the critical power for self-focusing Pcr for LiNbO3, which was measured to be ~0.3 MW at λ = 800 nm [24, 63]. This implies that the wave Eq. (1), which was in fact derived to describe light propagation in linear media, can be used to correctly explain the main features of femtosecond laser writing inside z-cut LiNbO3 under weakly nonlinear conditions.

 

Fig. 6 Comparison between SHG microscopy images of modification produced in z-cut MgO-doped LiNbO3 after irradiation of one spot with five pulses and simulations based on the expressions (2). (a) modification near the front surface: Ep ~20 nJ. (b) modification deep inside the material: Ep ~80 nJ. In (a) and (b) τp = 200 fs.

Download Full Size | PPT Slide | PDF

Writing in y-cut LiNbO3 with pulses whose polarization is aligned perpendicular to the optical axis (i.e., x-polarized pulses) results in the formation a single focus (beam G) at any d (Figs. 7(a) and 7(b)). As a consequence, this allows one to easily suppress nonlinear effects by using low pulse energies. Indeed, the modification shown in Figs. 7(a)-7(c) was produced at Ep ~20 nJ, i.e., at P ~1/3 Pcr. The five-pulse energy threshold for inscribing permanent changes in this writing geometry was ~10 nJ irrespective of d.

 

Fig. 7 Comparison between SHG microscopy images of modification produced in z-cut MgO-doped LiNbO3 after irradiation of one spot with five pulses and simulations based on the expressions (4). The incident polarization is along the x-axis in (a) and (b), along the z-axis in (c) and (d), and at an angle γ = π/14 with respect to the z-axis in (e) and (f). Ep ~20 nJ in (a), (b), (c), and (e); Ep ~1 μJ in (d) and (f). In (a)-(f) τp = 200 fs.

Download Full Size | PPT Slide | PDF

On the other hand, it is difficult to avoid nonlinear effects when the incident polarization is aligned parallel to the optical axis (i.e., z-polarized pulses). For this geometry, the peak intensity in the front and back focus decreases with d quite rapidly and in order to produce any material modification in the respective focal region the pulse energy needs to be scaled up accordingly (Fig. 4(b)), easily making the peak power P in the pulse greater than Pcr. Moreover, the light propagation at P > Pcr can also be affected by the highly elliptical cross-sectional profile of the beam [64–66].

For instance, we noticed that modification at d = 440 μm solely occurred in the front focus, whereas according to the simulations presented in Fig. 4(b) the peak light intensity in the front focus is only slightly higher than in the back focus. In fact, to initiate optical breakdown in the vicinity of the back focus Ep had to be increased to ~1 μJ (Fig. 7(d)), whereas the energy threshold to induce permanent modification near the front focus was ~100 nJ, which, in fact, translates into P ~1.5Pcr. Interestingly, the shape and size of the produced modification could be still accurately described by the linear model. For instance, the axial separation between the modified regions produced by the front and back focus was in close agreement with the predicted value given by a1+a2=d(no2ne2)/(none)(see Fig. 2).

When the incident polarization was aligned at γ = π/14 with respect to the optical axis three distinct modified regions could be created by the front, central and back focus under certain conditions (Fig. 7(f)). As in the case of z-polarized pulses, only the front and central foci were able to modify the material at the threshold Ep, which was slightly above 100 nJ, and Ep ~1 μJ was required to inscribe the expected three-component structures.

To check whether this apparent disagreement between theory and experiment for y-cut LiNbO3 was indeed caused by the nonlinear pulse propagation we repeated the experiment with z-polarized pulses at progressively decreasing peak powers, while keeping the corresponding focused intensities above the material modification threshold. Three pulse durations – 250 fs, 1 ps, and 2 ps – were used in that experiment. A pulse energy of 300 nJ was chosen to ensure that the peak power was well above, comparable to, and significantly lower than Pcr. As before, the pulses were focused at d = 440 μm. This time, however, we used the high pulse repetition rate amplifier and each spot was exposed to ~105 pulses. The results are presented in Fig. 8. The irradiation with 250 fs pulses resulted in a single modified region whose orientation implies that it was produced by the front laser focus. With 1 ps pulses we were able to cause permanent changes in LiNbO3 in the vicinity of both the front and back laser foci. However, the material modification threshold for the front focus was ~1.5 times lower than for the back one. On the other hand, at τp = 2 ps both the front and back focus produced changes in the material at almost the same threshold value of Ep.

 

Fig. 8 SHG microscopy images of modification produced in y-cut MgO-doped LiNbO3 after irradiation of one spot with 105 300 nJ pulses: the role of peak power P in the beam. The incident polarization is along the z-axis.

Download Full Size | PPT Slide | PDF

These observations indicate that under our experimental conditions the linear model summarized in the expressions (2) and (4) can be used to accurately describe the propagation of ultrashort laser pulses in both z-cut and y-cut LiNbO3 if their peak power is kept below Pcr. At P < 0.5Pcr the agreement between theory and experiment is spectacular.

The SHG microscopy images in Fig. 9 show how the focus splitting described in the previous paragraphs can affect continuous laser writing in MgO-doped LiNbO3. In LiNbO3 and other materials this mode is used for the inscription of various waveguiding structures and therefore important for many applications in photonics [16, 19–26, 31].

 

Fig. 9 SHG microscopy images of modification produced in MgO-doped LiNbO3 in continuous writing mode. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. (a) z-cut LiNbO3, τp = 250 fs, Ep ~100 nJ, d = 340 μm. (b)-(d) y-cut LiNbO3. τp = 2 ps, Ep ~300 nJ in (b) and (c). τp = 250 fs, Ep ~50 nJ in (d). The incident polarization is along the z-axis in (b), at an angle γ = π/14 with respect to the z-axis in (c), and along the x-axis in (d).

Download Full Size | PPT Slide | PDF

For z-cut LiNbO3, the peak intensity inside both the foci remains essentially unchanged for d > 50 μm and is ~1/4 of the peak intensity inside the unsplit focus near the front surface, as we discussed earlier in the text. If the laser beam is scanned in the xy-plane and the peak intensity inside the foci is sufficiently high to induce optical breakdown, but the peak power in the beam is low enough to avoid nonlinear effects, two distinct lines of modified material separated along the z-axis are easily produced (Fig. 9(a)). For laser writing near the material modification threshold the parameter space for this phenomenon to occur or disappear can be identified based on the simulations presented in Figs. 4(a) and 4(d).

Continuous writing in y-cut LiNbO3 results in the production of single-, double-, and triple-line structures depending on the orientation of the incident polarization with respect to the optical axis, as we show in Figs. 9(b) and 9(c). A unique feature of this laser writing geometry – especially from a practical point of view – is that by using x-polarized pulses it allows one to inscribe single lines of modified material at any d, as if LiNbO3 were an optically isotropic medium (Fig. 9(d)). The laser writing parameters for each situation are provided in the respective figure captions.

To conclude this section we would like to point out that there can be a significant degree of similarity between light propagation in uniaxial and biaxial crystals. The latter case is substantially more complex, however, as the index ellipsoid is now described by three unequal principle refractive indices nx < ny < nz that correspond to the principal crystal axis x, y and z. Here, we will only briefly summarize the results pertaining to the situation when a converging x-polarized beam impinges on a biaxial crystal along its z-axis. For this geometry, the beam inside the biaxial crystal accumulates astigmatism on propagation and when the incident beam is focused sufficiently tightly this astigmatic beam propagation gives rise to two elongated criss-crossed foci, akin to those shown in Fig. 7(d). The elongation of the foci perpendicular to the z-axis and the separation between them along the z-axis become larger as the focusing depth increases [67, 68]. As a result, the peak intensity inside the material and the bulk damage threshold also become depth-dependent [69].

B) So far, our studies of the laser-induced modification morphology in LiNbO3 have been performed with a micrometre resolution, which can be achieved using optical microscopy. In the last section of the article we will investigate how multi-shot irradiation of LiNbO3 modifies its structure at the nanosclale.

Figure 10(a) shows a schematic diagram of the laser writing configuration that we used to produce lines of modified material inside MgO-doped LiNbO3. The continuous laser writing presented in Fig. 10 was performed inside z-cut samples at d = 340 μm using three different pulse durations: 250 fs, 1 ps, and 2 ps. In each case the pulse energy was Ep ~300 nJ and the polarization was perpendicular to the writing direction.

 

Fig. 10 SEM microscopy images of nanostructural changes produced in z-cut MgO-doped LiNbO3 in continuous writing mode. Cross section is taken parallel to the yz plane. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. In each case Ep ~300 nJ.

Download Full Size | PPT Slide | PDF

After irradiation the samples were cut perpendicular to the lines of modified material (i.e., yz-plane in Fig. 10(a)), polished and then etched in concentrated hydrofluoric acid (49% solution in H2O) for 10 s at 20°C [70]. At room temperature, single crystal LiNbO3 is highly resistant to HF-etching: the ± x-faces and the + z-face do not etch at all, the ± y-faces etch extremely weakly, and the etch rate of the –z-face is only ~1 μm h−1 [71, 72]. On the other hand, if the physical and chemical properties of LiNbO3 crystal are locally changed using, for 9instance, ion beam irradiation or laser beam irradiation, the etch rate of the modified regions can increase dramatically [24, 73] and thus allow their visualization by combining wet chemical etching with subsequent microscopy.

For τp = 250 fs and 1 ps, SEM images of HF-etched samples (Fig. 10(b)) revealed the presence of self-organized periodically-assembled nanostructures aligned perpendicular to the laser polarization [74–76]. Under those conditions the nanogratings were produced in both the front and back focus. It is also interesting to note that at τp = 250 fs (P ~3 Pcr) several well-defined regions containing nanostructures were formed in the vicinity of the front focus, whereas for τp = 1 ps (P ~Pcr) the effect vanished.

To investigate whether the formation of nanogratings was affected by the orientation of the crystal axes with respect to the writing direction we produced planes of modified material inside z-cut and y-cut LiNbO3 crystals with 250 fs pulses, as shown in Fig. 11. The planes were engraved by overlapping several layers containing lines of modified material. The lateral separation between the lines in each layer was Δl = 1 μm, and the writing direction was kept the same for each line. The separation between the layers along the beam propagation direction was Δd = 5 μm. To study the nanomorphology of laser-induced changes using SEM all the samples were cut (depicted in dotted lines), polished and then HF-etched, as discussed earlier.

 

Fig. 11 SEM microscopy images of nanostructural changes produced in LiNbO3 in continuous writing mode. Cross sections are taken parallel to the xy (a)-(c) and zx (d)-(f) planes. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. (a)-(c) z-cut pure LiNbO3, τp = 250 fs, Ep ~100 nJ, 300 μm < d < 350 μm. (d)-(f) y-cut MgO-doped LiNbO3, τp = 250 fs, 400 μm < d < 450 μm. Ep ~100 nJ in (d) and (e), and Ep ~300 nJ in (f). The cross-sections of the front (solid line) and back foci (dashed line) are schematically presented for each writing geometry.

Download Full Size | PPT Slide | PDF

Figure 11 shows SEM images of nanogratings formed hundreds of micrometers inside z-cut pure LiNbO3 (Figs. 11(a)-11(c)) and y-cut MgO-doped LiNbO3 (Figs. 11(d)-11(f)). In the z-cut configuration nanogratings could be easily oriented at any angle with respect to the writing direction by rotating the plane of polarization of the incident pulses (Figs. 11(a)-11(c)).

In the y-cut crystal we limited laser writing only to two orientations of the incident light polarization – parallel and perpendicular to the optical axis – because only for these two situations the polarization in the foci is homogeneous, i.e., spatially invariant. When the polarization was perpendicular to the optical axis the nanogratings looked very similar to those in the z-cut crystal (Figs. 11(d) and 11(e)). In order to write nanogratings with the polarization oriented along the optical axis we had to use much higher pulse energies to compensate for the dramatic drop in the peak intensity caused by the depth-dependent astigmatism of the laser focus (Fig. 11(f)). Interestingly, the resultant nanogratings were less regular compared with those produced in other writing configurations shown in Fig. 11, which we attribute to the anisotropic crystalline structure of LiNbO3.

The results clearly demonstrate that subwavelength periodic planar nanostructures, aligned perpendicular to the laser polarization, were produced throughout the laser-modified regions both in z-cut and y-cut LiNbO3, regardless of whether it is MgO-doped or pure. Having analyzed a large number of SEM images we have also found that the nanogratings were formed no matter whether the laser beam propagation direction was parallel or antiparallel to the respective crystal axis (i.e., ± z or ± y). Taking into account that these structures are self-organized rather than directly written the reproducibility is quite remarkable.

The very fact that bulk nanogratings can be consistently produced in LiNbO3 with ultrashort laser pulses is important in itself as this type of structured changes has so far been observed in only a scant assortment of materials [74, 75, 77–79]. We also note that bulk nanogratings should be distinguished from laser-induced periodic surface structures or surface ripples [80]. The surface phenomenon was first reported in the 60’s and since then has been observed in a variety of materials, including dielectrics, semiconductors, and metals under widely different illumination conditions. Continuous and pulsed (including femtosecond) laser radiation at wavelengths ranging from the middle infrared to the near ultraviolet was used in these experiments [80]. Only much later, in 2003, did Shimotsuma et al [74] discover ultrashort pulse-induced bulk nanogratings, which still remain the smallest embedded structures ever produced by light.

4. Conclusion

We have shown how the birefringence of LiNbO3 affects the ability of ultrashort laser pulses to induce permanent changes inside this important material. The simple analytical expressions presented in the article clearly demonstrate that a tightly focused ultrafast Gaussian beam – the current mainstay of direct laser writing – after entering a uniaxial crystal generally has two or three foci inside the medium depending on the orientation of the pulse propagation direction with respect to the crystal optical axis. Only in one special case, namely when the writing beam is linearly polarized and its polarization is aligned perpendicular to the optical axis of a x- or y-cut crystal, will a single focus be formed at any focusing depth.

We have confirmed these predictions by engraving linear and spot structures in z-cut and y-cut LiNbO3 samples using 250 fs – 2 ps pulses and then analyzing the induced changes using SHG microscopy and SEM. Specifically, we show that if the power of the light pulses is below or near the self-focusing threshold, but their focused intensity is above the multiphoton ionization threshold, our model very accurately predicts shape and size of the laser-induced changes in bulk LiNbO3. We also show that with repeated irradiation nanograting structures emerge written throughout the focal region. These self-assembled planar nanostructures are oriented perpendicular to the electric vector of the light and order themselves to produce spacings of approximately half of the laser wavelength in the medium.

The presented results have important implications for the whole field of direct laser writing in crystalline dielectric materials as they show that the ultimate precision of the technique in this case can be drastically decreased by multifocusing effects and other distortions of the focal intensity distribution.

Acknowledgments

The authors thank the Australian Research Council and Qatar National Research Fund for financial support, the Center for Advanced Microscopy of ANU for help with the scanning electron microscopy and second harmonic generation microscopy images, and X. Chin for performing chemical etching of the samples. P. Karpinski also thanks the Polish Ministry of Science and Higher Education for “Mobility Plus” scholarship.

References and links

1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004). [CrossRef]  

2. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985). [CrossRef]  

3. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

4. T. Volk and M. Wöhlecke, (2008). Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, 2008).

5. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974). [CrossRef]  

6. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982). [CrossRef]  

7. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]  

8. G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011). [CrossRef]  

9. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008). [CrossRef]  

10. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007). [CrossRef]  

11. N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011). [CrossRef]  

12. C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012). [CrossRef]  

13. F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007). [CrossRef]  

14. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005). [CrossRef]   [PubMed]  

15. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]  

16. L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004). [CrossRef]  

17. D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005). [CrossRef]  

18. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012). [CrossRef]   [PubMed]  

19. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006). [CrossRef]  

20. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006). [CrossRef]  

21. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31(20), 2987–2989 (2006). [CrossRef]   [PubMed]  

22. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007). [CrossRef]  

23. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007). [CrossRef]   [PubMed]  

24. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006). [CrossRef]  

25. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007). [CrossRef]  

26. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008). [CrossRef]   [PubMed]  

27. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006). [CrossRef]  

28. E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010). [CrossRef]  

29. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009). [CrossRef]  

30. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011). [CrossRef]   [PubMed]  

31. J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013). [CrossRef]  

32. X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015). [CrossRef]  

33. E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003). [CrossRef]  

34. D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005). [CrossRef]  

35. M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012). [CrossRef]  

36. G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009). [CrossRef]   [PubMed]  

37. J. A. Fleck Jr and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983). [CrossRef]  

38. A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18(7), 1656–1661 (2001). [CrossRef]   [PubMed]  

39. A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19(4), 792–796 (2002). [CrossRef]   [PubMed]  

40. A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20(1), 163–171 (2003). [CrossRef]   [PubMed]  

41. G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003). [CrossRef]  

42. A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003). [CrossRef]   [PubMed]  

43. J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998). [CrossRef]  

44. J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007). [CrossRef]  

45. M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009). [CrossRef]   [PubMed]  

46. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007). [CrossRef]  

47. N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002). [CrossRef]  

48. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34(7), 1021–1023 (2009). [CrossRef]   [PubMed]  

49. V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30(1), 1–6 (2013). [CrossRef]  

50. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010). [CrossRef]   [PubMed]  

51. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997). [CrossRef]  

52. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975). [CrossRef]  

53. G. P. Agrawal and D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69(4), 575–578 (1979). [CrossRef]  

54. S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8(10), 1601–1613 (1991). [CrossRef]   [PubMed]  

55. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993). [CrossRef]  

56. P. Török, P. Varga, Z. Laczic, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995). [CrossRef]  

57. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995). [CrossRef]  

58. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005). [CrossRef]  

59. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23(15), 1209–1211 (1998). [CrossRef]   [PubMed]  

60. N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011). [CrossRef]   [PubMed]  

61. B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008). [CrossRef]  

62. N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011). [CrossRef]   [PubMed]  

63. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001). [CrossRef]  

64. V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004). [CrossRef]  

65. A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004). [CrossRef]   [PubMed]  

66. T. Grow and A. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13(12), 4594–4599 (2005). [CrossRef]   [PubMed]  

67. J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005). [CrossRef]  

68. M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006). [CrossRef]  

69. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008). [CrossRef]  

70. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966). [CrossRef]  

71. N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967). [CrossRef]  

72. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002). [CrossRef]  

73. F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006). [CrossRef]  

74. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef]   [PubMed]  

75. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef]   [PubMed]  

76. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008). [CrossRef]  

77. Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005). [CrossRef]  

78. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008). [CrossRef]   [PubMed]  

79. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013). [CrossRef]  

80. D. Bäuerle, Laser Processing and Chemistry, 3rd ed. (Springer, 2000).

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
    [Crossref]
  2. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  3. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  4. T. Volk and M. Wöhlecke, (2008). Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, 2008).
  5. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
    [Crossref]
  6. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [Crossref]
  7. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [Crossref]
  8. G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
    [Crossref]
  9. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
    [Crossref]
  10. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
    [Crossref]
  11. N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [Crossref]
  12. C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
    [Crossref]
  13. F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
    [Crossref]
  14. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
    [Crossref] [PubMed]
  15. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  16. L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
    [Crossref]
  17. D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
    [Crossref]
  18. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
    [Crossref] [PubMed]
  19. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [Crossref]
  20. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  21. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31(20), 2987–2989 (2006).
    [Crossref] [PubMed]
  22. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  23. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
    [Crossref] [PubMed]
  24. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
    [Crossref]
  25. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [Crossref]
  26. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
    [Crossref] [PubMed]
  27. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
    [Crossref]
  28. E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
    [Crossref]
  29. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
    [Crossref]
  30. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
    [Crossref] [PubMed]
  31. J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
    [Crossref]
  32. X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
    [Crossref]
  33. E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
    [Crossref]
  34. D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
    [Crossref]
  35. M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
    [Crossref]
  36. G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
    [Crossref] [PubMed]
  37. J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983).
    [Crossref]
  38. A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18(7), 1656–1661 (2001).
    [Crossref] [PubMed]
  39. A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19(4), 792–796 (2002).
    [Crossref] [PubMed]
  40. A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20(1), 163–171 (2003).
    [Crossref] [PubMed]
  41. G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
    [Crossref]
  42. A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
    [Crossref] [PubMed]
  43. J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
    [Crossref]
  44. J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
    [Crossref]
  45. M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
    [Crossref] [PubMed]
  46. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  47. N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
    [Crossref]
  48. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34(7), 1021–1023 (2009).
    [Crossref] [PubMed]
  49. V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30(1), 1–6 (2013).
    [Crossref]
  50. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010).
    [Crossref] [PubMed]
  51. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [Crossref]
  52. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
    [Crossref]
  53. G. P. Agrawal and D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69(4), 575–578 (1979).
    [Crossref]
  54. S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8(10), 1601–1613 (1991).
    [Crossref] [PubMed]
  55. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
    [Crossref]
  56. P. Török, P. Varga, Z. Laczic, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
    [Crossref]
  57. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995).
    [Crossref]
  58. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
    [Crossref]
  59. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23(15), 1209–1211 (1998).
    [Crossref] [PubMed]
  60. N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011).
    [Crossref] [PubMed]
  61. B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
    [Crossref]
  62. N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
    [Crossref] [PubMed]
  63. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
    [Crossref]
  64. V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
    [Crossref]
  65. A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004).
    [Crossref] [PubMed]
  66. T. Grow and A. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13(12), 4594–4599 (2005).
    [Crossref] [PubMed]
  67. J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
    [Crossref]
  68. M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
    [Crossref]
  69. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
    [Crossref]
  70. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
    [Crossref]
  71. N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
    [Crossref]
  72. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
    [Crossref]
  73. F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
    [Crossref]
  74. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  75. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  76. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  77. Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
    [Crossref]
  78. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
    [Crossref] [PubMed]
  79. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
    [Crossref]
  80. D. Bäuerle, Laser Processing and Chemistry, 3rd ed. (Springer, 2000).

2015 (1)

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

2013 (3)

2012 (3)

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

2011 (5)

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
[Crossref] [PubMed]

N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011).
[Crossref] [PubMed]

N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
[Crossref] [PubMed]

2010 (2)

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

2009 (5)

2008 (7)

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
[Crossref] [PubMed]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

2007 (7)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
[Crossref] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

2006 (8)

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31(20), 2987–2989 (2006).
[Crossref] [PubMed]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

2005 (7)

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

T. Grow and A. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13(12), 4594–4599 (2005).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

2004 (4)

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004).
[Crossref] [PubMed]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

2003 (5)

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20(1), 163–171 (2003).
[Crossref] [PubMed]

G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
[Crossref]

A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (3)

N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19(4), 792–796 (2002).
[Crossref] [PubMed]

2001 (2)

A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18(7), 1656–1661 (2001).
[Crossref] [PubMed]

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

1998 (2)

1997 (1)

1995 (2)

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

1991 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

1983 (1)

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

1979 (1)

1975 (1)

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

1974 (1)

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

1967 (1)

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

1966 (1)

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Agrawal, G. P.

Akhouayri, H.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Alexander, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

An, H.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Baldenberger, G.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Benayas, A.

Bernal, M. P.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Bettiol, A. A.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Beyer, O.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Booker, G. R.

Bookey, H. T.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Booth, M.

Booth, M. J.

Bourliaguet, B.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

Brandt, N.

Brasselet, E.

Brocklesby, W. S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Buse, K.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Chen, F.

Chen, K. P.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Chen, X.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Cheng, Y.

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Chong, T. C.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Ciattoni, A.

Cincotti, G.

Cojocaru, C.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Commandré, M.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Crosignani, B.

Cumming, B. P.

Danner, A. J.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Denz, C.

Deshpande, D.

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Deshpande, D. C.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

Desyatnikov, A.

Desyatnikov, A. S.

Dhayalan, V.

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Di Porto, P.

Doerr, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Dong, N.

Döring, S.

Dubietis, A.

Eason, R. W.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Fadeyeva, T. A.

Fedorov, V. Yu.

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

Feit, M. D.

Fibich, G.

Fleck, J. A.

Fleming, S.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Frette, Ø.

Gaeta, A.

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gauderon, R.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Geiss, R.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Généreux, F.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Gibson, S. F.

Gischkat, T.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Gong, Q.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Gottmann, J.

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Grobnic, D.

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Grow, T.

Gu, M.

Gui, L.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Hartwell, V.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

He, F.

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Herman, P. R.

Herrmann, J.

Hilbert, V.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Hildenbrand, A.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Hirao, K.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hirt, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

Hnatovsky, C.

V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30(1), 1–6 (2013).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Horn, W.

Horn-Solle, H.

Hsieh, H. T.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Hu, H.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Ilan, B.

Imbrock, J.

Izdebskaya, Y.

Izdebskaya, Y. V.

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Jain, M.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Jaque, D.

Jesacher, A.

Ji, W.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Jiang, D.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
[Crossref]

Jiang, H.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Jundt, D.

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Kam, C. H.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

Kandidov, V. P.

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

Kar, A. K.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Karpinski, P.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Kazansky, P. G.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Kitamura, K.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Kivshar, Y. S.

Kley, E.-B.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Koynov, K.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Kroesen, S.

Krolikowski, W.

Laczic, Z.

Lam, Y. L.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Lanni, F.

Lax, M.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

Levinstein, H. J.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Li, H. P.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Li, J.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Liao, Y.

Liu, Y.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Loiacono, G. M.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Lotsberg, J. K.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Louchev, O. A.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Louisell, W. H.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

Lu, H. H.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Lu, Q.

Lukins, P. B.

Mailis, S.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Malshe, A.

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Malshe, A. P.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Maxein, D.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McKnight, W. B.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

McMillen, B.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Midorikawa, K.

Miese, C.

Mihailov, S.

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Misawa, H.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Mizeikis, V.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Muir, A. C.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Nassau, K.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Natoli, J.-Y.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Nejadmalayeri, A. H.

Neshev, D. N.

Niizeki, N.

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Nolte, S.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Osellame, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Owen, J. R.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Palma, C.

Pattanayak, D. N.

Pertsch, T.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Psaila, N. D.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Psaltis, D.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Qiu, J.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Radmilovic, V.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Rauch, J. Y.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Richter, S.

Ricken, R.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Rode, A. V.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

Ródenas, A.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
[Crossref]

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
[Crossref] [PubMed]

Romero, C.

Rozanov, N. N.

N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
[Crossref]

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Sapia, C.

G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
[Crossref]

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

Schrempel, F.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Sheng, Y.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Sheppard, C. J. R.

Shimotsuma, Y.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shostka, N.

Shvedov, V.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34(7), 1021–1023 (2009).
[Crossref] [PubMed]

Shvedov, V. G.

Si, G.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Sithambaranathan, G. S.

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Small, D. L.

Smelser, C.

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Snoke, D.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Soergel, E.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Sohler, W.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Sones, C. L.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Song, J.

Stach, E. A.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Stamnes, J. J.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
[Crossref]

Steigerwald, H.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Sturman, B.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Sudzius, M.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Sugioka, K.

Sun, H.

Tamošauskas, G.

Tan, Y.

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Tejerina, M. R.

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

Teng, J.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Teo, E. J.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Teo, S. L.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Thomas, J.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Thomson, R. R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Torchia, G. A.

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

Török, P.

Toyoda, H.

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Trull, J.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Tünnermann, A.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Ulliac, G.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Valdivia, C. E.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Vallée, R.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Varga, P.

Vázquez de Aldana, J.

Velauthapillai, D.

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Volyar, A. V.

Wagner, F. R.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Wang, B.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Wang, X.

Wehrspohn, R. B.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Wesch, W.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Wilson, T.

Withford, M. J.

Wortmann, D.

Xiao, J.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Xu, B.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Xu, J.

Xu, Z.

Yamada, T.

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Ying, C. Y. J.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Zelmon, D. E.

Zhao, X.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Zhou, G.

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
[Crossref] [PubMed]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
[Crossref]

Zhou, Z.

Zimmermann, F.

Adv. Mater. (1)

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
[Crossref]

Appl. Phys. Lett. (10)

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

J. Appl. Phys. (5)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

J. Mater. Chem. (1)

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

J. Microsc. (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (8)

A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18(7), 1656–1661 (2001).
[Crossref] [PubMed]

A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19(4), 792–796 (2002).
[Crossref] [PubMed]

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20(1), 163–171 (2003).
[Crossref] [PubMed]

S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8(10), 1601–1613 (1991).
[Crossref] [PubMed]

P. Török, P. Varga, Z. Laczic, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
[Crossref]

P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995).
[Crossref]

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Laser Photonics Rev. (3)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Mod. Phys. Lett. B (1)

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Opt. Commun. (4)

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
[Crossref]

G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
[Crossref]

Opt. Eng. (1)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Opt. Express (8)

T. Grow and A. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13(12), 4594–4599 (2005).
[Crossref] [PubMed]

N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011).
[Crossref] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
[Crossref] [PubMed]

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010).
[Crossref] [PubMed]

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
[Crossref] [PubMed]

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
[Crossref] [PubMed]

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. (1)

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. A (1)

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Phys. Status Solidi (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Quantum Electron. (1)

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

Other (3)

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

T. Volk and M. Wöhlecke, (2008). Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, 2008).

D. Bäuerle, Laser Processing and Chemistry, 3rd ed. (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Beam splitting inside a negative uniaxial crystal when a focused Gaussian beam impinges on the crystal parallel to its optical axis. The incident beam always splits into two beams denoted by red and blue (Gaussian beams G1 and G2 in the text, respectively). The effective refractive index of the crystal for the red (blue) beam is no (ne2/no < no). As a consequence, the red beam is focused farther from the front face of the crystal than the blue one. (E) denotes the electric field vector.
Fig. 2
Fig. 2 Beam splitting inside a negative uniaxial crystal when a focused Gaussian beam impinges on the crystal perpendicular to its optical axis. Generally, the incident beam splits into three beams denoted by red, blue and green (beams G, g1, and g2 in the text, respectively). The effective refractive index of the crystal is no for the red beam, ne for the blue beam, and no2/ne for the green beam. The effective refractive indices determine the corresponding beam waist positions inside the crystal.
Fig. 3
Fig. 3 Simulations of focus splitting inside a LiNbO3 crystal when a linearly polarized Gaussian beam enters the crystal (a) along and (b) perpendicular to the optical axis (i.e., z-axis). In (a) and (b) the peak light intensity is normalized to unity at each focusing depth. The incident polarization is along the x-axis in (a) and at an angle γ = π/14 with respect to the optical axis in (b). The bottom panels of (a) and (b) show cross sectional intensity distributions of the respective vector beams at d = 300 μm. Intensity profiles after an analyzing polarizer, as indicated by the orientation of (E), are also provided. k denotes the beam propagation direction.
Fig. 4
Fig. 4 Parametric analysis of focus splitting inside a LiNbO3 crystal. A linearly polarized Gaussian beam enters a LiNbO3 crystal along the optical axis in (a) and (d), and perpendicular to the optical axis in (b), (c), (e), and (f). On-axis intensity distributions along the beam propagation direction are shown as a function of the focusing depth d at a fixed beam waist radius w0 = 0.4 μm in (a)–(c) and as a function of w0 at a fixed d = 300 μm in (d)–(f). The incident linear polarization is arbitrary-angle in (a) and (d), parallel to the optical axis in (b) and (e), and at an angle γ = π/14 with respect to the optical axis in (c) and (f). In each panel the peak intensity is normalized to the total power in the beam P, which is kept constant in each case. Under this condition, the electric field amplitude is given by E 0 = 2P/( w 0 2 πc ε 0 ) , where ε0 is the vacuum permittivity.
Fig. 5
Fig. 5 (a) Schematic of the laser-writing setup: G – Glan polarizer, λ/2 – achromatic half-wave plate, O1 – NA = 0.65 microscope objective allowing depth-dependent compensation of spherical aberration. (b) Schematic of the scanning SHG microscopy setup: O2 – NA = 0.85 dry microscope objective to focus the 830 nm excitation beam, O3 – NA = 0.9 objective to collect the 415 nm SHG signal, F – band-pass optical filter to remove the excitation light, PMT – photomultiplier tube to detect the SHG signal. In (a) and (b) CR denotes a MgO-doped LiNbO3 crystal.
Fig. 6
Fig. 6 Comparison between SHG microscopy images of modification produced in z-cut MgO-doped LiNbO3 after irradiation of one spot with five pulses and simulations based on the expressions (2). (a) modification near the front surface: Ep ~20 nJ. (b) modification deep inside the material: Ep ~80 nJ. In (a) and (b) τp = 200 fs.
Fig. 7
Fig. 7 Comparison between SHG microscopy images of modification produced in z-cut MgO-doped LiNbO3 after irradiation of one spot with five pulses and simulations based on the expressions (4). The incident polarization is along the x-axis in (a) and (b), along the z-axis in (c) and (d), and at an angle γ = π/14 with respect to the z-axis in (e) and (f). Ep ~20 nJ in (a), (b), (c), and (e); Ep ~1 μJ in (d) and (f). In (a)-(f) τp = 200 fs.
Fig. 8
Fig. 8 SHG microscopy images of modification produced in y-cut MgO-doped LiNbO3 after irradiation of one spot with 105 300 nJ pulses: the role of peak power P in the beam. The incident polarization is along the z-axis.
Fig. 9
Fig. 9 SHG microscopy images of modification produced in MgO-doped LiNbO3 in continuous writing mode. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. (a) z-cut LiNbO3, τp = 250 fs, Ep ~100 nJ, d = 340 μm. (b)-(d) y-cut LiNbO3. τp = 2 ps, Ep ~300 nJ in (b) and (c). τp = 250 fs, Ep ~50 nJ in (d). The incident polarization is along the z-axis in (b), at an angle γ = π/14 with respect to the z-axis in (c), and along the x-axis in (d).
Fig. 10
Fig. 10 SEM microscopy images of nanostructural changes produced in z-cut MgO-doped LiNbO3 in continuous writing mode. Cross section is taken parallel to the yz plane. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. In each case Ep ~300 nJ.
Fig. 11
Fig. 11 SEM microscopy images of nanostructural changes produced in LiNbO3 in continuous writing mode. Cross sections are taken parallel to the xy (a)-(c) and zx (d)-(f) planes. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. (a)-(c) z-cut pure LiNbO3, τp = 250 fs, Ep ~100 nJ, 300 μm < d < 350 μm. (d)-(f) y-cut MgO-doped LiNbO3, τp = 250 fs, 400 μm < d < 450 μm. Ep ~100 nJ in (d) and (e), and Ep ~300 nJ in (f). The cross-sections of the front (solid line) and back foci (dashed line) are schematically presented for each writing geometry.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( 2 +2ik n o z) E ˜ =α ( E ˜ )
E x = 1 2 [ ( G 1 + G 2 ){ (1+ r 2 w 0 2 ξ 1 ) G 1 (1+ r 2 w 0 2 ξ 2 ) G 2 }cos2φ ] e i(k n o zωt)
E y = 1 2 { (1+ r 2 w 0 2 ξ 1 ) G 1 (1+ r 2 w 0 2 ξ 2 ) G 2 }sin2φ e i(k n o zωt) ,
( 2 / x 2 + 2 / z 2 +2ik n o y) E ˜ x =0,
( n e 1 2 / x 2 + n e n o 2 2 / z 2 +2iky) E ˜ z =0
E x =( E 0 sinγ /ξ )exp{ ( x 2 + z 2 )/( w 0 2 ξ) } e i(k n o yωt)
E z =( E 0 cosγ / ξ x ξ z )exp{ x 2 /( w 0 2 ξ x ) z 2 /( w 0 2 ξ z ) }exp(ikd( n e n o )/ n o ) e i(k n e yωt) .

Metrics