Abstract

We show that perfect absorption of terahertz wave can be achieved in a compact system where an ultrathin film of lossless dielectric is coated on a doped semiconductor substrate. Due to the nontrivial reflection phase shift at the interface between the two media, strong resonant behavior and the concomitant antireflection occur at wavelengths that are much larger than the thickness of the dielectric film, resulting in strong absorption of the incident wave in a wide frequency range. Using this mechanism, we design a broadband terahertz absorber by coating a Ge film on a highly doped GaAs substrate. We show that such a system not only has a perfect absorption peak, but also exhibits high absorptance (over 0.9) within a fractional bandwidth of over 20%. By varying the free carrier density in the GaAs substrate, the central frequency of the absorption band can be tuned from 1.79 to 2.69 THz. In addition, the absorption performance of the proposed system is shown to be insensitive to both incident angle and polarization. Our results offer a low-cost way for the design of absorption-based THz devices.

© 2016 Optical Society of America

1. Introduction

There has been recent interest in composite optical materials capable of absorbing incident electromagnetic energy at desired frequencies. Two main types of microstructure-based systems have been employed in the design of artificial absorbing media. One is the thin film coating system, in which a lossy semitransparent dielectric film backed by metal or Bragg reflector forms an asymmetric Fabry-Perot (FP) cavity and absorption is gradually accumulated within the dielectric layer [1–6]. To achieve constructive or destructive interference to enhance the absorption, the dielectric film is typically at least a quarter-wave in thickness. Another is the metamaterial-based system, where strong absorption occurs at the resonant frequencies of the subwavelength unit cells [7–11]. In contrast to the traditional thin film absorber, the metamaterial-based absorber can be much thinner than the operating wavelength.

While electromagnetic absorber could be of potential use in diverse field throughout the spectrum, it has attracted special attention in terahertz (THz) frequency range where the electromagnetic response of natural materials is comparatively devoid. Although the engineered electromagnetic materials, i.e. metamaterials, can realize perfect absorption at THz frequencies, the absorption is narrowband due to the resonant nature of the metamaterial [12]. The absorption bandwidth has become one of the key factors to measure the performance of the metamaterial-based absorbers. A method was recently used to broaden the absorption bandwidth by blending resonant frequencies of individual resonating elements [13–16]. However, integrating many microresonators with different sizes on the same substrate is a great challenge for current fabrication technology. In addition, the absorption band is generally fixed, which limits the practical applications of the metamaterial-based absorbers [17–20].

Recently, it was demonstrated that perfect absorption can be achieved in a special coating system where the thickness of the coating layer is much smaller than the incident wavelength [21]. In such a system, a highly absorbing dielectric layer was coated on an opaque and lossy substrate. By utilizing the nontrivial phase shift at the interface between the lossy media, absorption resonance can form inside the ultrathin absorbing film. Based on this mechanism, a practical design of ultrathin film absorber which works at mid-infrared region was proposed by coating a vanadium dioxide film on sapphire substrate [21]. However, such a mechanism cannot be extended to terahertz frequencies because there are no natural materials that can meet the requirement for the absorbing dielectric layer and the opaque substrate of the coating system at this frequency range.

In this paper, we propose a novel method to realize perfect absorption by using a system comprising an ultrathin lossless dielectric film on a doped semiconductor substrate, where the impedance of the system is designed to match with that of the incident medium to eliminate the reflection. For the practical design of THz absorber, we choose Ge and highly doped GaAs as the materials for the dielectric layer and the substrate, respectively. We show that such a system cannot only achieve perfect absorption at the resonance frequency, but also exhibit strong absorption within a wide frequency range. We also show that the absorption band of the proposed design can be tuned and the absorption performance is insensitive to both incident angle and polarization.

2. Design principle

When a layer of lossless dielectric is coated on a perfect electric conductor (PEC) [Fig. 1(a)], there is no absorption because the incident light cannot enter into the PEC substrate and the reflectance equals unity. If the coating material is replaced by an absorbing dielectric [Fig. 1(b)] with thickness d and refractive index n˜d = nd + ind, absorption resonance can be observed when d ~/4nd, where m is an integer and λ is the incident wavelength. In this case, there will be no absorption resonance when d is smaller than λ/4nd. On the other hand, if a lossless dielectric film is deposited on metal with finite optical conductivity [Fig. 1(c)], absorption resonance may happen even though d « λ/4nd owing to the nontrivial phase shift (not limited to 0 or π) at the interface between the two media. However, in this case, the total absorption is small because only a small part of the incident energy is absorbed by the metal. Recently, it was demonstrated that perfect absorption can be achieved in a coating system where a sapphire substrate is covered by an ultrathin film of vanadium dioxide which is much thinner than the incident wavelength [21]. However, such a method cannot be applied for the design of THz absorber because both strongly absorbing dielectric and opaque substrate with suitable absorption are required, and natural materials cannot meet this requirement at THz frequencies. We here propose a different way to design the thin film absorber by coating an ultrathin lossless dielectric layer on a doped semiconductor substrate, as shown in Fig. 1(d), to achieve antireflection. A nontrivial reflection phase shift can be generated at the interface between the coating and the lossy substrate, resulting in destructive interference of the waves reflected back to the incident medium from the ultrathin coating and hence a minimum reflection of the coating system.

 

Fig. 1 Schematic of the coating systems comprising a dielectric layer with thickness d and substrate. (a) A lossless dielectric layer on a perfect electric conductor (PEC). There is no absorption at all wavelengths. (b) A lossy dielectric layer deposited on a PEC substrate. Absorption resonance occurs when d ~/4nd. (c) A lossless dielectric layer on a metal substrate, which can excite a resonance even when d « λ/4nd owing to the non-trivial phase shifts at the interface between the two media, but the absorption is not strong since only a fraction of incident wave can be absorbed by the metal. (d) An ultrathin lossless dielectric layer (d « λ/4nd) on a doped semiconductor can support a strong absorption resonance because almost all of incident energy penetrates into the semiconductor and dissipates. (e) Reflection and absorption spectra and (f) the extracted effective parameters for a design of Fig. 1(d) where the refractive indices of the lossless dielectric and the substrate are set as 4 and 1+i, respectively.

Download Full Size | PPT Slide | PDF

We here consider an ideal design for the proposed system of Fig. 1(d), the refractive indices of the lossless dielectric layer and the substrate are set as 4 and 1 + i, respectively. In this coating system, a zero-reflection dip and a corresponding perfect absorption peak appear at wavelength λ » d, as show in Fig. 1(e). Figure 1(f) shows the retrieved effective parameters extracted via inversion of the S parameters [22]. It can be seen that the coating system exhibits a nearly perfect impedance-match to free space, i.e.Z˜(ω)=μ˜eff(ω)/ε˜eff(ω)=1, at wavelength where the reflection dip exists.

To demonstrate how to achieve antireflection through a lossless dielectric coating that is much thinner than the wavelength of light, we first assume that a lossless dielectric layer is coated on a hypothetical substrate with a complex refractive index n˜2. Using the multiple beam interference method [23], the reflection coefficient of such an optical coating system can be written as

r˜=r01+r˜12ej2δ1+r01r˜12ej2δ
where r01 is the reflection coefficient for wave incident from air to the lossless dielectric coating layer, and r˜12is the complex reflection coefficient for wave incident from the dielectric coating to the substrate. Both r01 and r˜12 can be obtained by Fresnel equations. δ = 2πdnd/λcosθ is the phase change when wave propagates through the dielectric layer. Here d and nd are the thickness and refractive index of the lossless dielectric layer, θ is the incident angle. To realize antireflection, i.e. |r˜|=0, two conditions should be satisfied simultaneously:
|r01|=|r˜12|
2mπ=2δ+φ(r˜12)
where m is an integer. When m = 0, the required thickness of the lossless dielectric layer for achieving antireflection is d=φ(r˜12)πλ4nd. It can be obtained that d ~λ/4nd for φ(r˜12) ~-π and d ~0 for φ(r˜12) ~0. It means that the value of φ(r˜12) greatly influences the thickness of the antireflection coating layer. Figure 2 shows the value ofφ(r˜12) as a function of both the real and imaginary parts of n˜2 when nd is fixed as 2. It can be seen thatφ(r˜12) gets close to -π when Re(n˜2) > nd and Im(n˜2) → 0. On the other hand, φ(r˜12) gets close to 0 when Re(n˜2) < nd and Im(n˜2) → 0. When Im(n˜2) is fixed as a non-zero value, φ(r˜12) decreases with increasing Re(n˜2). By solving Eq. (2a), we can obtain the solutions of n˜2which is presented by the pink line in Fig. 2. It can be seen that the solutions of n˜2satisfy 1 < Re(n˜2) < nd2. It is worth to be noted that, as moving from the right to the left end of the pink line, the value of φ(r˜12) varies from -π to 0. Therefore, antireflection can be achieved by a lossless dielectric coating, which is much thinner than λ/4nd, around the left end of the pink line. These results are crucial to the design of ultrathin film THz absorber, which will be discussed in the following section.

 

Fig. 2 φ(r˜12) as a function of the real and imaginary parts of n˜2 when nd is fixed as 2. The pink line represents the solutions of n˜2 to Eq. (2a).

Download Full Size | PPT Slide | PDF

3. Results and discussion

Based on the above discussions, we choose Ge, a lossless dielectric with a relatively large refractive index nd = 4 at THz region, as the coating material so that the antireflection coating layer can be designed to be very thin. To achieve perfect absorption, a suitable material should be chosen for the substrate which can completely absorb the incident wave penetrating through the antireflection coating. Dielectric exhibits small absorption at THz frequencies, thus it is not a good candidate of the substrate material since it makes the substrate bulky. Metal generally has a too large refractive index at THz region to meet the requirement for antireflection (1 < Re(n˜2) < nd2), thus it is not suitable to be the substrate as well.

Recently there has been interest in a new class of engineered metals based on heavily doped semiconductors for long-wavelength applications. Si, InAs, or heavily doped zinc oxides were demonstrated that their plasmon frequencies are at near- or mid-infrared region [24–28] and they can mimic the shorter wavelength optical properties of traditional noble metals [29]. Benefited from the electron effective mass which is an order of magnitude smaller than that of Si, the plasma frequency of highly doped n-type GaAs can be shifted down to THz range. The frequency-dependent complex conductivity of the doped GaAs can be described via the Drude model σ˜s=ε0ωp2/(γiω), where ω is the angular frequency, γ is the collision frequency (γ = e/(μ(N) × m*)), ωp is the plasmon frequency (ωp=Ne2/(ε0m*)), m* = 0.067m0 (m0 is the mass of the free electron) is the effective carrier mass in n-doped GaAs, N is the carrier density, μ is the carrier mobility, e is the free electron charge. The values of N and μ can be obtained by fitting the Drude model to the experimental data measured at different doped carrier concentration [30]. Then, the dielectric constant of the doped GaAs can be written as

ε˜s=(ns'+ins'')2=εs+iσ˜s/(ε0ω),
where εs is the high frequency dielectric constant of undoped GaAs and it is taken as 12.9 [30].

Figure 3(b) shows the refractive index n˜s of the doped GaAs with N = 1.35 × 1017 cm−3 as a function of frequency [30]. As discussed in last section, φ(r˜12) is closer to zero for smaller Re(n˜2) when Re(n˜2) < nd, which corresponds to a thinner thickness of the coating layer required for achieving antireflection. As shown in Fig. 3(b), the minimum of Re(n˜s) is 1.46 within the considered frequency range, which is much smaller than the refractive index of Ge. Therefore, an ultrathin layer of Ge can realize the antireflection effect. Figure 3(c) shows φ(r˜12) as functions of the real and imaginary parts of the refractive index n˜2of a hypothetical substrate. The pink line represents the required values of n˜2 which can satisfy Eq. (2a). The black line represents the values of the refractive index n˜s extracted from Fig. 3(b). It can be seen from Fig. 3(c) that there is a cross point of the black and pink lines, which corresponds to the value of n˜s at the frequency f0 = 2.55 THz, as shown in Fig. 3(b). According to Eq. (2b), the value of φ(r˜12) is calculated to be about −1.2 rad and the thickness of the Ge layer is 3 μm at the frequency f0. Figure 3(d) plots the reflection and absorption spectra for the GaAs substrate with and without the Ge coating layer. Here, the thickness of the GaAs substrate is set as 500 um so that the THz waves penetrating into the substrate are all absorbed. It can be seen that a perfect absorption peak is achieved at frequency 2.55 THz through the ultrathin antireflection coating layer of Ge. Here, the thickness of the Ge coating layer is only about 1/40 of the incident wavelength. In comparison, the maximum absorptance can only reach 0.83 for the GaAs substrate without the Ge coating layer.

 

Fig. 3 (a) Side view of the thin film THz absorber structure. A doped GaAs substrate is coated with an ultrathin layer of Ge. (b) Real and imaginary parts of the refractive index of GaAs as a function of frequency when the carrier density N = 1.35 × 1017 cm−3. (c) φ(r˜12) as functions of the real and imaginary parts of the refractive index n˜2 of a hypothetical substrate coated with a Ge (nd = 4) layer. The pink line represents the solutions of n˜2 to Eq. (2a). The black line represents the values of n˜s extracted from (b). (d) Reflectance and absorptance vs frequency for the doped GaAs substrate with and without a 3 μm Ge coating layer.

Download Full Size | PPT Slide | PDF

By varying the free carrier concentration from N = 5.0 × 1016 to 1.7 × 1017 cm−3 [30], the refractive index of the highly doped GaAs layer can be tuned, as shown in Figs. 4(a) and 4(b). Figure 4(c) shows the absorption spectra at normal incidence for the coating system comprising a 3-μm-thick Ge film on a doped GaAs substrate. The simulation results from finite difference time domain (FDTD) method and those from transfer matrix method (TMM) agree well with each other. It can be seen from Fig. 4(c) that a perfect absorption peak appears at 2.55 THz when N = 1.35 × 1017 cm−3, in accordance the theoretical prediction in Fig. 3. In this case, the absorptance over 0.90 can be achieved within a fractional bandwidth of over 20%. As the carrier concentration varies from 5.0 × 1016 to 1.7 × 1017 cm−3, the absorption peak shifts from 1.79 to 2.69 THz. It can also be seen from Fig. 4(c) that as the absorption resonance deviates from 2.55 THz, the absorptance at the resonance frequency decreases only a little (the minimum value is 0.978 within the considered frequency range from 1.79 to 2.69 THz) although the amplitude condition for achieving antireflection (i.e. Equation (2a)) is destroyed to some extent. Therefore, we can realize almost perfect absorption from 1.79 THz to 2.69 THz by tuning the free carrier concentration of the doped GaAs.

 

Fig. 4 Under different free carrier concentration N, the (a) real and (b) imaginary parts of the refractive index of the doped GaAs and the (c) absorption spectra at normal incidence for the doped GaAs substrate coated with a 3-μm-thick layer of Ge. The solid lines and circles correspond to the results from TMM and FDTD method, respectively.

Download Full Size | PPT Slide | PDF

For conventional thin film absorbers where a lossy dielectric medium is coated on the metal or Bragg reflector [Fig. (1b)], the interference effects rely on the phase accumulation of light for a round-trip propagation within the optical cavities formed by the coating layer, and are typically sensitive to the angle of incidence. Therefore, the absorption performance is different at different incident angles, which limits the applications of these absorbers. This shortcoming can be improved by our proposed design. As the Ge coating layer is much thinner than the illuminated wavelength, the phase accumulation during the propagation through the coating is small. Therefore, the total phase accumulation, which includes both the interface and propagation phase shifts, is mainly attributed to the phase change at the interface. As a result, the absorption performance of the proposed absorber should be insensitive to the incident angle. Figure 5 shows the simulated absorption spectra for incident angles from 0° to 60° for a doped GaAs substrate, the carrier density of which is N = 1.03 × 1017 cm−3, coated with 3 µm of Ge. It can be seen from Fig. 5 that the position and the bandwidth of the absorption band for both polarizations remain almost invariant as the incident angle varies from 0° to 45°, which means that the proposed thin film absorber is efficient for applications under multidirectional illumination.

 

Fig. 5 Simulated absorption spectra for (a) TE and (b) TM wave, respectively, as a function of incident angle for doped GaAs coated with 3 μm of Ge. Here, the carrier density of the doped GaAs is N = 1.03 × 1017 cm−3.

Download Full Size | PPT Slide | PDF

Compared to the previous design of ultrathin film absorber, our coating system is more practical in THz region since natural materials can meet the requirements for achieving the broadband and angle-insensitive absorption. Another advantage of the proposed structure is that the central frequency of the near-perfect absorption band can be effectively tuned within a wide frequency range without changing the geometric parameters. Such a property is quite useful for THz techniques where tunable devices are desired.

3. Conclusion

In summary, we have proposed an effective method to achieve broadband absorption through an ultrathin coating layer of lossless dielectric on a lossy substrate. As a nontrivial reflection phase change exists at the interface between the coating and substrate, strong wave interference and thus the antireflection effect can form even if the dielectric film is much thinner than the illuminated wavelength. This mechanism is implemented with an ultra-thin (~λ/40) Ge layer on heavily-doped GaAs substrate. We shown that such a coating system can realize perfect absorption peak at THz region. Moreover, this system can maintain strong absorption (absorptance over 0.9) in a wide frequency range (the fractional bandwidth of over 20%). By varying the doping level of the GaAs, the central frequency of the broad absorption band can be tuned from 1.79 to 2.69 THz. In addition, the absorption performance of the proposed system was shown to be angle- and polarization-insensitive. Our results have the potential for a variety of applications where absorption-based THz devices are required.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 11274126) and Key Program of Guangdong Natural Science Foundation (Grant No. 2015A030311018). Yihang Chen acknowledges financial support from Program for Guangdong Excellent Young Teacher.

References and links

1. R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989). [CrossRef]  

2. A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990). [CrossRef]  

3. K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991). [CrossRef]  

4. R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991). [CrossRef]  

5. K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990). [CrossRef]  

6. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006). [CrossRef]   [PubMed]  

7. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015). [CrossRef]  

8. G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015). [CrossRef]   [PubMed]  

9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010). [CrossRef]   [PubMed]  

10. C. Wu, B. Neuner III, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011). [CrossRef]  

11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef]   [PubMed]  

12. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014). [CrossRef]   [PubMed]  

13. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012). [CrossRef]  

14. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013). [CrossRef]  

15. L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014). [CrossRef]  

16. D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013). [CrossRef]  

17. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013). [CrossRef]   [PubMed]  

18. M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013). [CrossRef]  

19. O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013). [CrossRef]  

20. F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014). [CrossRef]  

21. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012). [CrossRef]  

22. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]  

23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 2000).

24. J. C. Ginn, R. L. Jarecki Jr, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011). [CrossRef]  

25. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011). [CrossRef]  

26. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range Invited,” Opt. Mater. Express 1(6), 1090–1099 (2011). [CrossRef]  

27. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012). [CrossRef]   [PubMed]  

28. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012). [CrossRef]   [PubMed]  

29. J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013). [CrossRef]   [PubMed]  

30. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
    [Crossref]
  2. A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
    [Crossref]
  3. K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
    [Crossref]
  4. R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
    [Crossref]
  5. K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
    [Crossref]
  6. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
    [Crossref] [PubMed]
  7. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
    [Crossref]
  8. G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
    [Crossref] [PubMed]
  9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  10. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  12. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
    [Crossref] [PubMed]
  13. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
    [Crossref]
  14. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  15. L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
    [Crossref]
  16. D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
    [Crossref]
  17. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  18. M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
    [Crossref]
  19. O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
    [Crossref]
  20. F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
    [Crossref]
  21. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  22. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 2000).
  24. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [Crossref]
  25. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
    [Crossref]
  26. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range Invited,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  27. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
    [Crossref] [PubMed]
  28. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref] [PubMed]
  29. J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
    [Crossref] [PubMed]
  30. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
    [Crossref]

2015 (2)

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

2014 (3)

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

2013 (6)

J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
[Crossref] [PubMed]

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
[Crossref]

2012 (4)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

2011 (4)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range Invited,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

2006 (1)

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

2000 (1)

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

1991 (2)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

1990 (2)

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

1989 (1)

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Adams, D. C.

Akselrod, G. M.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Andrews, S. R.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Arsenault, L.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Berry, C. W.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boltasseva, A.

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Bowen, P. T.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Bradley, M. S.

Buchnev, O.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Buchwald, W. R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Bulovic, V.

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chang, T. Y.

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chin, A.

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

Chyi, J. I.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Cleary, J. W.

Cluff, J. A.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Coldren, L. A.

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Fedotov, V. A.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Fujisawa, D.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Gu, S.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Guo, J.

Guo, L.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Hao, L.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Hashemi, M. R.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Hata, H.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Hendrickson, J.

Hendrickson, J. R.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Huang, J.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Huggard, P. G.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Jarrahi, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Kaczmarek, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Keiding, S. R.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Kim, J.

Kimata, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Kishino, K.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Law, K. K.

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

Law, S.

Lee, C.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Li, J.-S.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Li, M.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Li, S.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lin, Y.-S.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Linfield, E. H.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Luo, C.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Ma, F.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Merz, J. L.

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mikkelsen, M. H.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Misaki, K.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Moore, G. P.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Morkoc, H.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Naik, G. V.

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Ogawa, S.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Padilla, W. J.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Peng, Z.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rahm, M.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Reed, J.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Ritchie, D. A.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shaw, C. J.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Shvets, G.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Simes, R. J.

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Smith, D. R.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Soref, R.

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Su, L.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Taylor, A. M.

Tischler, J. R.

Uetsuki, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Unlu, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Unlu, M. S.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Wallauer, J.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Walther, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Wasserman, D.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, D.-e.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Wu, C.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Xuehui, H.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Yan, R. H.

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Yang, H.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Yang, Q.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Yang, S. H.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ye, Q.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Zhang, B.

Zhang, J.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Zhang, X.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Zhao, X.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Zheludev, N. I.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Adv. Mater. (1)

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

J. Appl. Phys. (3)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

Light Sci. Appl. (1)

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Phys. Scr. (1)

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Sci. Rep. (1)

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the coating systems comprising a dielectric layer with thickness d and substrate. (a) A lossless dielectric layer on a perfect electric conductor (PEC). There is no absorption at all wavelengths. (b) A lossy dielectric layer deposited on a PEC substrate. Absorption resonance occurs when d ~/4nd. (c) A lossless dielectric layer on a metal substrate, which can excite a resonance even when d « λ/4nd owing to the non-trivial phase shifts at the interface between the two media, but the absorption is not strong since only a fraction of incident wave can be absorbed by the metal. (d) An ultrathin lossless dielectric layer (d « λ/4nd) on a doped semiconductor can support a strong absorption resonance because almost all of incident energy penetrates into the semiconductor and dissipates. (e) Reflection and absorption spectra and (f) the extracted effective parameters for a design of Fig. 1(d) where the refractive indices of the lossless dielectric and the substrate are set as 4 and 1+i, respectively.
Fig. 2
Fig. 2 φ ( r ˜ 12 ) as a function of the real and imaginary parts of n ˜ 2 when nd is fixed as 2. The pink line represents the solutions of n ˜ 2 to Eq. (2a).
Fig. 3
Fig. 3 (a) Side view of the thin film THz absorber structure. A doped GaAs substrate is coated with an ultrathin layer of Ge. (b) Real and imaginary parts of the refractive index of GaAs as a function of frequency when the carrier density N = 1.35 × 1017 cm−3. (c) φ ( r ˜ 12 ) as functions of the real and imaginary parts of the refractive index n ˜ 2 of a hypothetical substrate coated with a Ge (nd = 4) layer. The pink line represents the solutions of n ˜ 2 to Eq. (2a). The black line represents the values of n ˜ s extracted from (b). (d) Reflectance and absorptance vs frequency for the doped GaAs substrate with and without a 3 μm Ge coating layer.
Fig. 4
Fig. 4 Under different free carrier concentration N, the (a) real and (b) imaginary parts of the refractive index of the doped GaAs and the (c) absorption spectra at normal incidence for the doped GaAs substrate coated with a 3-μm-thick layer of Ge. The solid lines and circles correspond to the results from TMM and FDTD method, respectively.
Fig. 5
Fig. 5 Simulated absorption spectra for (a) TE and (b) TM wave, respectively, as a function of incident angle for doped GaAs coated with 3 μm of Ge. Here, the carrier density of the doped GaAs is N = 1.03 × 1017 cm−3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r ˜ = r 01 + r ˜ 12 e j 2 δ 1 + r 01 r ˜ 12 e j 2 δ
| r 01 | = | r ˜ 12 |
2 m π = 2 δ + φ ( r ˜ 12 )
ε ˜ s = ( n s ' + i n s ' ' ) 2 = ε s + i σ ˜ s / ( ε 0 ω ) ,

Metrics