Abstract

We study the energy density of shaped waves inside a quasi-1D disordered waveguide. We find that the spatial energy density of optimally shaped waves, when expanded in the complete set of eigenfunctions of the diffusion equation, is well described by considering only a few of the lowest eigenfunctions. Taking into account only the fundamental eigenfunction, the total internal energy inside the sample is underestimated by only 2%. The spatial distribution of the shaped energy density is very similar to the fundamental eigenfunction, up to a cosine distance of about 0.01. We obtain the energy density of transmission eigenchannels inside the sample by numerical simulation of the scattering matrix. Computing the transmission-averaged energy density over all transmission channels yields the ensemble averaged energy density of shaped waves. From the averaged energy density, we reconstruct its spatial distribution using the eigenfunctions of the diffusion equation. The results of our study have exciting applications in controlled biomedical imaging, efficient light harvesting in solar cells, enhanced energy conversion in solid-state lighting, and low threshold random lasers.

© 2016 Optical Society of America

1. Introduction

There are numerous scattering media that are either of natural origin - such as biological tissue, fog, cloud, and teeth - or man-made - such as paint, diffuser glass, and phosphor inclusions in white LEDs. These materials multiply scatter waves in all directions, due to the random spatial variations of the refractive indices. Random interference occurs between the multiply scattered waves that is well-known as speckles [1]. Upon averaging over realizations of scatterers, the speckles average out and the resulting average energy density is well described by diffusion theory [2–4].

Recently, novel wave-shaping methods such as feedback-based wavefront shaping [5–11], time reversal [12–14], phase conjugation [15–17], and transmission matrix-based control [18–20] have demonstrated the control of transmission and reflection through scattering media. These wave-shaping methods remarkably enhance the intensity in a single speckle as well as the total reflected and transmitted intensity. The wave-shaping methods have led the way for exciting applications such as non-invasive biomedical imaging [21–23], advanced optics [24–29], and cryptography and secure communication [30,31].

Although these methods are useful tools in controlling the intensity at the interfaces of a scattering medium, the energy density distribution of the shaped waves inside the scattering medium is still unknown. Here, we refer to shaped waves to mean perfect phase conjugation of the transmitted waves, which is equivalent to shaping to optimally focus light to a single speckle spot [7, 11]. In the case of light, the knowledge of the energy density distribution is important for applications such as enhanced energy conversion in white LEDs [32–36], efficient light harvesting in solar cells [37–39], high yield random laser [40, 41], and controlled illumination in biomedical imaging [42]. To date, only numerical calculations of scalar waves [43–45] and a single-realization elastic wave experiment [46] have addressed the energy density distribution of shaped waves inside two-dimensional (2D) scattering media. However, none of these studies provide an analytical model for the energy density distribution. For high-transmission channels, Davy et al [44] described the energy density using a parabolic function. In [47], our team reported the first measurement of the total energy density of light inside a three-dimensional (3D) scattering medium and reported an enhanced total energy density for shaped waves. In that paper, the experimental result was interpreted with a model that describes the total energy density of shaped waves using only the fundamental eigenfunction of the diffusion equation. The model agreed well with experimental observation. However, the much wanted full description of the spatial energy density for shaped waves needs a more fundamental study.

In this paper, we examine the spatial energy density of shaped waves inside a scattering medium. Our starting point is the mathematical theorem that the eigenfunctions of the diffusion equation form a complete set [48–50]. Therefore, this set can describe any function defined on the sample support, which is specified by the two boundaries. As an example, the complete set of diffusion eigenfunctions can accurately describe the spatial energy density as well as any speckle inside the sample. The fact that the diffusion eigenfunctions can describe any function inside the medium implies in no way a connection to the diffusion approximation. However, such a connection can be inferred if it turns out that the required number of eigenfunctions is small. In this paper, we will demonstrate that expanding the spatial energy density using the complete set of diffusion eigenfunctions is enlightening because only a few diffusion eigenfunctions suffice to reconstruct the energy density.

We obtained the spatial energy density inside a quasi-1D disordered waveguide by numerical calculation of concatenated scattering matrices [51–53]. A quasi-1D disordered waveguide provides a tractable platform to study the essential physics. We calculated the spatial energy density W(z) of all transmission channels. By calculating the transmission-averaged energy density for all transmission channels, we retrieved the energy density of shaped waves [7, 11]. We obtained the intensity transmission coefficients of all channels, and we henceforth refer to τ as the transmission of a specific channel.

We show that only the first seven diffusion eigenfunctions suffice to reconstruct the spatial energy density distribution of the shaped waves. Taking into account only the fundamental eigenfunction of the diffusion equation, the total internal energy inside the sample is underestimated by only 2%. The spatial energy density is very similar to the fundamental eigenfunction, with a cosine distance of 0.01. Furthermore, we are able to reconstruct the energy density distribution of both high- and low-transmission channels, using a few M eigenfunctions of the diffusion equation, e.g. M = 16 for channels with transmission τ = 0.1.

It is fascinating to see that the energy densities of shaped waves and transmission channels, which are due to interference effects, can be truly described using a few diffusion eigensolutions. The reconstruction of the distribution of the energy densities that we found here can be extended to three dimensional (3D) scattering samples. The reconstruction also applies to all forms of waves such as light, sound, elastic waves and quantum waves.

2. Theory

2.1. Eigenfunctions of the diffusion equation

The diffusion equation describes the ensemble averaged energy density W(r,t) of multiply scattered waves as a function of position r and time t inside a scattering medium [2,3],

W(r,t)t=D2W(r,t),
where D is the diffusion constant [54]. Anticipating the fact that the directions (x,y) are decoupled from the z-direction we decompose the energy density as
W(r,t)=W(x,y,t)W(z,t).

Since we are considering a slab that is a quasi-1D scattering medium, we assume statistical translational invariance in the perpendicular directions (x,y). The sample boundaries are at z = 0 and z = L, where L is the sample thickness. This symmetry allows us to solve W(x,y,t) by using its two-dimensional spatial Fourier transform W(q,t). Solving the (x,y)-part of Eq. (1) and using the initial condition t = 0 gives

W(q,t)=W(q,t=0)eDq2t.

Next we solve the remaining 1D equation

W(z,t)t=D2W(z,t)z2

We will turn Eq. (4) into a Sturm-Liouville eigenvalue problem by introducing the Ansatz W(z,t) = e−γtW(z)

2W(z)z2+ΓW(z)=0,
ΓγD.

As is well-known from linear algebra [48] solutions of Sturm-Liouville equations are orthogonal and form a complete set. To solve Eq. (5), we apply the Neumann’s boundary conditions, which are given as

W(z=0)ze1W(z)z|z=0=0
and
W(z=L)ze2W(z)z|z=L=0,
where ze1 and ze2 are extrapolation lengths at the front and back surfaces of the sample respectively. Applying the boundary conditions in Eqs. 7 and 8 will lead to a discrete set of eigenvalues Γm. The general eigenfunction for eigenvalue Γm can be cast in the form
Wm(z)=Am1/2sin(κmz+ηm).

As outlined in detail in [55] the wavevector κm and phase ηm will be determined from solving Eq. (5) with the boundary conditions. The parameter Am takes care of the normalization of the eigenfunctions, such that

0LWmWndz=δmn,
where δmn is the Kronecker delta. The relation between the eigenvalue and wavevector is Γ = 2 m m. The allowed wave vectors κm are obtained by solving the implicit equation
tan(κmL)=(ze1+ze2)κmze1ze2κm21.

Following [55], the phase factor ηm fulfills the following equation [56]

tanηm=ze1κm,
and the normalization factor Am is given by
Am=12L12κmcos(κmL+2ηm)sin(κmL).

For the exact solution of Eq. (11), see Appendix. The first ten wavevectors obtained from the solution are shown in Table 1 for a particular set of boundary conditions. In Fig. 1, we plot the first three eigenfunctions using Eq. (9) with the same set of boundary conditions. The fundamental diffusion eigenfunction m = 1 is a half-period sine function, which has positive values throughout the sample. Therefore, the m = 1 eigenfunction can describe a specific energy density inside a scattering medium, since the energy density is positive. On the other hand, the m = 2 and m = 3 diffusion eigenfunctions (and other higher eigenfunctions not shown) have both positive and negative values within the sample boundary. Since a negative energy density is non-physical, diffusion eigenfunctions m = 2 and m = 3 cannot individually describe energy density inside a scattering medium. However, a sum over these diffusion eigensolutions that yields positive values throughout the sample can describe a physical energy density inside the medium. The weight of the fundamental eigenfunction takes care of the sum to be positive everywhere.

Tables Icon

Table 1. Wavevectorsa κm for the First 10 Eigenfunctions of the Diffusion Equation.

 

Fig. 1 The first three eigenfunctions of the diffusion equation plotted using equation Eq. (9). The wave vectors κm are presented in table 1 and the used parameters can be found in the caption of that table.

Download Full Size | PPT Slide | PDF

2.2. Reconstructing the energy density with eigenfunctions of the diffusion equation

The diffusion equation is of the Sturm-Liouville type so its eigenfunctions form a complete and orthogonal set [48]. Therefore, any distribution of energy density within the domain of the sample boundaries can be decomposed into a sum over a finite number M of eigenfunctions for a specific set of coefficients. Such a decomposition is only useful if the number of needed modes is small. We express a certain ensemble averaged energy density Ws(z) inside the scattering medium in terms of the normalized eigenfunctions Wm(z)

Ws(z)=m=1MdmWm(z),
where dm are coefficients. We calculate the overlap integral Ip of the product of Ws(z) and Wp(z)
Ipz=0z=LdzWs(z)Wp(z),
and substitute Eq. (14) into Eq. (15) to obtain
Ip=z=0z=Ldzm=1MdmWm(z)Wp(z).

We use the orthonormality of functions Wp(z) and Wm(z), which is expressed as

z=0z=LdzWp(z)Wm(z)=δmp,

Therefore, Eq. (16) becomes

Ip=m=1Mdmδmp=dp.

We now can write the decomposition (14) as

Ws(z)=m=1MlmWm(z),

In this paper, the spatial energy density Ws(z) that we reconstruct is that of shaped waves Wsw(z). We also reconstruct the spatial energy density of transmission eigenchannels Wn(z, τ). The spatial energy densities are obtained from numerical simulation and the details of the simulation are described in Section 3. The simulation results are compared to the reconstructed energy density Wre(z) in Section 4.

In order to quantify the overlap between the reconstructed function Wre(z) and the numerical data Ws(z), we use the cosine distance COSD [57], which is defined as

COSD1i=1NsWre(zi)Ws(zi)[i=1NsWre2(zi)]12[i=1NsWs2(zi)]12.

Ns is the number of points in the simulation data. COSD varies between 1 and 0 and tends towards 0 as the reconstructed function fully describes the simulation data. As a figure-of-merit of a good reconstruction, we choose the eigenfunction that has COSD ≤ 10−4. At this COSD, the reconstructed function deviates by only 2% from the actual function. This level of accuracy is within what is achievable in a measurement with a realistic level of experimental noise.

3. Numerical samples and setup

3.1. Numerical setup

We perform simulations of transport of monochromatic scalar waves through a waveguide containing scatterers. The waveguide is modeled as a quasi-one-dimensional (quasi-1D) system possessing Nm = 100 transversal modes, with elastic scattering on bulk impurities. This is implemented as a 2D waveguide with 100 transversal modes, containing scatterers at random positions with a density of 0.2 scatterer per square wavelength. A schematic of the numerical sample is shown in Fig. 2. In order to calculate the energy density inside the waveguide we employ a recursive S-matrix formalism, where the waveguide is first divided into sub-wavelength slices, each containing a maximum of one scatterer. For each slice we define the S-matrix in a mode representation as follows [53],

S=(RLTTTRR),
where RL and RR are the left and right reflection matrix respectively of dimension Nm × Nm, T is the left-to-right transmission matrix. The right-to-left transmission matrix in this reciprocal system is the transpose of T. The S-matrix of each slice, of dimensions 2Nm × 2Nm, is calculated in the approximation that no recurrent scattering takes place within the thin slice. Next, the S-matrices of the slices are joined, including contributions of recurrent scattering, using the composition rule for S-matrices [51]. This numerically stable procedure yields the S-matrix of the entire waveguide and of subsections of it. From the transmission matrix we extract the singular values and vectors corresponding to all channels by singular value decomposition. The energy density inside the waveguide, for a given incident field, is calculated as follows: For a given axial coordinate zc the S matrices S1,S2 of the waveguide sections 0 < z < zc and zc < z < L respectively are calculated. The field in the z = zc plane is then found by calculating recurrent scattering diagrams:
Ec=T1Ein+RL2T1Ein+RR1RL2T1Ein+RL2RR1RL2T1Ein+
=(1+RL2)(1RR1RL2)1T1Ein.
Here, RL2 is the left reflection submatrix of S2, RR1 is the right reflection submatrix of S1, and T1 is the left to right transmission submatrix of S1. Subsequently for every zs the time-averaged energy density ε0|Ec|2 is integrated over the cross section to obtain the projected energy density W(z). The calculation is repeated for 8000 independently generated random waveguides from which the transmission channels are extracted. To obtain plots of the average energy density as a function of transmission, we average the energy densities of channels in a narrow band of transmission values.

 

Fig. 2 Schematic of the numerical sample: a quasi-1D waveguide. In the region z = 0 to z = L, scatterers (red cirles) are randomly distributed in the waveguide. The width W and length L of the scattering part of the waveguide are such that WL. The waveguide is illuminated with an incident field E0 that is scattered in the waveguide. The waveguide is divided into slices (vertical dashed line) and in each slice there is at most one scattering particle. The scattering matrix of each of the slices is computed and concatenated to give the scattering matrix of the whole sample.

Download Full Size | PPT Slide | PDF

3.2. Sample characterization

In order to characterize the numerical samples, we plot in Fig. 3(a) the probability distribution P(τ) as a function of the transmission τ. The probability distribution P(τ) obtained from the simulation is bi-modal: there is a high probability for transmitting channels with transmission τ close to zero and close to one. In Fig. 3(a), we compare the Dorokhov-Mello-Pereyra-Kumar (DMPK) distribution [53] with our numerical result. The probability distribution of transmission for a scattering medium is expected to follow the DMPK distribution. Indeed, the DMPK distribution agrees well with our numerical result. Furthermore, in order to confirm that our numerical samples are in the diffusive regime, we plot in Fig. 3(b) the equally-weighted ensemble averaged energy density versus reduced sample depth. The ensemble averaged energy density shows a linear decrease from the front surface towards the end surface of the sample, in agreement with the prediction of diffusion theory for a diffusive sample, see Fig. 3(b).

 

Fig. 3 (a) Probability distribution of the transmission from the simulation (blue dots) and the expected Dorokhov-Mello-Pereyra-Kumar (DMPK) distribution (red curve). (b) An equally-weighted summation over the energy density of all transmission channels (blue dots) and the expectation from diffusion theory (red line) as a function of the normalized depth z/ℓ. In (a) and (b), we ensemble averaged over 8000 waveguides and the sample thickness is L = 12.1.

Download Full Size | PPT Slide | PDF

4. Results and discussions

4.1. Energy density of shaped waves

We obtained the energy density of shaped waves Wsw as the transmission-weighted ensemble average of the energy density of transmission channels Wn(z,τ), as shown in [7,11]:

Wsw(z)=nNτnWn(z,τ),
where N is the number of transmission channels. Eq. (24) implies that wavefront shaping couples an energy fraction of exactly τn into a transmission eigenchannel n. Using Eq. (24), we obtained the energy density of the shaped waves from the transmission-weighted average over the energy density of all transmission channels. We show in Fig. 4(a) the ensemble averaged energy density distribution of shaped waves. The energy density distribution of the shaped waves increases from the interfaces of the sample and is maximal at z = 4.9, which is about 20% off the center of the sample (z = 6.1). The ensemble averaged energy density of wavefront-shaped light was first obtain in [43] by solving the Maxwell equation using the finite-difference time-domain (FDTD) method. Despite the different numerical calculation methods, our numerical result is closely similar to the one obtained by Choi et al [43]. The exact peak position of the energy density obtained in [43] is difficult to estimate due to the noise in the data, however, the peak position is close to the center of the sample.

 

Fig. 4 (a) Transmission-weighted averaged energy density versus normalized sample depth z/ℓ. The transmission-weighted averaged energy density is equivalent to wavefront-shaped or phase-conjugated light [7]. The blue circles are the energy density obtained from simulation, the green line is the diffusion m = 1 eigenfunction, and the red line is the summation over the first seven eigenfunctions. (b) Cosine distance COSD versus eigenfunction index m. The vertical and horizontal dashed-lines shows the position of our figure-of-merit COSD 10−4 and the eigenfunctions that fulfill the criterion m = 7 respectively. In both (a) and (b), the sample is the same as in Fig. 3.

Download Full Size | PPT Slide | PDF

We reconstructed the distribution of the energy density of shaped waves from eigenfunctions of the diffusion equation. From the reconstruction, we obtain the cosine distance COSD, which we plot in Fig. 4. In case of shaped waves, a summation over the first M = 7 eigenfunctions is remarkably sufficient (COSD ≤ 10−4) to reconstruct the energy density, see Fig. 4(a). Only the fundamental diffusion eigenfunction m = 1 has COSD 10−2 and is not sufficient to describe the energy density profile. The fundamental eigensolution peaks at exactly the center of the sample, in contrast to the energy density of shaped waves. To put the number M = 7 in perspective, we performed the same reconstruction on the profile of 50 speckle spots within the same sample domain. We find that over 300 eigenfunctions are required to obtain a COSD ≤ 10−4, indicating that the diffusion eigenfunctions are not a suitable basis for a random speckle. In contrast, the low number of eigenfunctions required to represent the shaped waves implies that the solution of the diffusion equation is close to the ensemble averaged energy density of shaped waves.

We further investigated the contribution of the eigenfunctions to the total energy density integrated along the depth of the sample relative to the contribution of the first 100 eigenfunctions. As a reference, we choose the first 100 eigenfunctions because the higher order eigenfunctions have a very negligible contribution. In Fig. 5, we plot the contributions. For shaped waves, the m = 1 contributes 98% of the total energy density inside the sample. Remarkably, our finding about the strong contribution of m = 1 to the total internal energy density agrees very well with the heuristic model in [47] that wavefront shaping predominantly couples light to the fundamental diffusion eigensolution. The contribution of m = 2 is negligible compared to m = 1 since m = 2 has negative energy density in almost half of the sample depth, which cancels the positive energy density (see Fig. 1). A similar effect also happens for all other even index eigenfunction.

 

Fig. 5 The cumulative contribution of the eigenfunctions of the diffusion equation to the total internal energy density of shaped waves relative to a sum over the first 100 eigenfunctions versus the eigenfunction index m.

Download Full Size | PPT Slide | PDF

4.2. Energy density of transmission channels

The ensemble averaged energy density of open transmitting eigenchannels with a transmission τ in the range 0.99 < τ < 1 is shown in Fig. 6. The energy density shows a symmetric profile, which peaks in the middle of the sample. Our numerical result is similar to the one obtained by Davy et al [44]. Interestingly, only the fundamental diffusion eigenfunction m = 1 is sufficient to reconstruct the energy density of the open channel, see Fig. 4(a). The fundamental diffusion eigenfunction m = 1 is expected to describe the open eigenchannels for the following reasons: Firstly, as the open eigenchannel has the highest individual transmission, the fundamental eigenfunction (m = 1) as well contributes most to the total transmission as shown in [47]. Secondly, the fundamental eigenfunction is the only physical solution with a positive energy density along the sample depth z, see Fig. 1 and therefore this eigenfunction must have the largest weight in the expansion. Interestingly, a simplified mathematical model by Davy et al [44] described the energy density of open channels as a parabolic function. We note that the deviations from a parabolic shape are obvious only near the edges, and the shape of the energy density curve agrees better with the cosine shape of the fundamental eigenfunction, see Fig. 6(a). Indeed, the COSD for the parabola is 10−3 compared to 10−5 for the fundamental eigenfunction.

 

Fig. 6 (a) Ensemble averaged energy density of an open channel in a scattering medium versus normalized depth z/ltr with transmission τ in the range 0.99 < τ < 1. The blue circles are the energy density data obtained from simulation, and the red line is the fundamental diffusion eigenfunction m = 1. The black dashed-dotted curve is a parabolic fit. (b) Ensemble averaged energy density of transmission channels in a scattering medium versus the normalized depth z/ltr for transmission τ in the range 0.49 < τ < 0.51. The blue circles are the energy density data obtained from simulation, the green line is the diffusion m = 1 eigenfunction, and the red line is a M = 7 summation of diffusion eigenfunctions. (c) The blue circles are obtained as in (a) and the transmission τ is in the range of 0.09 < τ < 0.11. The green and the red lines are summations over M = 8 and M = 16 diffusion eigenfunctions respectively. (d) The blue circles are obtained as in (a) and the transmission τ is in the range: 0 < τ < 0.02, which signifies closed channels. The green and the red lines are summations over M = 8 and M = 33 diffusion eigenfunction respectively.

Download Full Size | PPT Slide | PDF

We also use the eigenfunctions of the diffusion equation to reconstruct the ensemble averaged energy densities of low-transmission channels obtained from simulation. In Figs. 6(b – d), we show the ensemble averaged energy densities for transmission eigenchannels with transmissions τ = 0.5, 0.10 and 0.01. For the eigenchannel with transmission τ = 0.5, only M = 7 eigenfunctions of the diffusion equation are sufficient to reconstruct its energy density, M = 16 eigenfunctions for τ = 0.1, and M = 33 is required for a closed channel τ = 0.01. As the transmission τ decreases, the number of eigenfunctions sufficient to reconstruct the energy density increases. The increase in the number M of sufficient eigenfunctions is because the asymmetry of the distribution of energy density increases as the transmission τ reduces, and likewise, the asymmetry of the eigenfunctions increases with the eigensolution index. Therefore, the higher index eigenfunctions contribute more to an asymmetric function. The contribution of the eigenfunctions with index m = 1, 2, 3 and 4 relative to a summation over the first 100 eigenfunctions is shown in Fig. 7. The relative contribution of the fundamental eigenfunction of the diffusion equation m = 1, which is a symmetric function, increases as the transmission increases, while the relative contributions of the greater index eigenfunctions, which are asymmetric functions, are higher for low-transmission channels. In Ref. [44], Davy et al. obtained the energy density of the transmission eigenchannels using a numerical method that is similar to ours. The authors describe the profile of the transmission eigenchannels with the solution of an implicit equation. In contrast, our approach provides accurate heuristic analytical expressions that describe the profile of the transmission eigenchannels, which constitutes a complementary approach.

 

Fig. 7 Contribution of eigenfunctions of the diffusion equation relative to a sum of the first 100 eigenfunctions versus transmission τ for eigenfunctions m = 1,2,3, and 4 plotted with red circles, blue squares, green triangles, and black diamonds respectively.

Download Full Size | PPT Slide | PDF

4.3. Effect of sample thickness

Here, we investigate the effect of the sample thickness on the number of eigenfunctions sufficient to reconstruct the energy density of shaped waves. We therefore perform simulations of the energy density on different samples with a range of sample thicknesses: L = 5, 12.1, 18.8 and 39.5. We show in Fig. 8 the COSD versus the eigensolution index for the 4 samples. Interestingly, all the samples have a convergence to a value of COSD ≤ 10−4 at the seventh eigensolution. There is a slight deviation for the thickest sample L = 39.5 that is probably due to artifacts from the simulation due to the large number of waveguide slices. This convergence of the COSD shows that the summation over the first 7 eigenfunctions of the diffusion equation is sufficient to describe the energy density of shaped waves, irrespective of the sample thickness.

 

Fig. 8 (a) Cosine distance COSD versus eigenfunction index m for 4 samples with different thickness: L = 5, 12.1, 18.8 and 39.5, which are plotted as pink stars, green squares, blue triangles, and orange circles respectively. The vertical and horizontal dashed-lines shows position of our figure-of-merit COSD 10−4 and the eigenfunction, which fulfills the criterion m = 7 respectively. (b) Contribution of the fundamental diffusion mode m = 1 relative to the sum of the first 100 eigenfunctions as a function of transmission τ.

Download Full Size | PPT Slide | PDF

In the previous sections, we have seen that the diffusion fundamental eigenfunction of the diffusion equation m = 1 dominates the energy density of high-transmission channels. We investigate if this result holds for the different samples thicknesses. In Fig. 8, we show the coefficient of the m = 1 mode relative to the sum of the first 100 eigenfunctions versus the transmission for the 4 different thicknesses. The relative contribution of the m = 1 mode is similar for all samples, irrespective of the thickness and this is quite remarkable. The fundamental diffusion eigenfunction dominates the energy density of high-transmission channels for all sample thicknesses.

5. Conclusion

We have shown that only a few eigenfunctions of the diffusion equation suffice to accurately reconstruct the distribution of the shaped energy density inside a quasi-1D scattering waveguides. In particular, the fundamental eigenfunction of the diffusion equation is very similar to the distribution of energy density of shaped waves. To reconstruct the distribution of open channels only the diffusion fundamental eigenfunction m = 1 is sufficient. In addition, we have shown that a few diffusion eigenfunctions reconstruct the energy density of low-transmission eigenchannels, to a great precision. The diffusion eigenfunctions are very efficient to reconstruct these energy densities that are within the boundaries of the sample. This reconstruction is enlightening because even energy densities that are as a result of wave phenomena – shaped waves and transmission eigenchannels – can be described efficiently with diffusion eigenfunctions. The diffusion eigenfunctions are capable of this reconstruction since they are a complete set of functions. Our results are relevant for applications that require the precise knowledge of distribution of the energy density inside scattering media. Such applications include efficient light harvesting in solar cells especially in near infrared where silicon has a low absorption [37–39]; enhanced energy conversion in white LEDs, which serves to reduce the quantity of expensive phosphor [32–36]; low threshold and higher output yield of random lasers [40, 41]; as well as in homogeneous excitation of probes in biological tissues [42].

A. Method of calculating the wave vectors of diffusion eigenfunctions

In Eq. (11), we show an implicit equation, which defines the allowed wave vectors of the diffusion eigenfunctions. The equation is again stated here:

tan(κmL)=(ze1+ze2)κmze1ze2κm21.

We define

f(κm)=f1(κm)f2(κm),
where
f1(κm)tan(κmL)
and
f2(κm)(ze1+ze2)κmze1ze2κm21.

Our goal is to find the wave vectors κrm that fulfills the condition

f(κmr)=0.

In Fig. 9, we plot the two functions f1 and f2. The condition in Eq. (29) is fulfilled by the wave vectors κmr at the intersection of the two functions f1 and f2, as indicated in Fig. 9. We found the wave vectors κmr by dividing function f into domains with size π/L. In most of the domains, only one root is expected, except the domain where the function f2 has a divergence, where two roots appear. In each domain, we use a Simple Bisection method to search the domain for wave vectors that fulfill the desired condition. Each domain is divided into two equal parts. The function f is first evaluated for the left part of the domain and then checked if there is any root present. If there is no root present, the left domain is further divided into smaller subdomains and each subdomains is searched for the root. We divide the domains until the size of the subdomain is 10−12. If there is no root in all the subdomains of the left domain, then, the right domain is searched. This way, all the desired roots are found iteratively.

 

Fig. 9 The values of functions f1 (blue line) and f2 (red dashed line) in Eqs. 27 and 28. as a function of reduced diffusion wave vector κmL/π. The green circles are the roots of Eq. 25.

Download Full Size | PPT Slide | PDF

Acknowledgments

We thank Pepijn Pinkse, Henri Thyrrestrup, Hasan Yilmaz, and Hui Cao for useful discussions. This project is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM) FOM-program “Stirring of light!”, which is part of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). We acknowledge NWO-Vici, DARPA, ERC grants 279248, 678919, and STW.

References and links

1. J. W. Goodman, Statistical Optics (Wiley, 2000).

2. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

3. M. C. W. van Rossum and Th. M. Niewenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]  

4. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2007). [CrossRef]  

5. I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990). [CrossRef]  

6. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef]   [PubMed]  

7. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008). [CrossRef]   [PubMed]  

8. M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: Eigenchannel participation number and intensity correlation,” Phys. Rev. B 85, 035105 (2012). [CrossRef]  

9. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012). [CrossRef]  

10. S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014). [CrossRef]   [PubMed]  

11. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015). [CrossRef]   [PubMed]  

12. A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206–4209 (1995). [CrossRef]   [PubMed]  

13. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004). [CrossRef]   [PubMed]  

14. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007). [CrossRef]   [PubMed]  

15. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966). [CrossRef]  

16. D. R. Dowling and D. R. Jackson, “Narrow ÂŘband performance of phase ÂŘconjugate arrays in dynamic random media,” J. Acoust. Soc. Am. 91, 3257 (1992). [CrossRef]  

17. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008). [CrossRef]  

18. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]   [PubMed]  

19. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011). [CrossRef]  

20. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012). [CrossRef]  

21. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012). [CrossRef]   [PubMed]  

22. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012). [CrossRef]  

23. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012). [CrossRef]   [PubMed]  

24. T. Čižmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010). [CrossRef]  

25. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016, (2012). [CrossRef]  

26. Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4663–4665 (2012). [CrossRef]   [PubMed]  

27. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012). [CrossRef]   [PubMed]  

28. E. Small, O. Katz, Y. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012). [CrossRef]  

29. S. R. Huisman, T. Huisman, T. A. W. Wolterink, A. P. Mosk, and P. W. H. Pinkse, “Programmable multiport optical circuits in opaque scattering materials,” Opt. Express 23(2), 3102–3116 (2015). [CrossRef]   [PubMed]  

30. R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013). [CrossRef]   [PubMed]  

31. S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škoríc, and P. W. H. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1, 421–424 (2014). [CrossRef]  

32. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160–175 (2007). [CrossRef]  

33. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007). [CrossRef]  

34. V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204, (2014). [CrossRef]   [PubMed]  

35. T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013). [CrossRef]  

36. M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016). [CrossRef]  

37. J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collectors,” Appl. Opt. 16, 2684–2689 (1977). [CrossRef]   [PubMed]  

38. A. Polman and H. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Mater. 11, 174 (2012). [CrossRef]  

39. F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014). [CrossRef]  

40. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996). [CrossRef]  

41. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994). [CrossRef]  

42. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011). [CrossRef]   [PubMed]  

43. W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011). [CrossRef]  

44. M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015). [CrossRef]   [PubMed]  

45. S. F. Liew and H. Cao, “Modification of light transmission channels by inhomogeneous absorption in random media,” Opt. Express 23, 11043–11053 (2015). [CrossRef]   [PubMed]  

46. B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014). [CrossRef]   [PubMed]  

47. O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016). [CrossRef]  

48. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill., 1953).

49. K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2006). [CrossRef]  

50. P. Dennery and A. Krzywicki, Mathematics for Physicists (Dover, 1967).

51. D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988). [CrossRef]  

52. J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992). [CrossRef]   [PubMed]  

53. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997). [CrossRef]  

54. We note that in some other forms of the diffusion equation, the diffusion constant has dimensions differing from [L]2[T]−1.

55. A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989). [CrossRef]  

56. The form of Eqs. 11 and 12 is different from the ones obtained in [55] because we have considered here the extrapolation lengths from both surfaces possibly to be different, while in [55] they were considered to be the same.

57. G. Salton and M. J. McGill, Introduction to Modern Information Retrieval (McGraw Hill, 1986).

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Statistical Optics (Wiley, 2000).
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  3. M. C. W. van Rossum and Th. M. Niewenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71, 313–371 (1999).
    [Crossref]
  4. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2007).
    [Crossref]
  5. I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
    [Crossref]
  6. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref] [PubMed]
  7. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
    [Crossref] [PubMed]
  8. M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: Eigenchannel participation number and intensity correlation,” Phys. Rev. B 85, 035105 (2012).
    [Crossref]
  9. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012).
    [Crossref]
  10. S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
    [Crossref] [PubMed]
  11. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015).
    [Crossref] [PubMed]
  12. A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206–4209 (1995).
    [Crossref] [PubMed]
  13. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
    [Crossref] [PubMed]
  14. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
    [Crossref] [PubMed]
  15. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
    [Crossref]
  16. D. R. Dowling and D. R. Jackson, “Narrow ÂŘband performance of phase ÂŘconjugate arrays in dynamic random media,” J. Acoust. Soc. Am. 91, 3257 (1992).
    [Crossref]
  17. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008).
    [Crossref]
  18. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref] [PubMed]
  19. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
    [Crossref]
  20. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
    [Crossref]
  21. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    [Crossref] [PubMed]
  22. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
    [Crossref]
  23. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
    [Crossref] [PubMed]
  24. T. Čižmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
    [Crossref]
  25. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016, (2012).
    [Crossref]
  26. Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4663–4665 (2012).
    [Crossref] [PubMed]
  27. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012).
    [Crossref] [PubMed]
  28. E. Small, O. Katz, Y. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
    [Crossref]
  29. S. R. Huisman, T. Huisman, T. A. W. Wolterink, A. P. Mosk, and P. W. H. Pinkse, “Programmable multiport optical circuits in opaque scattering materials,” Opt. Express 23(2), 3102–3116 (2015).
    [Crossref] [PubMed]
  30. R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
    [Crossref] [PubMed]
  31. S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škoríc, and P. W. H. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1, 421–424 (2014).
    [Crossref]
  32. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160–175 (2007).
    [Crossref]
  33. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
    [Crossref]
  34. V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204, (2014).
    [Crossref] [PubMed]
  35. T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
    [Crossref]
  36. M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
    [Crossref]
  37. J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collectors,” Appl. Opt. 16, 2684–2689 (1977).
    [Crossref] [PubMed]
  38. A. Polman and H. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Mater. 11, 174 (2012).
    [Crossref]
  39. F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
    [Crossref]
  40. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
    [Crossref]
  41. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
    [Crossref]
  42. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
    [Crossref] [PubMed]
  43. W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
    [Crossref]
  44. M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
    [Crossref] [PubMed]
  45. S. F. Liew and H. Cao, “Modification of light transmission channels by inhomogeneous absorption in random media,” Opt. Express 23, 11043–11053 (2015).
    [Crossref] [PubMed]
  46. B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
    [Crossref] [PubMed]
  47. O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
    [Crossref]
  48. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill., 1953).
  49. K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2006).
    [Crossref]
  50. P. Dennery and A. Krzywicki, Mathematics for Physicists (Dover, 1967).
  51. D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
    [Crossref]
  52. J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
    [Crossref] [PubMed]
  53. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).
    [Crossref]
  54. We note that in some other forms of the diffusion equation, the diffusion constant has dimensions differing from [L]2[T]−1.
  55. A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989).
    [Crossref]
  56. The form of Eqs. 11 and 12 is different from the ones obtained in [55] because we have considered here the extrapolation lengths from both surfaces possibly to be different, while in [55] they were considered to be the same.
  57. G. Salton and M. J. McGill, Introduction to Modern Information Retrieval (McGraw Hill, 1986).

2016 (2)

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

2015 (4)

2014 (5)

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
[Crossref] [PubMed]

S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škoríc, and P. W. H. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1, 421–424 (2014).
[Crossref]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204, (2014).
[Crossref] [PubMed]

B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
[Crossref] [PubMed]

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

2013 (2)

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
[Crossref] [PubMed]

2012 (11)

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016, (2012).
[Crossref]

Y. Guan, O. Katz, E. Small, J. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4663–4665 (2012).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012).
[Crossref] [PubMed]

E. Small, O. Katz, Y. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
[Crossref]

M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: Eigenchannel participation number and intensity correlation,” Phys. Rev. B 85, 035105 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012).
[Crossref]

A. Polman and H. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Mater. 11, 174 (2012).
[Crossref]

2011 (3)

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
[Crossref] [PubMed]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

2010 (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

T. Čižmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

2008 (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

2007 (4)

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160–175 (2007).
[Crossref]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

2004 (1)

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

1999 (1)

M. C. W. van Rossum and Th. M. Niewenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71, 313–371 (1999).
[Crossref]

1997 (1)

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).
[Crossref]

1996 (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

1995 (1)

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206–4209 (1995).
[Crossref] [PubMed]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

1992 (2)

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

D. R. Dowling and D. R. Jackson, “Narrow ÂŘband performance of phase ÂŘconjugate arrays in dynamic random media,” J. Acoust. Soc. Am. 91, 3257 (1992).
[Crossref]

1990 (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

1989 (1)

A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989).
[Crossref]

1988 (1)

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

1977 (1)

1966 (1)

Akkermans, E.

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2007).
[Crossref]

Assawaworrarit, S.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
[Crossref] [PubMed]

Atwater, H.

A. Polman and H. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Mater. 11, 174 (2012).
[Crossref]

Aubry, A.

B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
[Crossref] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Beenakker, C. W. J.

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).
[Crossref]

Bence, S. J.

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2006).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Cao, H.

S. F. Liew and H. Cao, “Modification of light transmission channels by inhomogeneous absorption in random media,” Opt. Express 23, 11043–11053 (2015).
[Crossref] [PubMed]

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
[Crossref] [PubMed]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Cho, Y.-H.

Choi, W.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

Choi, Y.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

Cižmar, T.

T. Čižmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

Coltrin, M. E.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Craford, M. G.

Crawford, M. H.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[Crossref]

Davidson, T. J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
[Crossref] [PubMed]

Davy, M.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: Eigenchannel participation number and intensity correlation,” Phys. Rev. B 85, 035105 (2012).
[Crossref]

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

de Vries, P.

A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989).
[Crossref]

Deisseroth, K.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
[Crossref] [PubMed]

Dennery, P.

P. Dennery and A. Krzywicki, Mathematics for Physicists (Dover, 1967).

Derode, A.

B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206–4209 (1995).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

DiMarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Dowling, D. R.

D. R. Dowling and D. R. Jackson, “Narrow ÂŘband performance of phase ÂŘconjugate arrays in dynamic random media,” J. Acoust. Soc. Am. 91, 3257 (1992).
[Crossref]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008).
[Crossref]

Fenno, L. E.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
[Crossref] [PubMed]

Feshbach, H.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill., 1953).

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206–4209 (1995).
[Crossref] [PubMed]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[Crossref]

Fischer, A. J.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Freund, I.

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

Genack, A. Z.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: Eigenchannel participation number and intensity correlation,” Phys. Rev. B 85, 035105 (2012).
[Crossref]

Gérardin, B.

B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
[Crossref] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Goetschy, A.

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
[Crossref] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 2000).

Goorden, S. A.

Guan, Y.

Harbers, G.

Hobson, M. P.

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2006).
[Crossref]

Horstmann, M.

Horstmeyer, R.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
[Crossref] [PubMed]

Huisman, S. R.

Huisman, T.

IJzerman, W. L.

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204, (2014).
[Crossref] [PubMed]

Inkson, J. C.

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

Isabella, O.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Iskandar, F.

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

Jackson, D. R.

D. R. Dowling and D. R. Jackson, “Narrow ÂŘband performance of phase ÂŘconjugate arrays in dynamic random media,” J. Acoust. Soc. Am. 91, 3257 (1992).
[Crossref]

Judkewitz, B.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Katz, O.

Kim, D. Y.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

Kim, M.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

Ko, D. Y. K.

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160–175 (2007).
[Crossref]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Krzywicki, A.

P. Dennery and A. Krzywicki, Mathematics for Physicists (Dover, 1967).

Lagendijk, A.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204, (2014).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989).
[Crossref]

Laurent, J.

B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
[Crossref] [PubMed]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Leith, E. N.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

Leung, V. Y. F.

Levitt, J. A.

Liew, S. F.

S. F. Liew and H. Cao, “Modification of light transmission channels by inhomogeneous absorption in random media,” Opt. Express 23, 11043–11053 (2015).
[Crossref] [PubMed]

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
[Crossref] [PubMed]

MacKinnon, A.

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

Mazilu, M.

T. Čižmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

McGill, M. J.

G. Salton and M. J. McGill, Introduction to Modern Information Retrieval (McGraw Hill, 1986).

Meretska, M. L.

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

Mogri, M.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
[Crossref] [PubMed]

Montaldo, G.

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

Montambaux, G.

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2007).
[Crossref]

Morse, P. M.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill., 1953).

Mosk, A. P.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

S. R. Huisman, T. Huisman, T. A. W. Wolterink, A. P. Mosk, and P. W. H. Pinkse, “Programmable multiport optical circuits in opaque scattering materials,” Opt. Express 23(2), 3102–3116 (2015).
[Crossref] [PubMed]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204, (2014).
[Crossref] [PubMed]

S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škoríc, and P. W. H. Pinkse, “Quantum-secure authentication of a physical unclonable key,” Optica 1, 421–424 (2014).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160–175 (2007).
[Crossref]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160–175 (2007).
[Crossref]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Nandiyanto, A. B. D.

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

Niewenhuizen, Th. M.

M. C. W. van Rossum and Th. M. Niewenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71, 313–371 (1999).
[Crossref]

Ogi, T.

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

Ohno, Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Ojambati, O. S.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

Okino, K.

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

Okuyama, K.

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

Park, C.

Park, J.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

Park, J.-H.

Park, Q.-H.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

Park, Y.

Pendry, J. B.

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

Phillips, J. M.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Pinkse, P. W. H.

Polman, A.

A. Polman and H. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Mater. 11, 174 (2012).
[Crossref]

Popoff, S. M.

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Prada, C.

B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
[Crossref] [PubMed]

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008).
[Crossref]

Riley, K. F.

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2006).
[Crossref]

Rohwer, L. E. S.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Roux, P.

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206–4209 (1995).
[Crossref] [PubMed]

Salton, G.

G. Salton and M. J. McGill, Introduction to Modern Information Retrieval (McGraw Hill, 1986).

Santbergen, R.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Shchekin, O. B.

Shi, Z.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: Eigenchannel participation number and intensity correlation,” Phys. Rev. B 85, 035105 (2012).
[Crossref]

Si, F. T.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[Crossref]

Silberberg, Y.

Simmons, J. A.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Škoríc, B.

Small, E.

Smets, A. H. M.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Stone, A. D.

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
[Crossref] [PubMed]

Tan, H.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Tanabe, E.

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

Thyrrestrup, H.

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

Tian, C.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

Tsao, J. Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Tukker, T. W.

Upatnieks, J.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

van Rossum, M. C. W.

M. C. W. van Rossum and Th. M. Niewenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71, 313–371 (1999).
[Crossref]

van Swaaij, R. A. C. M. M.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015).
[Crossref] [PubMed]

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

Vos, W. L.

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204, (2014).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

Vreeker, R.

A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989).
[Crossref]

Wang, W.-N.

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Weber, W. H.

Wiersma, D. S.

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

Wolterink, T. A. W.

Yang, C.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008).
[Crossref]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008).
[Crossref]

Yilmaz, H.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

Yizhar, O.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
[Crossref] [PubMed]

Yoon, C.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

Yu, H.

Zeman, M.

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

Zhou, J.

Zhou, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. T. Si, D. Y. Kim, R. Santbergen, H. Tan, R. A. C. M. M. van Swaaij, A. H. M. Smets, O. Isabella, and M. Zeman, “Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage,” Appl. Phys. Lett. 105, 063902 (2014).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

T. Ogi, A. B. D. Nandiyanto, K. Okino, F. Iskandar, W.-N. Wang, E. Tanabe, and K. Okuyama, “Towards better phosphor design: Effect of SiO2 nanoparticles on photoluminescence enhancement of YAG:Ce,” ECS J. Solid State Sci. Technol. 2(5), R91–R95 (2013).
[Crossref]

J. Acoust. Soc. Am. (1)

D. R. Dowling and D. R. Jackson, “Narrow ÂŘband performance of phase ÂŘconjugate arrays in dynamic random media,” J. Acoust. Soc. Am. 91, 3257 (1992).
[Crossref]

J. Appl. Phys. (1)

M. L. Meretska, A. Lagendijk, H. Thyrrestrup, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “How to distinguish elastically scattered light from stokes shifted light for solid-state lighting?” J. Appl. Phys. 119, 093102 (2016).
[Crossref]

J. Display Technol. (1)

J. Opt. Soc. Am. (1)

Laser Photon. Rev. (1)

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[Crossref]

Nat. Commun. (2)

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

Nature (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234, (2012).
[Crossref] [PubMed]

Nature Mater. (1)

A. Polman and H. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Mater. 11, 174 (2012).
[Crossref]

Nature Photon. (5)

T. Čižmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nature Photon. 6, 581 (2012).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photon. 2, 110–115 (2008).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283–292 (2012).
[Crossref]

Neuron (1)

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71, 9–34 (2011).
[Crossref] [PubMed]

New J. Phys. (2)

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Optica (1)

Phys. Lett. A (1)

A. Lagendijk, R. Vreeker, and P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989).
[Crossref]

Phys. Rev. B (3)

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

M. Davy, Z. Shi, and A. Z. Genack, “Focusing through random media: Eigenchannel participation number and intensity correlation,” Phys. Rev. B 85, 035105 (2012).
[Crossref]

Phys. Rev. E (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

Phys. Rev. Lett. (7)

B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, “Full transmission and reflection of waves propagating through a maze of disorder,” Phys. Rev. Lett. 113, 173901 (2014).
[Crossref] [PubMed]

J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time reversal with high-order multiple scattering,” Phys. Rev. Lett. 75, 4206–4209 (1995).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett. 92, 193904 (2004).
[Crossref] [PubMed]

S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao, “Coherent control of total transmission of light through disordered media,” Phys. Rev. Lett. 112, 133903 (2014).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Physica A (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

Rev. Mod. Phys. (2)

M. C. W. van Rossum and Th. M. Niewenhuizen, “Multiple scattering of classical waves,” Rev. Mod. Phys. 71, 313–371 (1999).
[Crossref]

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).
[Crossref]

Sci. Rep. (1)

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3, 3543 (2013).
[Crossref] [PubMed]

Science (1)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

Other (9)

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2007).
[Crossref]

J. W. Goodman, Statistical Optics (Wiley, 2000).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

We note that in some other forms of the diffusion equation, the diffusion constant has dimensions differing from [L]2[T]−1.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill., 1953).

K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge University, 2006).
[Crossref]

P. Dennery and A. Krzywicki, Mathematics for Physicists (Dover, 1967).

The form of Eqs. 11 and 12 is different from the ones obtained in [55] because we have considered here the extrapolation lengths from both surfaces possibly to be different, while in [55] they were considered to be the same.

G. Salton and M. J. McGill, Introduction to Modern Information Retrieval (McGraw Hill, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The first three eigenfunctions of the diffusion equation plotted using equation Eq. (9). The wave vectors κm are presented in table 1 and the used parameters can be found in the caption of that table.
Fig. 2
Fig. 2 Schematic of the numerical sample: a quasi-1D waveguide. In the region z = 0 to z = L, scatterers (red cirles) are randomly distributed in the waveguide. The width W and length L of the scattering part of the waveguide are such that WL. The waveguide is illuminated with an incident field E0 that is scattered in the waveguide. The waveguide is divided into slices (vertical dashed line) and in each slice there is at most one scattering particle. The scattering matrix of each of the slices is computed and concatenated to give the scattering matrix of the whole sample.
Fig. 3
Fig. 3 (a) Probability distribution of the transmission from the simulation (blue dots) and the expected Dorokhov-Mello-Pereyra-Kumar (DMPK) distribution (red curve). (b) An equally-weighted summation over the energy density of all transmission channels (blue dots) and the expectation from diffusion theory (red line) as a function of the normalized depth z/ℓ. In (a) and (b), we ensemble averaged over 8000 waveguides and the sample thickness is L = 12.1.
Fig. 4
Fig. 4 (a) Transmission-weighted averaged energy density versus normalized sample depth z/ℓ. The transmission-weighted averaged energy density is equivalent to wavefront-shaped or phase-conjugated light [7]. The blue circles are the energy density obtained from simulation, the green line is the diffusion m = 1 eigenfunction, and the red line is the summation over the first seven eigenfunctions. (b) Cosine distance COSD versus eigenfunction index m. The vertical and horizontal dashed-lines shows the position of our figure-of-merit COSD 10−4 and the eigenfunctions that fulfill the criterion m = 7 respectively. In both (a) and (b), the sample is the same as in Fig. 3.
Fig. 5
Fig. 5 The cumulative contribution of the eigenfunctions of the diffusion equation to the total internal energy density of shaped waves relative to a sum over the first 100 eigenfunctions versus the eigenfunction index m.
Fig. 6
Fig. 6 (a) Ensemble averaged energy density of an open channel in a scattering medium versus normalized depth z/ltr with transmission τ in the range 0.99 < τ < 1. The blue circles are the energy density data obtained from simulation, and the red line is the fundamental diffusion eigenfunction m = 1. The black dashed-dotted curve is a parabolic fit. (b) Ensemble averaged energy density of transmission channels in a scattering medium versus the normalized depth z/ltr for transmission τ in the range 0.49 < τ < 0.51. The blue circles are the energy density data obtained from simulation, the green line is the diffusion m = 1 eigenfunction, and the red line is a M = 7 summation of diffusion eigenfunctions. (c) The blue circles are obtained as in (a) and the transmission τ is in the range of 0.09 < τ < 0.11. The green and the red lines are summations over M = 8 and M = 16 diffusion eigenfunctions respectively. (d) The blue circles are obtained as in (a) and the transmission τ is in the range: 0 < τ < 0.02, which signifies closed channels. The green and the red lines are summations over M = 8 and M = 33 diffusion eigenfunction respectively.
Fig. 7
Fig. 7 Contribution of eigenfunctions of the diffusion equation relative to a sum of the first 100 eigenfunctions versus transmission τ for eigenfunctions m = 1,2,3, and 4 plotted with red circles, blue squares, green triangles, and black diamonds respectively.
Fig. 8
Fig. 8 (a) Cosine distance COSD versus eigenfunction index m for 4 samples with different thickness: L = 5, 12.1, 18.8 and 39.5, which are plotted as pink stars, green squares, blue triangles, and orange circles respectively. The vertical and horizontal dashed-lines shows position of our figure-of-merit COSD 10−4 and the eigenfunction, which fulfills the criterion m = 7 respectively. (b) Contribution of the fundamental diffusion mode m = 1 relative to the sum of the first 100 eigenfunctions as a function of transmission τ.
Fig. 9
Fig. 9 The values of functions f1 (blue line) and f2 (red dashed line) in Eqs. 27 and 28. as a function of reduced diffusion wave vector κmL/π. The green circles are the roots of Eq. 25.

Tables (1)

Tables Icon

Table 1 Wavevectors a κm for the First 10 Eigenfunctions of the Diffusion Equation.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

W ( r , t ) t = D 2 W ( r , t ) ,
W ( r , t ) = W ( x , y , t ) W ( z , t ) .
W ( q , t ) = W ( q , t = 0 ) e D q 2 t .
W ( z , t ) t = D 2 W ( z , t ) z 2
2 W ( z ) z 2 + Γ W ( z ) = 0 ,
Γ γ D .
W ( z = 0 ) z e 1 W ( z ) z | z = 0 = 0
W ( z = L ) z e 2 W ( z ) z | z = L = 0 ,
W m ( z ) = A m 1 / 2 sin ( κ m z + η m ) .
0 L W m W n d z = δ m n ,
tan ( κ m L ) = ( z e 1 + z e 2 ) κ m z e 1 z e 2 κ m 2 1 .
tan η m = z e 1 κ m ,
A m = 1 2 L 1 2 κ m cos ( κ m L + 2 η m ) sin ( κ m L ) .
W s ( z ) = m = 1 M d m W m ( z ) ,
I p z = 0 z = L d z W s ( z ) W p ( z ) ,
I p = z = 0 z = L d z m = 1 M d m W m ( z ) W p ( z ) .
z = 0 z = L d z W p ( z ) W m ( z ) = δ m p ,
I p = m = 1 M d m δ m p = d p .
W s ( z ) = m = 1 M l m W m ( z ) ,
COSD 1 i = 1 N s W re ( z i ) W s ( z i ) [ i = 1 N s W re 2 ( z i ) ] 1 2 [ i = 1 N s W s 2 ( z i ) ] 1 2 .
S = ( R L T T T R R ) ,
E c = T 1 E i n + R L 2 T 1 E i n + R R 1 R L 2 T 1 E i n + R L 2 R R 1 R L 2 T 1 E i n +
= ( 1 + R L 2 ) ( 1 R R 1 R L 2 ) 1 T 1 E i n .
W sw ( z ) = n N τ n W n ( z , τ ) ,
tan ( κ m L ) = ( z e 1 + z e 2 ) κ m z e 1 z e 2 κ m 2 1 .
f ( κ m ) = f 1 ( κ m ) f 2 ( κ m ) ,
f 1 ( κ m ) tan ( κ m L )
f 2 ( κ m ) ( z e 1 + z e 2 ) κ m z e 1 z e 2 κ m 2 1 .
f ( κ m r ) = 0 .

Metrics