Abstract

We experimentally demonstrated the simultaneous nonlinearity mitigation of PDM-16QAM WDM signals using complementary-spectrally-inverted optical phase conjugation (CSI-OPC). We achieved reserved-band-less, guard-band-less, and polarization independent OPC based on periodically poled LiNbO3 waveguides. By employing the CSI-OPC, 2.325-THz-band (93 × 25 GHz) complementary spectral inversion was achieved while retaining the original WDM bandwidth. A Q2-factor improvement of over 0.4 dB and a 5120 km transmission with a Q2-factor above the FEC limit were confirmed using a 10-channel WDM transmission at the signal band center and signal band edge. We then demonstrated the mitigation of the nonlinear impairments in a 3840 km long-haul WDM signal transmission for all 92-channel 180-Gbit/s PDM-16QAM quasi-Nyquist-WDM signals.

© 2016 Optical Society of America

1. Introduction

The mitigation of fiber nonlinearity is a major issue that must be overcome if we are to cope with the ever-increasing demand for transmission capacity in optical transport networks [1]. Recent progress on digital-coherent systems has enabled us to attempt to compensate for the optical nonlinear distortion in the electrical domain based on digital signal processing (e.g. digital back-propagation [2]). Although digital signal processing is a powerful way of mitigating nonlinear impairments, channel-by-channel compensation will be needed for WDM systems. With a view to overcoming the crucial nonlinear limitation, optical phase conjugation (OPC) has a particular advantage when it comes to enhancing digital-coherent systems because it can mitigate the nonlinear impairments in WDM signals simultaneously regardless of the modulation format and baud rate [3]. Since the first proposal of an OPC as a way of compensating for chromatic dispersion [4], many researchers have revealed the advantage of mitigating nonlinear impairments that result from the Kerr effect [5,6] and nonlinearity mitigation in WDM signals using multiple OPCs has been successfully demonstrated [7,8]. However, a conventional system employing an OPC device has required more than twice the bandwidth of a system without an OPC device because a reserved band is required for wavelength band conversion. Therefore, conventional OPC requires us to halve the spectral efficiency (SE) of the transmission system.

Recently, reserved-band-less OPC has been proposed to overcome the limitation of losing half the bandwidth [9–11]. These results show the possibility of utilizing an OPC device without any reduction in SE. In advanced experiments using OPC, enhanced transmission has been successfully demonstrated with a capacity of over 4 Tbit/s [12]. The next challenge for OPC is to scale the number of WDM signals without reducing the finite bandwidth and thus achieve the simultaneous mitigation of a signal with a large capacity. However, crosstalk (XT) induced by the optical parametric process itself limits the number of WDM channels and the available signal bandwidth. In addition, for a conventional OPC using a χ(3)-based four-wave mixing (FWM) or a χ(2)-based cascaded second harmonic generation (SHG) and difference frequency generation (DFG) process, a wide guard band will be needed to reduce the XT induced by unwanted additional FWM or sum frequency generation between the WDM signals and the high-power pump at telecom band wavelengths [13,14]. These limits also degrade the net SE defined as the total capacity divided by the aggregate bandwidth for signal, pump, and guard band. The net SE was limited to a maximum of 2 bit/s/Hz even in a recent advanced OPC experiment due to the wide guard band of about 1 THz [12].

In this study, we demonstrated simultaneous nonlinearity mitigation for 92-channel 22.5-Gbaud polarization division multiplexed 16-ary quadrature amplitude modulation (PDM-16QAM) quasi-Nyquist-WDM signals using polarization-independent guard-band-less complementary spectral inverted optical phase conjugation (CSI-OPC) based on periodically poled LiNbO3 (PPLN) waveguides. By employing the CSI-OPC, we have achieved a record net SE of 5.84 bit/s/Hz and a record total capacity of 13.6 Tbit/s in a 3840-km long-haul transmission.

2. Guard-Band-Less Polarization-Independent Complementary Spectral Inversion

Figure 1 is a schematic diagram showing simultaneous nonlinearity mitigation in a CSI-OPC based WDM transmission link, where the WDM signals are simultaneously converted to phase conjugated signals while maintaining their full original bandwidth. There are many requirements, for example the OPC must be reserved-band-less, guard-band-less, and polarization independent, if we are to enhance the net SE of a digital-coherent system by OPC. To allow a large number of WDM signal inputs, it is important to suppress parametric crosstalk, which is induced by unwanted additional conversions among the pump and WDM signals in OPC.

 figure: Fig. 1

Fig. 1 Schematic diagrams of long-haul WDM transmission using complementary spectral inverted optical phase conjugation (CSI-OPC)

Download Full Size | PPT Slide | PDF

Figure 2 shows the configuration of a polarization-independent CSI-OPC device. We employed six PPLN ridge waveguides fabricated by using a direct bonding and dry etching technique to obtain high power tolerance and high conversion efficiency of 2000%/W [15]. The core and cladding were composed of periodically poled ZnO-doped LiNbO3 and LiTaO3, respectively. The ridge waveguide exhibited strong resistance to photorefractive damage since no ion-exchange process was employed in the fabrication. Each of the PPLN waveguides was packaged in a module with four fiber pigtails. The input, which consisted of polarization-division multiplexed and wavelength-division multiplexed signals with a channel for the pump as shown in the inset, was split into two frequency bands with a wavelength selective switch (WSS) after amplification with an EDFA to compensate for the loss of the WSS. The high-frequency-band signals were converted to low-frequency-band phase conjugated idlers and vice versa by difference frequency generation (DFG). The polarization-diversity loop configuration provides two independent DFG processes for two orthogonal polarization components in the loop while preventing the parametric amplification of the reflection noise by a counter-propagating pump [16]. The pump lights at several hundred mW were produced by the second harmonic generation (SHG) of a fundamental light (FL). Although 1.5-μm-band light strongly amplified by an EDFA was used as the FL, the high power FL after SHG was highly isolated by the dichroic mirrors in the modules. The SH-pumping scheme enables us to realize an OPC device with low XT related to the unwanted optical parametric process [17]. Furthermore, to minimize the phase noise of the idler transferred from the FL, we used an external-cavity laser (ECL) with an ultra-narrow linewidth of 5 kHz with a relative intensity noise (RIN) of below 140 dB/Hz. for the FL source. In addition, the PDL was minimized by adjusting the balance of the SH-pump power. The idlers were combined with a second WSS after amplification by EDFAs and after the residual signals were filtered out with BPFs. Then, only the phase conjugated signals that retained the original bandwidth were routed to the output.

 figure: Fig. 2

Fig. 2 Configuration of PPLN-based CSI-OPC device.

Download Full Size | PPT Slide | PDF

Figure 3 shows the optical spectra of 92 × 22.5-Gbaud PDM-16QAM WDM signals with a 25-GHz spacing for back-to-back and 3840 km (320 km × 12 recirculating) transmissions. (Details of the experimental transmission setup are shown in Fig. 4.) 2.325-THz-band (93 × 25 GHz) complementary spectral inversion was achieved without a guard band. The center 25-GHz space between the high/low frequency bands is a channel for the pump. Forty-six WDM signals in the high-frequency band and forty-six WDM signals in the low-frequency band were exchanged 12 times while retaining the original WDM bandwidth. Here, we achieved multiple CSI-OPCs with both a large capacity of 13.6 Tbit/s and a high SE of 5.84 bit/s/Hz taking account of the 1.56% overhead for training sequence and the 20% overhead for forward error correction (FEC) including the 25-GHz band for pump channel.

 figure: Fig. 3

Fig. 3 Optical spectra for B-to-B and 3840 km transmissions at the recirculating loop output.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Experimental setup for multi-span transmission.

Download Full Size | PPT Slide | PDF

Note that the PPLN waveguide has a broadband conversion bandwidth (typically > 6 THz) [18]. In this experiment, the available signal bandwidth was limited by the operable bandwidth of the WSS because the quasi-phase matching pump wavelength of 1536.6 nm was near the edge of the C-band, which means that the bandwidth of CSI-OPC will scale further as long as PPLN waveguides with longer phase matching wavelengths are used.

3. Simultaneous Nonlinearity Mitigation of 92 × 22.5-Gbaud PDM-16QAM quasi-Nyquist-WDM Signals

To examine the simultaneous nonlinearity mitigation for a large number of WDM signal inputs, we installed a CSI-OPC device in the middle of a transmission line to operate as a standard mid-span OPC system. Figure 4 shows the experimental setup, which employs a recirculating loop configuration. 92 carriers on a 25-GHz grid consisting of a two-frequency band were used in the transmitter. Even and odd carriers were independently modulated to generate Nyquist-pulse-shaped 22.5-Gbaud PDM-16QAM signals using dual polarization IQ modulators driven by 56 GS/s digital-to-analog converters (DACs). We used a test sequence of 214 symbols by mapping and truncating the 223-1 PRBS sequence. The recirculating loop consisted of 4 spans of 80-km pure silica core fibers (PSCFs) with an average loss of 0.17 dB/km, an Aeff of 115 μm2, and a dispersion of 20 ps/nm/km, a gain-equalizing filter (GE), and a loop-synchronous polarization scrambler (LSPS), which generates a step-wise change in polarization states with a round-trip time interval. We employed distributed all-Raman amplification with pumping wavelengths of 1422 to 1460 nm. The test signal from the recirculating loop was passed through an optical filter and received by a digital coherent receiver, which consisted of a ~100 kHz line-width ECL as an LO, a polarization-diversity 90° optical hybrid, four balanced detectors, and 50-GS/s analog-to-digital converters (ADCs) in a real-time oscilloscope. The received signals were stored and equalized by employing a frequency-domain fixed equalizer for chromatic dispersion (CD) compensation and an LMS-based adaptive filter with 51 T/2-spaced taps through offline processing. The equalizer coefficients were adapted by first using the data-aided LMS algorithm over one data sequence, and then the decision-directed LMS algorithm. Note that the amount of CD compensation was reduced to less than 2100 ps/nm, which is the residual CD due to the dispersion slope of about 0.06 ps/nm2/km. The residual CD is 2.7% of the total dispersion of the 3840-km PSCF-based transmission line. Thus, OPC also has the potential to significantly reduce the load imposed on the digital signal processor with regard to chromatic dispersion compensation.

Before examining the simultaneous nonlinearity mitigation of the entire 92-channel WDM signal transmission, we confirmed the fiber-input power tolerance in a 10-channel WDM transmission at the signal band center (see inset in Fig. 5(a)) and signal band edge (see inset in Fig. 5 (b)) in terms of the center wavelength of 1536.6 nm fundamental light. Figure 5(a) shows the Q2-factor of the link with and without an OPC device after 5120 km transmissions as a function of the launched signal power per channel for 10 edge channels of the 92 channels (1527.60-1528.38 nm and 1544.92-1545.72 nm). The measured test signal wavelength was 1527.99 nm, as shown in the inset. The maximum Q2-factor of 5.4 dB for the link without an OPC device after the 5120 km transmission was below the FEC limit (5.7 dB, dashed line) of the LDPC convolutional codes using a layered decoding algorithm with a 20% FEC overhead [19]. The signal quality degraded at a higher launch power due to large nonlinear impairments. In contrast, the Q2-factor degradation was mitigated for the link with the OPC device. The signal quality remained high as the launched power increased, and maximum Q2-factors of 5.8 dB were obtained at powers of −1 and −3 dBm/ch. Figure 5(b) also shows the results for 10 center channels (1535.63-1536.41 nm and 1536.81-1537.59 nm). The measured test signal was 1536.02 nm, as shown in the inset. After a 5120 km transmission, Q2-factors of 5.6 and 6.0 dB were obtained at optimal powers of −7 and −3 dBm/ch without and with an OPC device, respectively. As with the edge channel, we confirmed that the power tolerance was enhanced by mitigating the fiber nonlinearity. We clearly achieved a Q2-factor improvement of over 0.4 dB and a 5120 km transmission with a Q2-factor above the FEC limit for both edge and center channels.

 figure: Fig. 5

Fig. 5 Comparison of tolerance to nonlinear impairments with and without OPC for (a) edge and (b) center 10 WDM signals after 5120 km transmission.

Download Full Size | PPT Slide | PDF

We then demonstrated the mitigation of the nonlinear impairments in a long-haul WDM signal transmission for all 92 channels. The fiber input power was optimized to −5 dBm/ch, which corresponds to a total power of 14.6 dBm. Figure 6(a) shows the Q2-factor for each channel after a 3840 km transmission. The Q2-factors for all channels were well above the FEC limit of 5.7 dB. For comparison, we also plotted some of the Q2 factors in the 92 WDM channels after a 3840 km transmission without an OPC device at the same fiber-input power of −5 dBm/ch. The Q2-factors of around 5.0 dB for the link without an OPC device were below the FEC limit due to the nonlinear impairments. Typical constellations for channel 19 with a wavelength of 1531.12 nm are shown in Fig. 6(b). The difference in signal quality between the signals with and without OPC was clearly observed. Improved symbol separation was observed in the measured constellation diagrams for the signal with OPC. We then successfully achieved simultaneous nonlinearity mitigation for all 180-Gbit/s PDM-16QAM WDM signals in a 3840 km transmission with Q2-factors above the FEC limit for all 92 WDM channels.

 figure: Fig. 6

Fig. 6 (a) Q2 factors after 3840 km transmission for all 92 WDM channels with and without OPC, (b) constellations with and without OPC for channel 19 (1531.12 nm).

Download Full Size | PPT Slide | PDF

4. Conclusion

We achieved reserved-signal-band-less, guard-band-less, and polarization independent OPC with a 2.3-THz signal bandwidth. A 5120-km transmission with a 0.4 dB improvement in the Q2-factor was confirmed using 10 PDM-16QAM WDM test signals. We successfully demonstrated transmission over 3840 km using OPC for all 92 WDM signals with a record net SE of 5.84 bit/s/Hz and a record total capacity of 13.6 Tbit/s.

Acknowledgment

Part of this research uses the results of “R&D on Optical Signal Transmission and Amplification with Frequency/Phase Precisely Controlled Carrier” commissioned by the National Institute of Information and Communications Technology of Japan.

References and links

1. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010). [CrossRef]  

2. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008). [CrossRef]  

3. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015). [CrossRef]  

4. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4(2), 52–54 (1979). [CrossRef]   [PubMed]  

5. K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using nonlinear optical phase conjugator,” in Proc. Optical Amplifiers and Their Applications (OAA’93) (1993), paper SuC1.

6. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006). [CrossRef]  

7. K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM transmission impairment mitigation by multiple phase conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016). [CrossRef]  

8. H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3. [CrossRef]  

9. T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.2. [CrossRef]  

10. S. Yoshima, Y. Sun, K. R. H. Bottrill, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.3. [CrossRef]  

11. A. D. Ellis, I. D. Phillips, M. Tan, M. F. C. Stephens, M. E. McCarthy, M. A. Z. Al Kahteeb, M. A. Iqbal, A. Perentos, S. Fabbri, V. Gordienko, D. Lavery, G. Liga, M. G. Saavedra, R. Maher, S. Sygletos, P. Harper, N. J. Doran, P. Bayvel, and S. K. Turitsyn, “Enhanced superchannel transmission using phase conjugation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.4.

12. A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Zaki Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016). [CrossRef]  

13. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009). [CrossRef]  

14. J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006). [CrossRef]  

15. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010). [CrossRef]  

16. T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015). [CrossRef]  

17. T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2016), paper M3D.1. [CrossRef]  

18. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003). [CrossRef]  

19. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2012), paper OW1H.4. [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  3. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
    [Crossref]
  4. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4(2), 52–54 (1979).
    [Crossref] [PubMed]
  5. K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using nonlinear optical phase conjugator,” in Proc. Optical Amplifiers and Their Applications (OAA’93) (1993), paper SuC1.
  6. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
    [Crossref]
  7. K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM transmission impairment mitigation by multiple phase conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
    [Crossref]
  8. H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
    [Crossref]
  9. T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.2.
    [Crossref]
  10. S. Yoshima, Y. Sun, K. R. H. Bottrill, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.3.
    [Crossref]
  11. A. D. Ellis, I. D. Phillips, M. Tan, M. F. C. Stephens, M. E. McCarthy, M. A. Z. Al Kahteeb, M. A. Iqbal, A. Perentos, S. Fabbri, V. Gordienko, D. Lavery, G. Liga, M. G. Saavedra, R. Maher, S. Sygletos, P. Harper, N. J. Doran, P. Bayvel, and S. K. Turitsyn, “Enhanced superchannel transmission using phase conjugation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.4.
  12. A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Zaki Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
    [Crossref]
  13. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
    [Crossref]
  14. J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
    [Crossref]
  15. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
    [Crossref]
  16. T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
    [Crossref]
  17. T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2016), paper M3D.1.
    [Crossref]
  18. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
    [Crossref]
  19. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2012), paper OW1H.4.
    [Crossref]

2016 (2)

2015 (2)

2010 (2)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

2009 (1)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

2008 (1)

2006 (2)

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

2003 (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

1979 (1)

Asobe, M.

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Bayvel, P.

Dario Pilori, S.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

de Waardt, H.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Doran, N.

Ellis, A. D.

Enbutsu, K.

Essiambre, R. J.

Fabbri, S.

Fekete, D.

Fischer, J. K.

Foschini, G. J.

Gnauck, A. H.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

Goebel, B.

Gordienko, V.

Harper, P.

Hu, H.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

Inoue, T.

Ip, E.

Iqbal, M. A.

Jamshidifar, M.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Jansen, S. L.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Jazayerifar, M.

Jopson, R. M.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

Kahn, J. M.

Kazama, T.

Khoe, G.-D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Kramer, G.

Krummrich, P. M.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Lavery, D.

Liga, G.

Maher, R.

Marhic, M. E.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

McCarthy, M. E.

Miyamoto, Y.

Miyazawa, H.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Mondaca, G. S.

Morioka, T.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Namiki, S.

Ohara, T.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Pelusi, M.

Pepper, D. M.

Perentos, A.

Petermann, K.

Peucheret, C.

Phillips, I. D.

Richter, T.

Ros, F. D.

Sackey, I.

Sato, K.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Schubert, C.

Solis-Trapala, K.

Spalter, S.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Stephens, M. F. C.

Sygletos, S.

Tadanaga, O.

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Takada, A.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Takara, H.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Takenouchi, H.

Tan, H. N.

Tan, M.

Turitsyn, S. K.

Umeki, T.

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

van den Borne, D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Vedadi, A.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Winzer, P. J.

Yamawaku, J.

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

Yariv, A.

Zaki Al-Khateeb, M. A.

Electron. Lett. (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103×10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144–1145 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Yamawaku, H. Takara, T. Ohara, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Low-crosstalk 103 channel×10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched LiNbO3 waveguide,” IEEE J. Sel. Top. Quantum Electron. 12(4), 521–528 (2006).
[Crossref]

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of four-wave-mixing crosstalk in a short fiber-optical parametric amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

J. Lightwave Technol. (6)

A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Zaki Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

T. Umeki, T. Kazama, O. Tadanaga, K. Enbutsu, M. Asobe, Y. Miyamoto, and H. Takenouchi, “PDM signal amplification using PPLN-based polarization-independent phase-sensitive amplifier,” J. Lightwave Technol. 33(7), 1326–1332 (2015).
[Crossref]

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM transmission impairment mitigation by multiple phase conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[Crossref]

I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-GBd PDM 16-QAM signal transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
[Crossref]

Opt. Lett. (1)

Other (7)

K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using nonlinear optical phase conjugator,” in Proc. Optical Amplifiers and Their Applications (OAA’93) (1993), paper SuC1.

H. Hu, R. M. Jopson, A. H. Gnauck, and S. Dario Pilori, Randel, and S. Chandrasekhar, “Fiber nonlinearity compensation by repeated phase conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in Proc. Optical Fiber Communications Conference and Exhibition (2016), paper Th4F.3.
[Crossref]

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.2.
[Crossref]

S. Yoshima, Y. Sun, K. R. H. Bottrill, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.3.
[Crossref]

A. D. Ellis, I. D. Phillips, M. Tan, M. F. C. Stephens, M. E. McCarthy, M. A. Z. Al Kahteeb, M. A. Iqbal, A. Perentos, S. Fabbri, V. Gordienko, D. Lavery, G. Liga, M. G. Saavedra, R. Maher, S. Sygletos, P. Harper, N. J. Doran, P. Bayvel, and S. K. Turitsyn, “Enhanced superchannel transmission using phase conjugation,” in Proc. European Conference and Exhibition on Optical Communication (ECOC, 2015), paper We2.6.4.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2016), paper M3D.1.
[Crossref]

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC, 2012), paper OW1H.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagrams of long-haul WDM transmission using complementary spectral inverted optical phase conjugation (CSI-OPC)
Fig. 2
Fig. 2 Configuration of PPLN-based CSI-OPC device.
Fig. 3
Fig. 3 Optical spectra for B-to-B and 3840 km transmissions at the recirculating loop output.
Fig. 4
Fig. 4 Experimental setup for multi-span transmission.
Fig. 5
Fig. 5 Comparison of tolerance to nonlinear impairments with and without OPC for (a) edge and (b) center 10 WDM signals after 5120 km transmission.
Fig. 6
Fig. 6 (a) Q2 factors after 3840 km transmission for all 92 WDM channels with and without OPC, (b) constellations with and without OPC for channel 19 (1531.12 nm).

Metrics