Abstract

Multiple polarization dynamic patterns of vector solitons, including fundamental solitons, bunched solitons, loosely or tightly bound states and harmonic mode locking have been observed experimentally in an erbium-doped fiber ring laser with graphene as a saturable absorber. By carefully adjusting the pump power and the orientation of the intra-cavity polarization controller, either polarization rotation or polarization locked operation have all been achieved for the above vector solitons. This is the first time that high order harmonic mode locking of polarization rotation vector solitons has been achieved. The signal to noise ratio of our system was ~51 dB, which indicates that the laser operated with high stability.

© 2015 Optical Society of America

1. Introduction

Since Hasegawa and Tappert theoretically showed the existence of solitons [1] and then Mollenauer et al. experimentally observed temporal solitons in a single mode fiber (SMF) [2], soliton pulses have been widely applied in optical communication, materials processing, metrology, fiber optical sensing and many other domains. When the pumping power exceeds a certain value, more than one pulse will emerge in an anomalously dispersive mode-locked fiber laser because of quantization of the soliton energy [3]. Because of the quite different possible manifestations of soliton interaction dynamics, various multiple-solitons dynamic patterns, such as soliton bound states (BSs) [4–7], bunched solitons [8, 9], coexistence of strong and weak pulses [10], harmonic mode locking [8, 11–15], soliton rain [16, 17], soliton gas and soliton crystal [18] can appear. On the other hand, SMFs always show birefringence because of imperfections in their circular core, random mechanical strains and bends etc. Consequently, SMFs typically support two orthogonally polarized components, so that the solitons are said to have a vector nature. In general, the orthogonal polarization components propagate at different group and phase velocities. However, Menyuk has shown numerically that orthogonally polarized solitons can trap one another through cross-phase modulation, thus enabling solitons to propagate as a single entity [19]. Such vector solitons are known as group velocity locked vector solitons (GVLVSs). Soon afterwards, Islam et al. experimentally observed GVLVSs in a birefringent optical fiber [20]. Besides the locking of group velocities, for low-birefringence conditions in which the linear birefringence is comparable with potential nonlinear birefringence, the group velocity difference is assumed to be negligible. Within this regime polarized vector soliton will maintain both their temporal and polarization state profiles during propagation within a birefringent environment, Such solitons are referred to as phase- or polarization-locked vector solitons (PLVSs) [21–23]. Finally, some vector soliton polarization states can rotate and be locked to the cavity roundtrip or to multiples of it. These vector solitons are referred to as polarization rotation vector solitons (PRVSs) [24].

If the fiber laser mode locking is based on the nonlinear polarization rotation technique, the intra-cavity polarizer will fix the soliton polarization, so these fiber lasers can only form scalar solitons. On the other hand, if the fiber laser is mode locked with polarization independent saturable absorbers (SA), such as semiconductor saturable absorption mirrors (SESAMs), carbon nanotubes (CNTs), etc, vector solitons can be formed. Since vector solitons can be widely used in secure communication [25], trapping and manipulation of atoms or nanoparticles [26], and control of magnetization [27], polarization vector solitons in fiber lasers have attracted much attention. In 1995, Afanasjev first theoretically proposed the idea of the vector soliton fiber laser [28]. Subsequently, researchers have experimentally observed multiple phase-locked high-order harmonic mode-locked vector solitons [29], fundamental dissipative vector solitons (DVSs) and multiple DVSs and DVS harmonic mode-locking [30], fundamental PLVSs [31] and GVLVSs [32], and vector soliton bunching [33] in SESAM mode locked fiber lasers. Other researchers have also experimentally obtained fundamental PRVSs [34], fundamental PLVSs [35], polarization locked fundamental BSs, and multipulse soliton operation [36, 37], and vector pulse trapping and scalar dissipative solitons in mode-locked fiber lasers with CNTs as SA.

Compared with CNTs and SESAM, graphene has a controllable saturable absorption strength, super broadband saturable absorption and ultrafast saturation recovery time. Consequently, it can be used as another polarization independent SA for generating vector solitons in a fiber laser. In 2010, Zhang et al. experimentally obtained both polarization rotation and polarization locked vector dissipative solitons with either one or two soliton pulses in the cavity in a dispersion-managed graphene fiber laser with large net cavity dispersion [38]. Song et al. have experimentally observed stable PLVSs emission in a graphene mode-locked fiber laser, and have found that under certain conditions, this laser could also emit vector solitons with quasi-periodic variations in the pulse energy and polarization rotation during the cavity roundtrips [39]. Subsequently, this research group has also observed multiple PRVSs [40], stable bunches of vector solitons, restless oscillations of vector solitons, vector soliton rain, and giant vector solitons [41]. However, apart from above modes of soliton operation, there also exist other polarization dynamic patterns for vector solitons, such as BSs, harmonic or quasi-harmonic mode locking. In our previous work, we experimentally observed multiple-soliton dynamic patterns in a graphene erbium-doped fiber ring laser [5, 8]. The question therefore arises as to whether or not these patterns all have vector characteristics. It is also important to know whether their vector characters can be switched from a polarization locked state to a polarization rotation state in a graphene erbium-doped fiber ring laser. The present work addresses these questions.

In this paper, we have experimentally observed multiple polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser, and have found that not only do fundamental solitons, and bunched solitons have associated vector solitons as found in [40, 41], either tightly BSs or loosely BSs. Harmonic mode locking has also been experimentally observed. In addition, by carefully adjusting the orientation of the intra-cavity polarization controller, we have observed the switch from the polarization rotation to polarization locked for vector-soliton polarization dynamic patterns. The signal to noise ratio of our system was ~51 dB, which indicates that the laser operated in a high stability condition.

2. Experimental setup

The experimental setup of the laser discussed in this paper is shown in Fig. 1. The total cavity length of the ring laser was 14.4 m, corresponding to a fundamental repetition rate of ~14.34 MHz. This includes the gain medium, which was a 2-m length of high doping concentration erbium doped fiber (HDCEDF) with a group velocity dispersion (GVD) of 66.3 ps2/km, and a 12.4-m standard single mode fiber (SMF) with a GVD of −22ps2/km. The total cavity dispersion of the laser was −0.14 ps2. A 1480 nm laser diode with a maximum output power of 300 mW injected the pump light into the laser cavity through a 1480/1550 nm wavelength division multiplexer (WDM). A graphene absorber with the modulation depth of 3.41% was used as the SA. A polarization insensitive isolator (PI-ISO) operating at 1550 nm with an isolation of 45 dB ensured that the signal light propagated along the cavity in a unidirectional manner. An intra-cavity polarization controller (PC1) was used to change the polarization state of the cavity. A 90:10 output coupler (OC1) was used to output 10% of the cavity light. In order to observe the vector characteristics of the solitons, another extra-cavity polarization controller, PC2 and a fiber-based polarization beam splitter (PBS) were connected to the OC2. An optical spectrum analyzer (Yokogawa AQ6317C) with a maximum resolution of 0.01 nm, a 1-GHz digital sampling oscilloscope (Yokogawa DL9140) with three photodetectors with a 1 GHz bandwidth, and a radio frequency (RF) spectrum analyzer (Agilent N9020A) with a maximum measurable RF frequency of 26.5 GHz were used to observe the optical spectrum, temporal pulse shape, and the stability of operation.

 

Fig. 1 Schematic setup of the vector soliton fiber laser. WDM: wavelength division multiplexer, HDCEDF: high doping concentration erbium-doped fiber, PI-ISO: polarization insensitive isolator, PC1 and PC2: polarization controller, OC1: 10/90 optical coupler, OC2: 50/50 optical coupler, PBS: polarization beam splitter.

Download Full Size | PPT Slide | PDF

3. Experimental results and discussion

3.1 Fundamental vector soliton

The laser used in this work had a very low mode locking threshold of about 10.5 mW. Once the pump power exceeded this threshold, self-starting mode-locked single pulse operation could be easily achieved. With carefully adjustment of the PC1, typical fundamental PLVSs could be obtained in the cavity. Figure 2(a) shows the optical spectra before and after passing through the PBS. The central wavelength is 1557.6 nm. From the spectra we can clearly see the Kelly sidebands which confirm that the pulses are optical solitons in the negative dispersion regime [42]. The insert shows pulse train. Assuming a sech2 pulse profile, the full width at half maximum (FWHM) of a single pulse is about 1.38 ps as shown in Fig. 2(b). Figure 2(c) shows the wideband RF spectrum up to 300 MHz. The fundamental repetition rate of the pulse traces may be seen to be 14.34 MHz, corresponding to the cavity length of 14.4 m. The signal to noise ratio was up to 51 dB, which indicates that the laser operated in a highly stable regime. Figure 2(c) also shows the absence of sidebands and harmonics. The temporal pulse traces of the two orthogonal polarization components are shown in Fig. 2(d). They have uniform and equal pulse amplitudes, and the same central wavelength (Fig. 2(a)), as expected for PLVSs.

 

Fig. 2 The vector characteristics of fundamental PLVSs. (a) Soliton spectra before (blue line) and after (orange and green lines) passing through the PBS. The insert in part (a) shows the pulse traces before passing through the PBS; (b) autocorrelation trace of a single pulse before the PBS; (c) the wideband RF spectrum up to 300 MHz (Insert: the narrow bandwidth RF spectrum up to 45 MHz); (d) the two pulse traces after a PBS.

Download Full Size | PPT Slide | PDF

By slightly adjusting PC1, our laser operation state could be switched from fundamental PLVSs to the PRVSs. The time-domain characteristics of the PRVSs are presented in Fig. 3(a). The pulse strengths of the two polarization components shown in orange and green complement each other and alternate in amplitude with a period equal to twice the cavity round trip time, which indicates that the polarization state of the soliton is rotating. The corresponding optical spectra with the same central wavelength of 1558.8 nm are shown in Fig. 3(b). The spectrum shown by blue line is for pulses before passing through the PBS and is the standard soliton spectrum. From Fig. 3(b) we can see that the intensities of the two orthogonal polarization components spectra obtained after passing through the PBS change in a complementary way that can be attributed to coherent energy exchange between the two orthogonal polarization components [40, 43].

 

Fig. 3 The vector characteristics of fundamental PRVSs. (a) Pulse traces before (blue line) and after (orange and green lines) passing through a PBS; (b) optical spectra before (blue line) and after (orange and green lines) passing through a PBS.

Download Full Size | PPT Slide | PDF

3.2 Vector bound state solitons

3.2.1 Tightly bound vector solitons

By increasing the pump power to 11 mW and carefully tuning the orientation of PC1, polarization locked and rotation bound vector solitons were also obtained. Note that since there exist different balances of attraction and repulsive force between adjacent solitons caused by Kelly nonlinearity and dispersion, both tightly (soliton interval is less than five pulse widths) [44] and loosely (soliton interval is greater than five pulse widths) bound vector solitons have been observed. Figure 4 shows the features of tightly bound polarization locked vector solitons. The optical spectra before (blue line) and after (orange and green lines) passing through the PBS are shown in Fig. 4(a). The central wavelengths are all 1558.75 nm. The period of the spectral modulation is related to the soliton separation through c·ΔT·Δλ = -λ2. The period, Δλ, of the spectral modulation is 2.42 nm, which corresponds to a soliton separation, ΔT, of about 3.1 ps as shown in Fig. 4(b). The FWHM of the pulse is 1.62 ps. The pulse separation is less than five pulse widths, confirming that it is a tightly bound vector solitons. Figures 4(c) and 4(d) show the temporal waveforms of the total pulse trace and the two orthogonal polarization states, all of which have the same pulse amplitude.

 

Fig. 4 The vector characteristics of polarization locked tightly bound vector solitons. (a) Optical spectra before (blue line) and after (orange and green lines) passing though the PBS; (b) autocorrelation trace of the total pulse; (c) pulse trace before passing through the PBS; (d) pulse traces of two polarization components after passing through the PBS.

Download Full Size | PPT Slide | PDF

Fixed pump power and only slight tuning of the orientation of the paddles of the PC1, the operation state can be switched to polarization rotation tightly bound vector solitons as shown in Fig. 5. Figure 5(a) shows the optical spectra before (blue line) and after (orange and green lines) passing through the PBS with the same central wavelength of 1559.25 nm, from which we can see the spectral intensity difference between the two orthogonal polarization components is far less than 15 dB. The pulse amplitude of the total pulse before passing through the PBS is constant, while those of the two polarization states alternate with a period of twice cavity roundtrip time (see Fig. 5(b)). These observations indicate the BSs are polarization rotation bound vector solitons. The insert of Fig. 5(a) shows the autocorrelation trace of the total pulse with a pulse width of 1.25 ps and soliton separation of 4.83 ps, corresponding to a spectral modulation of 1.48 nm. It may also be seen that the soliton separation is less than five pulse widths, again suggesting that the solitons are tightly bound.

 

Fig. 5 The vector characteristics of polarization rotation tightly bound vector solitons. (a) Optical spectra (Insert: autocorrelation trace of the total pulse) before (blue line) and after (orange and green lines) passing through the PBS; (b) pulse traces before (blue line) and after (orange and green lines) passing through the PBS.

Download Full Size | PPT Slide | PDF

3.2.2 Loosely bound vector solitons

Further rotating the PC1 while holding the pump power at 11 mW, allowed us also to obtain loosely bound polarization locked and rotation vector solitons. Figure 6 shows the bound vector solitons in the polarization locked state. The spectra have a dense modulation of 0.58 nm (see Fig. 6(a)), which corresponds to a soliton separation of 14.1 ps as illustrated in the insert. Compared with the spectra of Fig. 4(a), there is a pair of Kelly sidebands appearing in the loosely BSs spectrum. The central wavelength is 1559.5 nm and the FWHM of the pulse is 1.43 ps. The soliton separation is more than five times the pulse width, indicating that the solitons should be categorized as loosely bound solitons of the type observed in soliton fiber lasers. Figure 6(b) shows an oscillogram of the pulse trains. The pulse trains are uniform in both amplitude and spacing both before and after passing through the PBS.

 

Fig. 6 The vector characteristics of polarization locked loosely bound vector solitons. (a) Optical spectra (Insert: autocorrelation trace of total pulse) before (blue line) and after (orange and green lines) passing through the PBS; (b) pulse traces before (blue line) and after (orange and green lines) passing through the PBS.

Download Full Size | PPT Slide | PDF

On this basis, with further slightly tuning of the PC1, polarization rotation loosely bound vector solitons were also observed as shown in Fig. 7. The spectra with a central wavelength of 1559.3 nm are shown in Fig. 7(a). The density modulation of 0.24 nm shown in the right insert of Fig. 7(a) is much denser than the spectral modulation of the polarization locked bound vector solitons shown in Fig. 4, and corresponds to a soliton separation of 33.7 ps as shown in the left insert which refers to the autocorrelation trace of the total pulse. By comparing the spectra and those in Fig. 5(a), we find that in addition to the usual Kelly sidebands, a pair of additional sidebands once again appears in the spectra. Figure 7(b) shows the total pulse traces and the pulse sequences of the two polarization rotation components, as in Fig. 5, which show that the pulse amplitudes are complementary. The pulse width is 1.94 ps.

 

Fig. 7 The vector characteristics of polarization rotation loosely vector BSs. (a) Optical spectra (left insert: autocorrelation trace of total pulse; right insert: enlargement of part of the spectrum) before (blue line) and after (orange and green lines) passing through the PBS; (b) pulse traces before (blue line) and after (orange and green lines) passing through the PBS.

Download Full Size | PPT Slide | PDF

3.3 Vector soliton bunching

On increasing the pump power to 29 mW, multiple solitons appeared in the cavity. By carefully rotating the PC1, these pulses were found to group themselves into tight packets in the bunched soliton mode. With further rotating of the PC1, both polarization locked and rotation bunched solitons were obtained. Figures 8(a) and 8(c) show the oscilloscope traces and the optical spectra of polarization locked vector bunched solitons. The separations between adjacent solitons were not equal, and decreased with time along a given bunch (See Fig. 8(b)). These characteristics can be seen in the PLV bunched solitons both before and after passing through the PBS. The central wavelengths were all 1559.2 nm. It is obvious that two sets of weak sidebands and a pair of peak-dip sidebands coexist with the Kelly sidebands. We attribute the weak sidebands to soliton interactions and the peak-dip sidebands to cavity birefringence.

 

Fig. 8 The vector characteristics of polarization locked vector soliton bunching. (a) Pulse traces before (blue line) and after (orange and green lines) passing through the PBS; (b) a single pulse group in pulse bunching mode before passing through the PBS; (c) optical spectra before (blue line) and after (orange and green lines) passing through the PBS.

Download Full Size | PPT Slide | PDF

Further adjusting of the PC1 caused the PLVSs bunching to become unstable and start to flow, until the laser switched to the PRVSs state, at which point stable PRV bunched solitons were formed. Figure 9(a) shows typical pulse traces for PRVSs bunching before (blue line) and after (orange and green lines) passing through the PBS. The amplitude of the pulses in bunches were periodic with a period of twice the cavity round trip time. In this case, the amplitudes of bunches were complementary to each other. Note that there are only two types of pulse bunches distinguished by their amplitudes. The optical spectra with a central wavelength of 1559.3 nm are shown in Fig. 9(b). Both the Kelly sidebands and peak-dip sidebands appear in the spectra. In addition, the CW on the spectrum is high that it contains a significant part of the total pulse energy.

 

Fig. 9 The vector characteristics of polarization rotation vector soliton bunching. (a) Pulse traces before (blue line) and after (orange and green lines) passing through the PBS; (b) optical spectra before (blue line) and after (orange and green lines) passing through the PBS.

Download Full Size | PPT Slide | PDF

3.4 Harmonic mode locking vector solitons

With further adjusting of the PC1, the bunched vector solitons became unstable, and multiple soliton groups were disrupted. The multiple vector solitons then occupied all the available space along the cavity but the soliton amplitudes did not show any significant correlations with each other. In this case, if we further adjusted the pump power and PC1 until the CW lasing became unstable, all vector solitons could be caused to distribute along the cavity with equal spacing. That is to say, vector soliton harmonic mode locking occurred. When the pump power was increased to 53 mW, we obtained 11th order harmonic PLVSs with a repetition rate of 157.8 MHz as shown in Fig. 10. The pulse traces before (Fig. 10(a)) and after (Fig. 10(b)) passing through the PBS all had uniform pulse amplitudes. The RF spectrum with a resolution bandwidth of 100 kHz is shown in Fig. 10(c). The signal to noise ratio of the harmonic mode locking vector solitons is about 31 dB. Figure 10(d) shows the corresponding optical spectra with a central wavelength of 1557.8 nm. Based the experimental results, it is believed that, apart from the gain recovery and the acoustic effect [45, 46], unstable CW lasing in the cavity may play an indispensable role in the formation of harmonic mode locking. We understand the above explanation as follows. As the laser operates in the anomalous dispersion region, a CW component is intrinsically unstable due to the modulation instability [47]. This unstable CW component can introduce a kind of global soliton interaction mechanism between all the solitons, so that all the solitons in the cavity start to move. Only when they are equally distributed over the whole cavity, does the movement of the solitons cease, and steady harmonic mode-locking is formed [47]. Recently, researchers have also experimentally [8, 11, 48–50] and theoretically [51, 52] demonstrated the role of the CW component in determining harmonic mode-locking properties.

 

Fig. 10 The vector characteristics of polarization locked harmonic mode locking vector solitons. (a) The pulse trace before passing through the PBS; (b) the pulse traces after passing through the PBS; (c) the wideband RF spectrum up to 800 MHz (insert: the narrow bandwidth RF spectrum between 120 and 200 MHz); (d) the spectra before (blue line) and after (orange and green lines) passing through the PBS.

Download Full Size | PPT Slide | PDF

Aside from the polarization locked harmonic mode locking vector solitons, we also achieved polarization rotation harmonic mode locking vector solitons by rotating PC1 at a fixed pump power of 53 mW. Figure 11 shows the vector characteristics of the 7th harmonic with a repetition rate of 100.2 MHz (see Fig. 11(c)). The pulse trains before (blue line) and after (orange and green lines) passing through the PBS are shown in Fig. 11(a). The pulse amplitudes of the two polarization components after passing through the PBS are complementary based on the total pulse before passing through the PBS. The corresponding optical spectra have the same central wavelength of 1558.3 nm. There are two types of sidebands (Kelly sidebands and peak-dip sidebands) in the spectra. The unstable CW underlying the optical spectrum stabilizes the harmonic mode locking.

 

Fig. 11 The vector characteristics of polarization rotation 7th harmonic vector solitons. (a) Pulse traces before (blue line) and after (orange and green lines) passing through the PBS; (b) optical spectra before (blue line) and after (orange and green lines) passing through the PBS; (c) the wideband RF spectrum up to 800 MHz (insert: the narrow bandwidth RF spectrum between 50 and 150 MHz).

Download Full Size | PPT Slide | PDF

Through analysis of the above experimental results, based on the soliton energy quantization effect and the birefringence of the cavity we obtained various patterns of vector solitons. Once a certain type of soliton pattern had been formed, carefully adjusting the PC1 but maintaining the pump power at a constant value, allowed the laser operation to convert back and forth between the locked polarization mode and rotation polarization mode. If we compare the spectra of the two polarization states of vector solitons, it is clear that there is a pair of peak-dip optical sidebands in addition to the conventional Kelly sidebands on the spectrum of the PRVSs, which is based on coherent energy exchange between the two orthogonal polarization components. In addition, we found that the new sidebands are not completely symmetric with respect to the peak wavelength in the polarization spectra. They are also not in the same place in different polarization rotation spectra obtained with different orientations of the intra-cavity PC. From this, it is obvious that the position of the peak-dip sidebands depends on the cavity birefringence [40, 43]. It is worth mentioning that we do not observe the extra peak-dip sidebands in the optical spectrum of the polarization rotation tightly bound vector solitons. We suspect this may be caused by the deep modulation of the spectrum burying the little peaks and dips due to the low vector spectral intensities.

In addition, unlike in [38, 40, 53], all the presented spectra in our experiment exhibit a CW lasing component close to the center wavelength, we think this may be due to the shallow modulation depth of the saturable absorber, as mentioned in [54], a shallow modulation depth corresponds to a large defect-induced nonsaturable loss. Zhao et al. [55] have pointed out that the linear cavity loss is in fact a sinusoidal function of the wavelength, and the strength of the CW component is determined by the linear cavity transmission of the laser. By optimizing the modulation depth of the saturable absorber, therefore, or changing the birefringence, these CW components can be suppressed.

4. Conclusion

In conclusion, we have experimentally investigated the polarization dynamics of vector soliton patterns in a graphene mode-locked erbium-doped fiber laser. The vector characteristics for locked and rotation polarization of the fundamental soliton, bunched solitons, loosely and tightly bound solitons and high order harmonic mode locking solitons were all obtained by carefully adjusting the pump power and the orientations of the intra-cavity PC.

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (Grant nos. 11074065, 11374089 and 61308016), the Hebei Natural Science Foundation (Grant nos. F2012205076 and A2012205023), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant no. 20101303110003) and the Technology Key Project of Colleges and Universities Hebei Province (Grant nos. ZH2011107 and ZD20131014).

References and links

1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142–144 (1973). [CrossRef]  

2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980). [CrossRef]  

3. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fiber laser,” Electron. Lett. 28(1), 67–68 (1992). [CrossRef]  

4. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001). [CrossRef]  

5. X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012). [CrossRef]  

6. D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002). [CrossRef]  

7. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008). [CrossRef]  

8. Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012). [CrossRef]   [PubMed]  

9. Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014). [CrossRef]  

10. X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011). [CrossRef]   [PubMed]  

11. Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007). [CrossRef]  

12. C. A. Alonzo and S. H. Yun, “Harmonic mode locking in a sliding-frequency fiber laser,” Opt. Lett. 36(9), 1590–1592 (2011). [CrossRef]   [PubMed]  

13. M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser,” Opt. Express 22(19), 22841–22846 (2014). [PubMed]  

14. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009). [CrossRef]   [PubMed]  

15. Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014). [PubMed]  

16. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009). [PubMed]  

17. S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010). [CrossRef]  

18. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010). [CrossRef]  

19. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987). [CrossRef]   [PubMed]  

20. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14(18), 1011–1013 (1989). [CrossRef]   [PubMed]  

21. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999). [CrossRef]  

22. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000). [CrossRef]  

23. J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17(3), 366–372 (2000). [CrossRef]  

24. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008). [CrossRef]   [PubMed]  

25. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002). [CrossRef]   [PubMed]  

26. Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010). [CrossRef]  

27. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011). [CrossRef]   [PubMed]  

28. V. V. Afanasjev, “Soliton polarization rotation in fiber lasers,” Opt. Lett. 20(3), 270–272 (1995). [CrossRef]   [PubMed]  

29. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008). [CrossRef]   [PubMed]  

30. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009). [CrossRef]   [PubMed]  

31. D. Tang, J. G. Zhang, and Y. Liu, “Vector solitons with polarization instability and locked polarization in a fiber laser,” Opt. Eng. 51(7), 074202 (2012). [CrossRef]  

32. Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014). [CrossRef]  

33. W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014). [CrossRef]  

34. J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011). [CrossRef]  

35. C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011). [CrossRef]   [PubMed]  

36. S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012). [CrossRef]   [PubMed]  

37. C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013). [PubMed]  

38. H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010). [CrossRef]  

39. Y. F. Song, L. Li, D. Y. Tang, and D. Y. Shen, “Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser,” Laser Phys. Lett. 10(12), 125103 (2013). [CrossRef]  

40. Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012). [CrossRef]   [PubMed]  

41. Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013). [CrossRef]   [PubMed]  

42. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992). [CrossRef]  

43. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008). [CrossRef]   [PubMed]  

44. X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011). [CrossRef]  

45. A. N. Pilipetskii, E. A. Golovchenko, and C. R. Menyuk, “Acoustic effect in passively mode-locked fiber ring lasers,” Opt. Lett. 20(8), 907–909 (1995). [CrossRef]   [PubMed]  

46. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998). [CrossRef]  

47. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005). [CrossRef]   [PubMed]  

48. A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014). [CrossRef]  

49. J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012). [CrossRef]  

50. H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012). [CrossRef]  

51. A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014). [CrossRef]  

52. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997). [CrossRef]  

53. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef]   [PubMed]  

54. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011). [CrossRef]  

55. B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142–144 (1973).
    [Crossref]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
    [Crossref]
  3. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fiber laser,” Electron. Lett. 28(1), 67–68 (1992).
    [Crossref]
  4. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
    [Crossref]
  5. X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
    [Crossref]
  6. D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
    [Crossref]
  7. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
    [Crossref]
  8. Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012).
    [Crossref] [PubMed]
  9. Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
    [Crossref]
  10. X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011).
    [Crossref] [PubMed]
  11. Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
    [Crossref]
  12. C. A. Alonzo and S. H. Yun, “Harmonic mode locking in a sliding-frequency fiber laser,” Opt. Lett. 36(9), 1590–1592 (2011).
    [Crossref] [PubMed]
  13. M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser,” Opt. Express 22(19), 22841–22846 (2014).
    [PubMed]
  14. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  15. Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014).
    [PubMed]
  16. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
    [PubMed]
  17. S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
    [Crossref]
  18. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
    [Crossref]
  19. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
    [Crossref] [PubMed]
  20. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14(18), 1011–1013 (1989).
    [Crossref] [PubMed]
  21. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
    [Crossref]
  22. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
    [Crossref]
  23. J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17(3), 366–372 (2000).
    [Crossref]
  24. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
    [Crossref] [PubMed]
  25. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
    [Crossref] [PubMed]
  26. Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
    [Crossref]
  27. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
    [Crossref] [PubMed]
  28. V. V. Afanasjev, “Soliton polarization rotation in fiber lasers,” Opt. Lett. 20(3), 270–272 (1995).
    [Crossref] [PubMed]
  29. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
    [Crossref] [PubMed]
  30. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
    [Crossref] [PubMed]
  31. D. Tang, J. G. Zhang, and Y. Liu, “Vector solitons with polarization instability and locked polarization in a fiber laser,” Opt. Eng. 51(7), 074202 (2012).
    [Crossref]
  32. Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
    [Crossref]
  33. W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
    [Crossref]
  34. J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
    [Crossref]
  35. C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
    [Crossref] [PubMed]
  36. S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
    [Crossref] [PubMed]
  37. C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013).
    [PubMed]
  38. H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
    [Crossref]
  39. Y. F. Song, L. Li, D. Y. Tang, and D. Y. Shen, “Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser,” Laser Phys. Lett. 10(12), 125103 (2013).
    [Crossref]
  40. Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
    [Crossref] [PubMed]
  41. Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
    [Crossref] [PubMed]
  42. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
    [Crossref]
  43. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
    [Crossref] [PubMed]
  44. X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
    [Crossref]
  45. A. N. Pilipetskii, E. A. Golovchenko, and C. R. Menyuk, “Acoustic effect in passively mode-locked fiber ring lasers,” Opt. Lett. 20(8), 907–909 (1995).
    [Crossref] [PubMed]
  46. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
    [Crossref]
  47. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
    [Crossref] [PubMed]
  48. A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
    [Crossref]
  49. J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
    [Crossref]
  50. H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
    [Crossref]
  51. A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014).
    [Crossref]
  52. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
    [Crossref]
  53. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  54. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
    [Crossref]
  55. B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
    [Crossref]

2014 (7)

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser,” Opt. Express 22(19), 22841–22846 (2014).
[PubMed]

Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014).
[PubMed]

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014).
[Crossref]

2013 (3)

2012 (7)

Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
[Crossref] [PubMed]

D. Tang, J. G. Zhang, and Y. Liu, “Vector solitons with polarization instability and locked polarization in a fiber laser,” Opt. Eng. 51(7), 074202 (2012).
[Crossref]

S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
[Crossref] [PubMed]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012).
[Crossref] [PubMed]

2011 (7)

X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011).
[Crossref] [PubMed]

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
[Crossref] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

C. A. Alonzo and S. H. Yun, “Harmonic mode locking in a sliding-frequency fiber laser,” Opt. Lett. 36(9), 1590–1592 (2011).
[Crossref] [PubMed]

X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

2010 (5)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

2009 (3)

2008 (4)

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

2007 (1)

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

2005 (1)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

2004 (1)

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

2002 (2)

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

2001 (1)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

2000 (2)

1999 (1)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

1998 (1)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

1997 (1)

1995 (2)

1992 (2)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fiber laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

1989 (1)

1987 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

1973 (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142–144 (1973).
[Crossref]

Aditya, S.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Afanasjev, V. V.

Akhmediev, N. N.

Alonzo, C. A.

Amrani, F.

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Bergman, K.

J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17(3), 366–372 (2000).
[Crossref]

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Chen, G.-J.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Chen, S.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Chen, W.-C.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Chen, Y.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Chernov, A.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Chouli, S.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[PubMed]

Collings, B. C.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
[Crossref]

J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17(3), 366–372 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Cundiff, S. T.

Drummond, P. D.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Du, J.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012).
[Crossref] [PubMed]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Fu, S.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Ge, Y.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Golovchenko, E. A.

Gong, Y. D.

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

Gordon, J. P.

M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14(18), 1011–1013 (1989).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Gray, S.

Grelu, P.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[PubMed]

Grelu, Ph.

Grudinin, A. B.

A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fiber laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Guesmi, K.

Haboucha, A.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Han, D.-A.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Hao, Y.

Hao, Y. P.

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Hasegawa, A.

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142–144 (1973).
[Crossref]

Higuchi, T.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

Islam, M. N.

Jiang, G.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Jiang, Y.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Kanda, N.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

Kelleher, E. J. R.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

Knox, W. H.

J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17(3), 366–372 (2000).
[Crossref]

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Komarov, A.

A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014).
[Crossref]

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Komarov, K.

A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014).
[Crossref]

Konishi, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

Kutz, J. N.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Kuwata-Gonokami, M.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

Leblond, H.

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Li, B.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Li, H.

Li, H. F.

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

Li, L.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Y. F. Song, L. Li, D. Y. Tang, and D. Y. Shen, “Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser,” Laser Phys. Lett. 10(12), 125103 (2013).
[Crossref]

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

Li, X.

Li, X. L.

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

Li, Y.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Liu, H.

Liu, H. H.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Liu, M.

Liu, X.

Liu, Y.

D. Tang, J. G. Zhang, and Y. Liu, “Vector solitons with polarization instability and locked polarization in a fiber laser,” Opt. Eng. 51(7), 074202 (2012).
[Crossref]

Loh, K. P.

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Lu, C.

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

Luan, X. N.

X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Luo, A. P.

Luo, J.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Luo, S. Y.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Luo, Z. C.

Man, W. S.

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Meng, Y.

Meng, Y. C.

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

Menyuk, C. R.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Mou, C.

Narushima, T.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Niang, A.

A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014).
[Crossref]

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014).
[PubMed]

Obraztsova, E. D.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Okamoto, H.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Ouyang, C.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fiber laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Pilipetskii, A. N.

Polavarapu, L.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Poole, C. D.

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Qi, Y. L.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fiber laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Rozhin, A.

Rozhin, A. G.

Salhi, M.

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014).
[PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Sanchez, F.

Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014).
[PubMed]

A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014).
[Crossref]

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

Sergeyev, S.

Sergeyev, S. V.

Shen, D.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Shen, D. Y.

Y. F. Song, L. Li, D. Y. Tang, and D. Y. Shen, “Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser,” Laser Phys. Lett. 10(12), 125103 (2013).
[Crossref]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

Shen, Y.

Shen, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

Shum, P.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

Song, Y. F.

Soto-Crespo, J. M.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tam, H. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Tang, D.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

D. Tang, J. G. Zhang, and Y. Liu, “Vector solitons with polarization instability and locked polarization in a fiber laser,” Opt. Eng. 51(7), 074202 (2012).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Tang, D. Y.

Y. F. Song, L. Li, D. Y. Tang, and D. Y. Shen, “Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser,” Laser Phys. Lett. 10(12), 125103 (2013).
[Crossref]

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
[Crossref] [PubMed]

X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Tang, P.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Tappert, F.

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142–144 (1973).
[Crossref]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Turistyn, S.

Turitsyn, S. K.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, H.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Wang, S.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Wang, Y.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Wen, S.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Wise, F. W.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Wong, J. H.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Wu, K.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Wu, M.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Wu, X.

X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
[Crossref] [PubMed]

Xia, Y. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Xiang, N.

Xu, Q. H.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Xu, W. C.

Yang, X. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Yang, Z. J.

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Yoshioka, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

Yun, S. H.

Zhan, L.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Zhang, H.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser,” Opt. Express 22(19), 22841–22846 (2014).
[PubMed]

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

Zhang, J. G.

D. Tang, J. G. Zhang, and Y. Liu, “Vector solitons with polarization instability and locked polarization in a fiber laser,” Opt. Eng. 51(7), 074202 (2012).
[Crossref]

Zhang, Q.

X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Zhang, S.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012).
[Crossref] [PubMed]

Zhang, S. M.

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

Zhang, Z. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Zhao, B.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

Zhao, C.

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Zhao, C. J.

Zhao, L.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Zhao, L. M.

Zheng, X. W.

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Appl. Phys. B (1)

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Dissipative solitons compounds in a fiber laser. Analogy with the states of the matter,” Appl. Phys. B 99(1–2), 107–114 (2010).
[Crossref]

Appl. Phys. Lett. (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142–144 (1973).
[Crossref]

Electron. Lett. (2)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fiber laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector soliton generation in a Tm fiber laser,” IEEE Photon. Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

X. L. Li, S. M. Zhang, Y. C. Meng, Y. P. Hao, H. F. Li, J. Du, and Z. J. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Laser Phys. Lett. (4)

Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11(5), 055101 (2014).
[Crossref]

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9(12), 896–900 (2012).
[Crossref]

Y. F. Song, L. Li, D. Y. Tang, and D. Y. Shen, “Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser,” Laser Phys. Lett. 10(12), 125103 (2013).
[Crossref]

Nano Res. (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Nat Commun (1)

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun 2, 362 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Opt. Commun. (6)

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

B. Zhao, D. Y. Tang, P. Shum, W. S. Man, H. Y. Tam, Y. D. Gong, and C. Lu, “Passive harmonic mode locking of twin-pulse solitons in an erbium-doped fiber ring laser,” Opt. Commun. 229(1–6), 363–370 (2004).
[Crossref]

H. F. Li, S. M. Zhang, J. Du, Y. C. Meng, Y. P. Hao, and X. L. Li, “Passively harmonic mode-locked fiber laser with controllable repetition rate based on a carbon nanotube saturable absorber,” Opt. Commun. 285(6), 1347–1351 (2012).
[Crossref]

H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

A. Niang, F. Amrani, M. Salhi, H. Leblond, A. Komarov, and F. Sanchez, “Harmonic mode-locking in a fiber laser through continuous external optical injection,” Opt. Commun. 312, 1–6 (2014).
[Crossref]

X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Opt. Eng. (1)

D. Tang, J. G. Zhang, and Y. Liu, “Vector solitons with polarization instability and locked polarization in a fiber laser,” Opt. Eng. 51(7), 074202 (2012).
[Crossref]

Opt. Express (12)

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

Y. Meng, S. Zhang, X. Li, H. Li, J. Du, and Y. Hao, “Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser,” Opt. Express 20(6), 6685–6692 (2012).
[Crossref] [PubMed]

Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014).
[PubMed]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
[Crossref] [PubMed]

M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser,” Opt. Express 22(19), 22841–22846 (2014).
[PubMed]

X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

Y. F. Song, H. Zhang, D. Y. Tang, and Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
[Crossref] [PubMed]

Y. F. Song, L. Li, H. Zhang, Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21(8), 10010–10018 (2013).
[Crossref] [PubMed]

S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
[Crossref] [PubMed]

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013).
[PubMed]

Opt. Fiber Technol. (1)

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (5)

A. Komarov, K. Komarov, A. Niang, and F. Sanchez, “Nature of soliton interaction in fiber lasers with continuous external optical injection,” Phys. Rev. A 89(1), 013833 (2014).
[Crossref]

D. Y. Tang, B. Zhao, D. Y. Shen, C. Lu, W. S. Man, and H. Y. Tam, “Bound-soliton fiber laser,” Phys. Rev. A 66(3), 033806 (2002).
[Crossref]

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[Crossref]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic setup of the vector soliton fiber laser. WDM: wavelength division multiplexer, HDCEDF: high doping concentration erbium-doped fiber, PI-ISO: polarization insensitive isolator, PC1 and PC2: polarization controller, OC1: 10/90 optical coupler, OC2: 50/50 optical coupler, PBS: polarization beam splitter.
Fig. 2
Fig. 2 The vector characteristics of fundamental PLVSs. (a) Soliton spectra before (blue line) and after (orange and green lines) passing through the PBS. The insert in part (a) shows the pulse traces before passing through the PBS; (b) autocorrelation trace of a single pulse before the PBS; (c) the wideband RF spectrum up to 300 MHz (Insert: the narrow bandwidth RF spectrum up to 45 MHz); (d) the two pulse traces after a PBS.
Fig. 3
Fig. 3 The vector characteristics of fundamental PRVSs. (a) Pulse traces before (blue line) and after (orange and green lines) passing through a PBS; (b) optical spectra before (blue line) and after (orange and green lines) passing through a PBS.
Fig. 4
Fig. 4 The vector characteristics of polarization locked tightly bound vector solitons. (a) Optical spectra before (blue line) and after (orange and green lines) passing though the PBS; (b) autocorrelation trace of the total pulse; (c) pulse trace before passing through the PBS; (d) pulse traces of two polarization components after passing through the PBS.
Fig. 5
Fig. 5 The vector characteristics of polarization rotation tightly bound vector solitons. (a) Optical spectra (Insert: autocorrelation trace of the total pulse) before (blue line) and after (orange and green lines) passing through the PBS; (b) pulse traces before (blue line) and after (orange and green lines) passing through the PBS.
Fig. 6
Fig. 6 The vector characteristics of polarization locked loosely bound vector solitons. (a) Optical spectra (Insert: autocorrelation trace of total pulse) before (blue line) and after (orange and green lines) passing through the PBS; (b) pulse traces before (blue line) and after (orange and green lines) passing through the PBS.
Fig. 7
Fig. 7 The vector characteristics of polarization rotation loosely vector BSs. (a) Optical spectra (left insert: autocorrelation trace of total pulse; right insert: enlargement of part of the spectrum) before (blue line) and after (orange and green lines) passing through the PBS; (b) pulse traces before (blue line) and after (orange and green lines) passing through the PBS.
Fig. 8
Fig. 8 The vector characteristics of polarization locked vector soliton bunching. (a) Pulse traces before (blue line) and after (orange and green lines) passing through the PBS; (b) a single pulse group in pulse bunching mode before passing through the PBS; (c) optical spectra before (blue line) and after (orange and green lines) passing through the PBS.
Fig. 9
Fig. 9 The vector characteristics of polarization rotation vector soliton bunching. (a) Pulse traces before (blue line) and after (orange and green lines) passing through the PBS; (b) optical spectra before (blue line) and after (orange and green lines) passing through the PBS.
Fig. 10
Fig. 10 The vector characteristics of polarization locked harmonic mode locking vector solitons. (a) The pulse trace before passing through the PBS; (b) the pulse traces after passing through the PBS; (c) the wideband RF spectrum up to 800 MHz (insert: the narrow bandwidth RF spectrum between 120 and 200 MHz); (d) the spectra before (blue line) and after (orange and green lines) passing through the PBS.
Fig. 11
Fig. 11 The vector characteristics of polarization rotation 7th harmonic vector solitons. (a) Pulse traces before (blue line) and after (orange and green lines) passing through the PBS; (b) optical spectra before (blue line) and after (orange and green lines) passing through the PBS; (c) the wideband RF spectrum up to 800 MHz (insert: the narrow bandwidth RF spectrum between 50 and 150 MHz).

Metrics