Abstract

We review recent advances in the fundamental understanding and technological applications of radiative processes for energy harvesting, conversion, efficiency, and sustainability. State-of-the-art and remaining challenges are discussed, together with the latest developments outlined in the papers comprising this focus issue. The topics range from the fundamentals of the thermal emission manipulation in the far and near field, to applications in radiative cooling, thermophotovoltaics, thermal rectification, and novel approaches to photon detection and conversion.

© 2015 Optical Society of America

1. Introduction

The role of radiative processes in the photon energy harvesting and conversion can hardly be overestimated [1,2]. For example, the radiative losses due to electron-hole recombination required by thermodynamics inevitably limit the efficiency of the photovoltaic (PV) energy conversion [3,4]. Still, eliminating non-radiative losses yields open circuit voltage of PV cells close to the thermodynamic limit [5], which can be further increased by photon recycling schemes [6]. Furthermore, energy losses due to thermal radiation severely impact performance of solar-thermal energy converters, and need to be reduced by designing spectrally selective materials, coatings, and external reflectors [7–12]. The success of the thermophotovoltaic (TPV) technology in delivering high heat-to-current conversion efficiency also hinges on the development of highly selective – ideally near-monochromatic thermal emitters [8,13–18]. Highly-spectrally and angularly-selective thermal emitters can even provide a basis for creating photon energy upconversion platforms, which would in turn benefit many photon energy conversion schemes such as PV and TPV [19]. At the same time, recent results suggest that enhanced thermal emission can contribute to the night- and daytime cooling of buildings [20–23] and individuals [24] as well as to the reduction of the operating temperature of PV cells [25], which would translate into increased PV efficiency and energy savings. Significant energy savings in solid state lighting technologies can also be achieved by tailoring either fluorescent or thermal emission from light-emitting diodes and new-generation incandescent light sources [26,27].

The radiation processes can be dramatically amplified and tailored in the case of the near-field coupling between the emitter and the absorber of photons, i.e., when the coupling distances are comparable or smaller the dominant wavelength of the radiation [28–37]. This situation is often referred to as a ‘breakdown’ of the Planck’s law governing radiation at short distances [38]. However, it is in fact not surprising, given that the law in its classical form is only valid when ‘the linear dimension of all parts considered... are large compared with the wavelength of the ray considered.’ The ability to strongly modify radiative processes via near-field coupling can contribute to increasing the efficiency of TPV energy conversion schemes [13,15,16,18,39–41] and provide new means for on-chip thermal management [42] and heat-assisted magnetic recording [43].

The focus issue offers a glimpse at some of the latest developments in the control of radiative processes for energy harvesting, conversion, and sustainability, with contributions covering crucial aspects of the field, including tailoring thermal emission, thermophotovoltaics [39,44–46], thermal emission monitoring, photovoltaics, radiative cooling, and far infrared sensing, as covered in the following sections.

2. Tailoring thermal emission by manipulating the density of photon states

Controlled modification of thermal radiative properties of materials is of fundamental interest and drives many applications, ranging from solar energy harvesting and conversion to nanoscale imaging and sensing, solid-state lighting, and personal comfort technologies. In general, In general, the electromagnetic energy density of radiation in a material is proportional to the available density of photon states (DOS). Accordingly, both light absorption and thermal emission can be tailored (i.e., enhanced or suppressed) via DOS modification.

In particular, excitation of trapped optical modes, such as guiding modes in thin films or volumetric resonances in dielectric nano- and micro-particles results in strong resonant modification of the photon density of states, which in turn modifies both light absorption [47–50] and thermal emission [15,51]. Strong resonant DOS modification is also associated with the excitation of surface phonon or plasmon-polariton modes [32,52]. In many cases, this high photon DOS can only be tapped into through near-field coupling [53,54], however, in combination with the optical confinenent effects, it can result in the strongly modified thermal emission into the far field [23,55,56]. Finally, collective effects [57] in coupled photonic structures with localized excitations, such as nanoparticle clusters, photonic crystals or metamaterials can be used to further shape, enhance and tune thermal emission spectra [7,58–62].

In this focus issue, several contributions present designs and realizations of thermal emitters that utilize photon DOS modification to achieve spectral selectivity. Ghanekar and colleagues calculate spectrally-selective emission from thin films embedded with nanoparticles, and show that the emission spectra can be tunable by varying size, material and volume fraction of nanoparticles [63]. In turn, Dyachenko et al. utilize optical confinement and coupling effects to demonstrate spectrally-selective absorber/emitter based on a monolayer of microspheres, which holds promise for high-temperature applications [64]. Roberts et al. experimentally demonstrate spectrally-selective thermal emission driven by resonant phenomena in continuous-film Fabry-Perot resonators composed of metal and dielectric layers, which offers a pathway to the development of low-cost emitters amenable to wafer-scale fabrication using standard techniques [65]. Didari and Menguc numerically demonstrate the effect of nanoscale pores on the spectral properties of the near-field heat transfer, which cannot be captured by the effective medium approximation calculations [66]. Buencuerpo et al. present an optimization of the photonic crystal structures to leverage light trapping effects for photon-enhanced thermionic emission [67]. Jia and colleagues theoretically demonstrate a possibility to realize coherent far-field thermal emission via excitation of magnetic polariton modes in metal-dielectric-metal nanoshells and nanoshell clusters [68]. Finally, Joulain et al. numerically demonstrate a possibility of radiative thermal rectification between planar materials supporting surface phonon polariton modes, which offers useful applications in nanoscale thermal regulation [69]. Liu et al. have studied how anomalous optical Anderson localization appear in one dimensional quasicrystal that greatly affect transport properties in the material [70]. This could represent a system where the density of states has been greatly modified, which could ultimately lead to a device that would have its thermal emission controlled.

3. Thermophotovoltaics

One potential area where selective thermal emitters may find significant application is thermophotovoltaics (TPV). Here, the basic concept is to convert thermal radiation into electricity [71,72]. In principle, the efficiency of this process can be quite high, especially at high temperatures, potentially up to 85% [13,73–75]. Possible heat input sources include concentrated sunlight [76], radioisotope decay [77], and waste heat [78]. However, several potential loss mechanisms can sharply limit the realized efficiencies, including most prominently below-bandgap thermal emission [13], radiation lost between the emitter and absorber [79], inefficiencies in heat collection [9], and photovoltaic diode losses [80]. To address these concerns, several foundational studies have established the value of introducing low-bandgap photovoltaic cells, selective thermal emitters, and cold-side short-pass filters.

In this issue, we explore several innovations impacting critical TPV components, along with a system-level demonstration of improved performance. First, we consider the design of emitter structures using resonant structures for thermophotovoltaic applications, which has potential to increase thermal emission to the theoretical maximum at targeted frequencies, even for otherwise weakly-absorbing materials [81]. In parallel, Jurczak et al. show that GaInAs cells represent a high-performance, bandgap and thus temperature-adaptive platform for harvesting thermal radiation [45]. Finally, Ungaro et al. present experimental work demonstrating the advantage of using carefully designed nanostructures in enhancing solar thermophotovoltaic system efficiencies up to 6.2% [46].

4. Monitoring thermal emission

Along with designing thermal radiation sources and fabricating them for experiments, characterization of their performance can be a highly nontrivial endeavor. It is common that measuring temperatures accurately can be quite challenging at high temperatures. Approaches developed previously include measure thermal radiation spectra via Fourier Transform Infrared spectrometers [82], and IR thermometers [83]. Nonetheless, this can be particularly challenging for materials with wavelength-dependent emissivity [83]. Complementary approaches that could help address these challenges and verify previous results include sensitive measurement of total thermal flux, as well as hyperspectral imaging.

In this issue, two novel characterization techniques are discussed in detail. First, Strojnik and Paez develop a unique approach to rapidly characterizing thermal emission (at 1000 frames per second) [84]. Second, Rowe et al. develop an approach to calibrating solar simulators (e.g., for solar thermophotovoltaics) using a cylindrical calorimeter [85].

5. Novel photovoltaic materials and concepts

Photovoltaic cells convert sunlight into electricity, and are subject to the well-known Shockley-Queisser limit for a single semiconductor p-n junction, which is around 31% [3]. Recent experimental work leading to experimental efficiencies of 28.8% in single-junction gallium arsenide have pointed to the need for new strategies to further push the limits of photovoltaic conversion [86]. While a number of candidate technologies have been discussed for improving traditional single-junction cells, a few well-known mechanisms include spectral splitting [87], multijunctions [88], and hot-carrier cells [89].

In this issue, we consider several unique twists on photovoltaic energy harvesting that extend these fundamental approaches. First, Kong et al. consider an interesting concept for hot carrier solar cells for enhanced efficiencies [90]. Here, a plasmonic metamaterial absorbs visible light while creating an infrared resonance to protect hot electron states from rapid decay. This could lead to an elevated photovoltage and improved efficiencies. Second, photon tunneling is considered as a mechanism to enhance coupling into a single-mode silicon waveguide [91]. This could lead to novel silicon photovoltaic architectures. Third, a microfluidic beam-steering array is proposed as a potentially dynamic and low-cost method to achieve spectral splitting for substantially higher total conversion efficiencies [92].

6. Radiative cooling

Energy conversion systems such as photovoltaics are also susceptible to unwanted heating that degrades performance, yet avoiding this phenomenon effectively can be challenging. Cooling below an ambient temperature typically requires energy input in the form of refrigeration, which is an energy-hungry process. Passive radiative cooling allows for cooling below the ambient without the input of external energy. Such self-cooling is possible because a radiative thermal body that is exposed to the sky could directly exchange electromagnetic heat energy with the outer space, an enormous and extremely cold heat sink at a temperature of 3 K. Passive radiative cooling could make refrigeration and climate control run more efficiently, saving significant amounts of energy (Fig. 1).

 

Fig. 1 Energy balance of a passive radiative cooling device. A special thermo-photonic material system needs to be able to radiate efficiently in the mid-infrared (blue arrow), and to repel sunlight and atmosphere’s radiation (wavy red arrows), as well as to resist the convection and conduction heat gain from air (straight red arrows).

Download Full Size | PPT Slide | PDF

Nighttime radiative cooling has been extensively studied for decades [23,93–98]. The design for nighttime cooling is straightforward. A blackbody works very efficiently. On the other hand, to achieve daytime cooling one needs to design special photonic structure that is simultaneously a broadband mirror for solar light and a strong thermal emitter in the atmospheric transparency window. A cover foil that reflects solar radiation has been proposed to realize daytime radiative cooling [20,99]. Recently, an integrated photonic structure was proposed and later experimentally demonstrated to achieve daytime passive cooling [21]. These exciting results show that the cold darkness of the Universe could be used as a fundamental renewable thermodynamic resources for improving energy efficiency on earth.

In this issue, Safi and Munday show that passive radiative cooling can improve the efficiency of photovoltaic cells by lowering the operation temperature below ambient [100]. In particular, they show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. Their proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. It is also demonstrated that an efficiency advantage of 0.4- 2.6% for solar cells in an extraterrestrial environment in near-earth orbit.

Finally, Wu and Povinelli consider the impact of radiative cooling in the context of gallium arsenide nanowire solar cells [101]. It is found that this cooling effect may be larger in the presence of nanowires than for a planar structure, particular in the presence of certain key materials. The net effect may be to cool cells 10 K below typical expectations.

7. Far infrared sensing

In this section, K. Feng et al. review the adjoining Restrahlen region of the far infrared spectrum, which extends approximately from 20 to 60 μm [102]. Many materials have a unique far-infrared response in this region that could serve as a molecular fingerprint. However, the authors clearly note that the phonon absorption present in otherwise suitable materials such as III-Vs has greatly limited the development of appropriate sources and detectors to make use of this property. However, compensating for these limitations through emerging techniques and materials could greatly increase prospects for radiative control in the Restrahlen region. If successful, such efforts could open up a broad range of new applications, including astrochemical, biological, and industrial sensing [102].

8. Conclusions

In summary, a great deal of new work has been presented in this focus issue on various aspects of the radiative control of thermal emission. It has been shown that radiative control may benefit selective thermal emission, thermophotovoltaics, photovoltaics, cooling, and far infrared optical sensing. These processes can be monitored using emerging techniques in radiative emission monitoring. Given the theoretical predictions of extremely high performance for many of these applications, and the remaining gap in performance in this recently-emerging field, it is likely that a great deal of work will be forthcoming in the near future.

References and links

1. S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

2. S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

3. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961). [CrossRef]  

4. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980). [CrossRef]  

5. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovolt. 2(3), 303–311 (2012). [CrossRef]  

6. A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013). [CrossRef]  

7. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011). [CrossRef]   [PubMed]  

8. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012). [CrossRef]   [PubMed]  

9. P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012). [CrossRef]  

10. L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014). [CrossRef]  

11. L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015). [CrossRef]  

12. J. N. Munday, “The effect of photonic bandgap materials on the Shockley-Queisser limit,” J. Appl. Phys. 112(6), 064501 (2012). [CrossRef]  

13. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

14. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014). [CrossRef]   [PubMed]  

15. J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015). [CrossRef]   [PubMed]  

16. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20( S3), A366–A384 (2012). [CrossRef]   [PubMed]  

17. V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005). [CrossRef]  

18. M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006). [CrossRef]  

19. S. V. Boriskina and G. Chen, “Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. Press 314, 71–78 (2014). [CrossRef]  

20. T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995). [CrossRef]  

21. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014). [CrossRef]   [PubMed]  

22. C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982). [CrossRef]  

23. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010). [CrossRef]   [PubMed]  

24. J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015). [CrossRef]  

25. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014). [CrossRef]  

26. J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek Jr., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014). [CrossRef]  

27. Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015). [CrossRef]   [PubMed]  

28. A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013). [CrossRef]   [PubMed]  

29. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002). [CrossRef]  

30. J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994). [CrossRef]   [PubMed]  

31. J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter 11(35), 6621–6633 (1999). [CrossRef]  

32. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000). [CrossRef]   [PubMed]  

33. K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015). [CrossRef]  

34. P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009). [CrossRef]  

35. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009). [CrossRef]   [PubMed]  

36. B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014). [CrossRef]  

37. S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015). [CrossRef]  

38. A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009). [CrossRef]  

39. T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of Near-Field Thermophotovoltaic Cells Enhanced with a Backside Reflector,” J. Heat Transfer 136(6), 062701 (2014). [CrossRef]  

40. M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energ. Convers. 17(1), 130–142 (2002). [CrossRef]  

41. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82(20), 3544–3546 (2003). [CrossRef]  

42. B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012). [CrossRef]   [PubMed]  

43. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008). [CrossRef]  

44. O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” http://arxiv.org/abs/1504.01323 (2015).

45. P. Jurczak, A. Onno, K. Sablon, and H. Liu, “Efficiency of GaInAs thermophotovoltaic cells: the effects of incident radiation, light trapping and recombinations,” Opt. Express 23(19), A1208–A1219 (2015). [CrossRef]   [PubMed]  

46. C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149–A1156 (2015). [CrossRef]   [PubMed]  

47. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef]   [PubMed]  

48. J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010). [CrossRef]  

49. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012). [CrossRef]   [PubMed]  

50. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011). [CrossRef]   [PubMed]  

51. S. V. Boriskina, J. Tong, L. Weinstein, W.-C. Hsu, Y. Huang, and G. Chen, “Thermal Emission Shaping and Radiative Cooling with Thermal Wells, Wires and Dots,” in Advanced Photonics 2015 (OSA, 2015), p. IT2A.3.

52. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013). [CrossRef]  

53. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010). [CrossRef]  

54. E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010). [CrossRef]  

55. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009). [CrossRef]  

56. A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014). [CrossRef]  

57. S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19(22), 22024–22028 (2011). [CrossRef]   [PubMed]  

58. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004). [CrossRef]   [PubMed]  

59. V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013). [CrossRef]  

60. M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011). [CrossRef]  

61. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012). [CrossRef]   [PubMed]  

62. S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013). [CrossRef]  

63. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015). [CrossRef]   [PubMed]  

64. P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015). [CrossRef]   [PubMed]  

65. A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015). [CrossRef]   [PubMed]  

66. A. Didari and M. P. Mengüç, “Near-field thermal radiation transfer by mesoporous metamaterials,” Opt. Express 23(19), A1253–A1258 (2015). [CrossRef]   [PubMed]  

67. J. Buencuerpo, J. M. Llorens, P. Zilio, W. Raja, J. Cunha, A. Alabastri, R. P. Zaccaria, A. Martí, and T. Versloot, “Light-trapping in photon enhanced thermionic emitters,” Opt. Express 23(19), A1220–A1235 (2015). [CrossRef]   [PubMed]  

68. Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015). [CrossRef]   [PubMed]  

69. K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2,” Opt. Express 23(24), A1388–A1397 (2015). [CrossRef]  

70. C. Liu, M. Kong, and B. Li, “Anomalous optical Anderson localization in mixed one dimensional photonic quasicrystals,” Opt. Express 23(19), A1297–A1308 (2015). [CrossRef]   [PubMed]  

71. T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Green Energy and Technology (Springer, 2011).

72. R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979). [CrossRef]  

73. N. Harder and M. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003). [CrossRef]  

74. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003). [CrossRef]  

75. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009). [CrossRef]   [PubMed]  

76. W. Spirkl and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985). [CrossRef]  

77. D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.

78. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013). [CrossRef]   [PubMed]  

79. E. R. G. Eckert and E. M. Sparrow, “Radiative heat exchange between surfaces with specular reflection,” Int. J. Heat Mass Transfer 3(1), 42–54 (1961). [CrossRef]  

80. M. W. Wanlass, “Recent Advances in Low-Bandgap, InP-Based GaInAs/InAsP Materials and Devices for Thermophotovoltaic (TPV) Energy Conversion,” AIP Conf. Proc. 738, 427–435 (2004).

81. J. Foley, C. Ungaro, K. Sun, M. Gupta, and S. Gray, “Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications,” Opt. Express 23(24), A1373–A1387 (2015). [CrossRef]  

82. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012). [CrossRef]   [PubMed]  

83. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013). [CrossRef]   [PubMed]  

84. M. Strojnik and G. Paez, “High-resolution bispectral imager at 1000 frames per second,” Opt. Express 23(19), A1259–A1269 (2015). [CrossRef]   [PubMed]  

85. S. C. Rowe, A. J. Groehn, A. W. Palumbo, B. A. Chubukov, D. E. Clough, A. W. Weimer, and I. Hischier, “Worst-case losses from a cylindrical calorimeter for solar simulator calibration,” Opt. Express 23(19), A1309–A1323 (2015). [CrossRef]   [PubMed]  

86. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013). [CrossRef]  

87. J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011). [CrossRef]  

88. A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004). [CrossRef]  

89. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006). [CrossRef]  

90. J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa, “Hot electron plasmon-protected solar cell,” Opt. Express 23(19), A1087–A1095 (2015). [CrossRef]   [PubMed]  

91. L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.

92. L. D. DiDomenico, “Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays,” Opt. Express23(24), A1398–A1417.

93. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975). [CrossRef]  

94. C. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: Silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139 (1980). [CrossRef]  

95. C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205 (1981). [CrossRef]  

96. P. Berdahl, M. Martin, and F. Sakkal, “Thermal performance of radiative cooling panels,” Int. J. Heat Mass 26(6), 871–880 (1983). [CrossRef]  

97. B. Orel, M. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993). [CrossRef]  

98. C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009). [CrossRef]   [PubMed]  

99. T. Nilsson, G. A. Niklasson, and C.-G. Granqvist, “Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Proc. SPIE 1727, 249–261 (1992). [CrossRef]  

100. T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015). [CrossRef]   [PubMed]  

101. S. Wu and M. Povinelli, “Solar heating of GaAs nanowire solar cells,” Opt. Express 23(24), A1363–A1372 (2015). [CrossRef]  

102. K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic Materials, Structures and Devices for Reststrahlen Region Optics,” Opt. Express 23(24), A1373–A1387 (2015).

References

  • View by:
  • |
  • |
  • |

  1. S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.
  2. S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).
  3. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
    [Crossref]
  4. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
    [Crossref]
  5. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovolt. 2(3), 303–311 (2012).
    [Crossref]
  6. A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
    [Crossref]
  7. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
    [Crossref] [PubMed]
  8. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  9. P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
    [Crossref]
  10. L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014).
    [Crossref]
  11. L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
    [Crossref]
  12. J. N. Munday, “The effect of photonic bandgap materials on the Shockley-Queisser limit,” J. Appl. Phys. 112(6), 064501 (2012).
    [Crossref]
  13. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
  14. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  15. J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
    [Crossref] [PubMed]
  16. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20( S3), A366–A384 (2012).
    [Crossref] [PubMed]
  17. V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
    [Crossref]
  18. M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
    [Crossref]
  19. S. V. Boriskina and G. Chen, “Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. Press 314, 71–78 (2014).
    [Crossref]
  20. T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
    [Crossref]
  21. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  22. C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
    [Crossref]
  23. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
    [Crossref] [PubMed]
  24. J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
    [Crossref]
  25. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
    [Crossref]
  26. J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
    [Crossref]
  27. Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
    [Crossref] [PubMed]
  28. A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
    [Crossref] [PubMed]
  29. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002).
    [Crossref]
  30. J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
    [Crossref] [PubMed]
  31. J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter 11(35), 6621–6633 (1999).
    [Crossref]
  32. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
    [Crossref] [PubMed]
  33. K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015).
    [Crossref]
  34. P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
    [Crossref]
  35. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
    [Crossref] [PubMed]
  36. B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
    [Crossref]
  37. S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
    [Crossref]
  38. A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
    [Crossref]
  39. T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of Near-Field Thermophotovoltaic Cells Enhanced with a Backside Reflector,” J. Heat Transfer 136(6), 062701 (2014).
    [Crossref]
  40. M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energ. Convers. 17(1), 130–142 (2002).
    [Crossref]
  41. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82(20), 3544–3546 (2003).
    [Crossref]
  42. B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
    [Crossref] [PubMed]
  43. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
    [Crossref]
  44. O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” http://arxiv.org/abs/1504.01323 (2015).
  45. P. Jurczak, A. Onno, K. Sablon, and H. Liu, “Efficiency of GaInAs thermophotovoltaic cells: the effects of incident radiation, light trapping and recombinations,” Opt. Express 23(19), A1208–A1219 (2015).
    [Crossref] [PubMed]
  46. C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
    [Crossref] [PubMed]
  47. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  48. J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010).
    [Crossref]
  49. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
    [Crossref] [PubMed]
  50. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
    [Crossref] [PubMed]
  51. S. V. Boriskina, J. Tong, L. Weinstein, W.-C. Hsu, Y. Huang, and G. Chen, “Thermal Emission Shaping and Radiative Cooling with Thermal Wells, Wires and Dots,” in Advanced Photonics 2015 (OSA, 2015), p. IT2A.3.
  52. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
    [Crossref]
  53. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
    [Crossref]
  54. E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010).
    [Crossref]
  55. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [Crossref]
  56. A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
    [Crossref]
  57. S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19(22), 22024–22028 (2011).
    [Crossref] [PubMed]
  58. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [Crossref] [PubMed]
  59. V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
    [Crossref]
  60. M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
    [Crossref]
  61. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
    [Crossref] [PubMed]
  62. S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
    [Crossref]
  63. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
    [Crossref] [PubMed]
  64. P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
    [Crossref] [PubMed]
  65. A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
    [Crossref] [PubMed]
  66. A. Didari and M. P. Mengüç, “Near-field thermal radiation transfer by mesoporous metamaterials,” Opt. Express 23(19), A1253–A1258 (2015).
    [Crossref] [PubMed]
  67. J. Buencuerpo, J. M. Llorens, P. Zilio, W. Raja, J. Cunha, A. Alabastri, R. P. Zaccaria, A. Martí, and T. Versloot, “Light-trapping in photon enhanced thermionic emitters,” Opt. Express 23(19), A1220–A1235 (2015).
    [Crossref] [PubMed]
  68. Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015).
    [Crossref] [PubMed]
  69. K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2,” Opt. Express 23(24), A1388–A1397 (2015).
    [Crossref]
  70. C. Liu, M. Kong, and B. Li, “Anomalous optical Anderson localization in mixed one dimensional photonic quasicrystals,” Opt. Express 23(19), A1297–A1308 (2015).
    [Crossref] [PubMed]
  71. T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Green Energy and Technology (Springer, 2011).
  72. R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
    [Crossref]
  73. N. Harder and M. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
    [Crossref]
  74. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
    [Crossref]
  75. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  76. W. Spirkl and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
    [Crossref]
  77. D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.
  78. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
    [Crossref] [PubMed]
  79. E. R. G. Eckert and E. M. Sparrow, “Radiative heat exchange between surfaces with specular reflection,” Int. J. Heat Mass Transfer 3(1), 42–54 (1961).
    [Crossref]
  80. M. W. Wanlass, “Recent Advances in Low-Bandgap, InP-Based GaInAs/InAsP Materials and Devices for Thermophotovoltaic (TPV) Energy Conversion,” AIP Conf. Proc. 738, 427–435 (2004).
  81. J. Foley, C. Ungaro, K. Sun, M. Gupta, and S. Gray, “Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications,” Opt. Express 23(24), A1373–A1387 (2015).
    [Crossref]
  82. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  83. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
    [Crossref] [PubMed]
  84. M. Strojnik and G. Paez, “High-resolution bispectral imager at 1000 frames per second,” Opt. Express 23(19), A1259–A1269 (2015).
    [Crossref] [PubMed]
  85. S. C. Rowe, A. J. Groehn, A. W. Palumbo, B. A. Chubukov, D. E. Clough, A. W. Weimer, and I. Hischier, “Worst-case losses from a cylindrical calorimeter for solar simulator calibration,” Opt. Express 23(19), A1309–A1323 (2015).
    [Crossref] [PubMed]
  86. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
    [Crossref]
  87. J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
    [Crossref]
  88. A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
    [Crossref]
  89. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
    [Crossref]
  90. J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa, “Hot electron plasmon-protected solar cell,” Opt. Express 23(19), A1087–A1095 (2015).
    [Crossref] [PubMed]
  91. L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.
  92. L. D. DiDomenico, “Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays,” Opt. Express23(24), A1398–A1417.
  93. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  94. C. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: Silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139 (1980).
    [Crossref]
  95. C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205 (1981).
    [Crossref]
  96. P. Berdahl, M. Martin, and F. Sakkal, “Thermal performance of radiative cooling panels,” Int. J. Heat Mass 26(6), 871–880 (1983).
    [Crossref]
  97. B. Orel, M. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
    [Crossref]
  98. C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
    [Crossref] [PubMed]
  99. T. Nilsson, G. A. Niklasson, and C.-G. Granqvist, “Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Proc. SPIE 1727, 249–261 (1992).
    [Crossref]
  100. T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
    [Crossref] [PubMed]
  101. S. Wu and M. Povinelli, “Solar heating of GaAs nanowire solar cells,” Opt. Express 23(24), A1363–A1372 (2015).
    [Crossref]
  102. K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic Materials, Structures and Devices for Reststrahlen Region Optics,” Opt. Express 23(24), A1373–A1387 (2015).

2015 (24)

S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015).
[Crossref]

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

P. Jurczak, A. Onno, K. Sablon, and H. Liu, “Efficiency of GaInAs thermophotovoltaic cells: the effects of incident radiation, light trapping and recombinations,” Opt. Express 23(19), A1208–A1219 (2015).
[Crossref] [PubMed]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
[Crossref] [PubMed]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref] [PubMed]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref] [PubMed]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref] [PubMed]

A. Didari and M. P. Mengüç, “Near-field thermal radiation transfer by mesoporous metamaterials,” Opt. Express 23(19), A1253–A1258 (2015).
[Crossref] [PubMed]

J. Buencuerpo, J. M. Llorens, P. Zilio, W. Raja, J. Cunha, A. Alabastri, R. P. Zaccaria, A. Martí, and T. Versloot, “Light-trapping in photon enhanced thermionic emitters,” Opt. Express 23(19), A1220–A1235 (2015).
[Crossref] [PubMed]

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015).
[Crossref] [PubMed]

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2,” Opt. Express 23(24), A1388–A1397 (2015).
[Crossref]

C. Liu, M. Kong, and B. Li, “Anomalous optical Anderson localization in mixed one dimensional photonic quasicrystals,” Opt. Express 23(19), A1297–A1308 (2015).
[Crossref] [PubMed]

M. Strojnik and G. Paez, “High-resolution bispectral imager at 1000 frames per second,” Opt. Express 23(19), A1259–A1269 (2015).
[Crossref] [PubMed]

S. C. Rowe, A. J. Groehn, A. W. Palumbo, B. A. Chubukov, D. E. Clough, A. W. Weimer, and I. Hischier, “Worst-case losses from a cylindrical calorimeter for solar simulator calibration,” Opt. Express 23(19), A1309–A1323 (2015).
[Crossref] [PubMed]

J. Foley, C. Ungaro, K. Sun, M. Gupta, and S. Gray, “Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications,” Opt. Express 23(24), A1373–A1387 (2015).
[Crossref]

J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa, “Hot electron plasmon-protected solar cell,” Opt. Express 23(19), A1087–A1095 (2015).
[Crossref] [PubMed]

T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
[Crossref] [PubMed]

S. Wu and M. Povinelli, “Solar heating of GaAs nanowire solar cells,” Opt. Express 23(24), A1363–A1372 (2015).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic Materials, Structures and Devices for Reststrahlen Region Optics,” Opt. Express 23(24), A1373–A1387 (2015).

2014 (9)

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of Near-Field Thermophotovoltaic Cells Enhanced with a Backside Reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

S. V. Boriskina and G. Chen, “Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. Press 314, 71–78 (2014).
[Crossref]

L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

2013 (8)

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
[Crossref]

A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
[Crossref] [PubMed]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

2012 (9)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
[Crossref]

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovolt. 2(3), 303–311 (2012).
[Crossref]

J. N. Munday, “The effect of photonic bandgap materials on the Shockley-Queisser limit,” J. Appl. Phys. 112(6), 064501 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20( S3), A366–A384 (2012).
[Crossref] [PubMed]

2011 (5)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19(22), 22024–22028 (2011).
[Crossref] [PubMed]

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

2010 (6)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

2009 (6)

A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

2008 (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

2006 (2)

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

2005 (1)

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[Crossref]

2004 (2)

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

2003 (3)

N. Harder and M. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82(20), 3544–3546 (2003).
[Crossref]

2002 (2)

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energ. Convers. 17(1), 130–142 (2002).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002).
[Crossref]

2000 (1)

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter 11(35), 6621–6633 (1999).
[Crossref]

1995 (1)

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

1994 (1)

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

1993 (1)

B. Orel, M. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

1992 (1)

T. Nilsson, G. A. Niklasson, and C.-G. Granqvist, “Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Proc. SPIE 1727, 249–261 (1992).
[Crossref]

1985 (1)

W. Spirkl and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[Crossref]

1983 (1)

P. Berdahl, M. Martin, and F. Sakkal, “Thermal performance of radiative cooling panels,” Int. J. Heat Mass 26(6), 871–880 (1983).
[Crossref]

1982 (1)

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

1981 (1)

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205 (1981).
[Crossref]

1980 (2)

C. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: Silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139 (1980).
[Crossref]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

1979 (1)

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

1961 (2)

E. R. G. Eckert and E. M. Sparrow, “Radiative heat exchange between surfaces with specular reflection,” Int. J. Heat Mass Transfer 3(1), 42–54 (1961).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Alabastri, A.

Alam, M. A.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
[Crossref]

Alderman, N. P.

L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.

Alivisatos, A. P.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Araghchini, M.

Ashmead, J. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Astratov, V. N.

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Babuty, A.

A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
[Crossref] [PubMed]

Badescu, V.

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[Crossref]

Bae, M.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Barnett, A. M.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Beard, M. C.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Ben-Abdallah, P.

K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015).
[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

Berdahl, P.

P. Berdahl, M. Martin, and F. Sakkal, “Thermal performance of radiative cooling panels,” Int. J. Heat Mass 26(6), 871–880 (1983).
[Crossref]

Bermel, P.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Biehs, S. A.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Biehs, S.-A.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Boriskina, S.

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

Boriskina, S. V.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

S. V. Boriskina and G. Chen, “Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. Press 314, 71–78 (2014).
[Crossref]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19(22), 22024–22028 (2011).
[Crossref] [PubMed]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Bozhevolnyi, S. I.

Braun, A.

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
[Crossref]

Bright, T. J.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of Near-Field Thermophotovoltaic Cells Enhanced with a Backside Reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Bronstein, N. D.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Buelow, R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Buencuerpo, J.

Burns, M. J.

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Canetta, C.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

Carminati, R.

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002).
[Crossref]

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Catchpole, K.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20( S3), A366–A384 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Challener, W. A.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Chan, W.

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chapuis, P. O.

A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
[Crossref] [PubMed]

Charles, P.

D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.

Chen, G.

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

S. V. Boriskina and G. Chen, “Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. Press 314, 71–78 (2014).
[Crossref]

L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014).
[Crossref]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82(20), 3544–3546 (2003).
[Crossref]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Chen, X. Y.

A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

Cheong, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Chiloyan, V.

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

Chirumamilla, M.

Cho, E.-C.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Cho, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Christensen, E. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Chubukov, B. A.

Chun, S.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Clough, D. E.

Coltrin, M. E.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Conibeer, G.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Corkish, R.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Cravalho, E. G.

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energ. Convers. 17(1), 130–142 (2002).
[Crossref]

Crawford, M. H.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Cui, Y.

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010).
[Crossref]

Cunha, J.

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Dagenais, M.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Danos, L.

L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.

De Sousa Meneses, D.

De Wilde, Y.

A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
[Crossref] [PubMed]

Didari, A.

DiDomenico, L. D.

L. D. DiDomenico, “Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays,” Opt. Express23(24), A1398–A1417.

Dionne, J.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

do Rosário, J. J.

Domingues, G.

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

Dorgan, V. E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Drevillon, J.

K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015).
[Crossref]

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2,” Opt. Express 23(24), A1388–A1397 (2015).
[Crossref]

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

Du, M.

D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.

Dyachenko, P. N.

Eckert, E. R. G.

E. R. G. Eckert and E. M. Sparrow, “Radiative heat exchange between surfaces with specular reflection,” Int. J. Heat Mass Transfer 3(1), 42–54 (1961).
[Crossref]

Eich, M.

Emery, K. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Eriksson, T. S.

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

Ezzahri, Y.

K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015).
[Crossref]

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2,” Opt. Express 23(24), A1388–A1397 (2015).
[Crossref]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Fang, L.

L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.

Fangsuwannarak, T.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Feng, K.

Ferry, V. E.

S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

Feuermann, D.

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
[Crossref]

Fischer, A. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Foley, J.

Francoeur, M.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

Gage, E. C.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Geil, R. D.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

Gershon, T.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Ghanekar, A.

Ghasemi, H.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

Gordon, J. M.

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
[Crossref]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Granqvist, C.

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205 (1981).
[Crossref]

C. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: Silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139 (1980).
[Crossref]

Granqvist, C. G.

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

Granqvist, C.-G.

T. Nilsson, G. A. Niklasson, and C.-G. Granqvist, “Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Proc. SPIE 1727, 249–261 (1992).
[Crossref]

Gray, A. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Gray, J. L.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
[Crossref]

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Gray, S.

Gray, S. K.

Green, M.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

N. Harder and M. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

Green, M. A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Greffet, J. J.

A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
[Crossref] [PubMed]

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

Greffet, J.-J.

E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002).
[Crossref]

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Groehn, A. J.

Guha, B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Gunde, M.

B. Orel, M. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Gupta, M.

Gupta, M. C.

Haas, A. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Hamam, R.

Harder, N.

N. Harder and M. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

Harder, N. P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Heinz, T. F.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

Hischier, I.

Hjortsberg, A.

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205 (1981).
[Crossref]

C. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: Silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139 (1980).
[Crossref]

Hoffman, A. J.

Hone, J.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Hsu, W.-C.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
[Crossref] [PubMed]

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Hu, L.

A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

Huang, X.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Huang, Y.

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
[Crossref] [PubMed]

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Ilic, O.

Imenes, A.

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

Jablan, M.

Jang, K. S.

L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

Jia, Z.-X.

Jiang, C.-W.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Joannopoulos, J.

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Joannopoulos, J. D.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20( S3), A366–A384 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Johnson, S. G.

Joulain, K.

K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015).
[Crossref]

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2,” Opt. Express 23(24), A1388–A1397 (2015).
[Crossref]

A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
[Crossref] [PubMed]

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002).
[Crossref]

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

Jurczak, P.

Karlicek, R. F.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Katz, E. A.

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
[Crossref]

Kayes, B. M.

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
[Crossref]

Kempa, K.

J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa, “Hot electron plasmon-protected solar cell,” Opt. Express 23(19), A1087–A1095 (2015).
[Crossref] [PubMed]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Khan, M. R.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
[Crossref]

Kildishev, A. V.

S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

Kim, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, P.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Kim, Y. S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Klein, A.

D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.

Koleske, D. D.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Kong, J.

Kong, M.

Kraemer, D.

L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014).
[Crossref]

Krainer, A.

B. Orel, M. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Kurtz, S. R.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovolt. 2(3), 303–311 (2012).
[Crossref]

Lany, S.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Laroche, M.

E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010).
[Crossref]

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

Lee, J.

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
[Crossref]

Lee, S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Lee, S. W.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Leib, E. W.

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, B.

Li, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Liew, K.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Lin, C. T.

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

Lin, K.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Lin, L.

Lipson, M.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Liu, B.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Liu, C.

Liu, H.

Llorens, J. M.

Loomis, J.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Loomis, J. J.

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

Lundstrom, M. S.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
[Crossref]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Manor, A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Maris, H. J.

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

Markvart, T.

L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.

Martí, A.

Martin, M.

P. Berdahl, M. Martin, and F. Sakkal, “Thermal performance of radiative cooling panels,” Int. J. Heat Mass 26(6), 871–880 (1983).
[Crossref]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

Mayo, J.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

McCambridge, J. D.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

McCollum, T. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

McEnaney, K.

L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014).
[Crossref]

Mengüç, M. P.

A. Didari and M. P. Mengüç, “Near-field thermal radiation transfer by mesoporous metamaterials,” Opt. Express 23(19), A1253–A1258 (2015).
[Crossref] [PubMed]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

Merlo, J. M.

Messina, R.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

Michel, J.

S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

Miller, O. D.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovolt. 2(3), 303–311 (2012).
[Crossref]

Mills, D.

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

Moore, D. T.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002).
[Crossref]

Munday, J. N.

T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
[Crossref] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

J. N. Munday, “The effect of photonic bandgap materials on the Shockley-Queisser limit,” J. Appl. Phys. 112(6), 064501 (2012).
[Crossref]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Murray, C.

D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Narayanaswamy, A.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82(20), 3544–3546 (2003).
[Crossref]

Naughton, M. J.

J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa, “Hot electron plasmon-protected solar cell,” Opt. Express 23(19), A1087–A1095 (2015).
[Crossref] [PubMed]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Niklasson, G. A.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

T. Nilsson, G. A. Niklasson, and C.-G. Granqvist, “Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Proc. SPIE 1727, 249–261 (1992).
[Crossref]

Nilsson, T.

T. Nilsson, G. A. Niklasson, and C.-G. Granqvist, “Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Proc. SPIE 1727, 249–261 (1992).
[Crossref]

Nilsson, T. M. J.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

Nuzzo, R. G.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Okada, Y.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Onno, A.

Orel, B.

B. Orel, M. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Otey, C.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Paez, G.

Palumbo, A. W.

Park, C.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Park, S.-N.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Park, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Pedersen, K.

Pendry, J. B.

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter 11(35), 6621–6633 (1999).
[Crossref]

Petrov, A. Y.

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Pink, E.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Podolskiy, V. A.

Poitras, C. B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Pop, E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Povinelli, M.

Puzzer, T.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Raja, W.

Raman, A.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Richards, B.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Ries, H.

W. Spirkl and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Roberts, A. S.

Rogers, J. A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Rose, A. H.

Rotschild, C.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Rottmayer, R. E.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Rousseau, B.

Rousseau, E.

E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010).
[Crossref]

Rowe, S. C.

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Ryoo, J. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Sablon, K.

Safi, T. S.

Sakkal, F.

P. Berdahl, M. Martin, and F. Sakkal, “Thermal performance of radiative cooling panels,” Int. J. Heat Mass 26(6), 871–880 (1983).
[Crossref]

Salleo, A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Schmidt, G. R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Schneider, G. A.

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Schwartz, R. J.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Senkevich, J. J.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Shalav, A.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Shchegrov, A. V.

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

Shen, S.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

Sheng, X.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Shi, J.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Shim Yoo, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Shuai, Y.

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20( S3), A366–A384 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Sorger, V. J.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Sparrow, E. M.

E. R. G. Eckert and E. M. Sparrow, “Radiative heat exchange between surfaces with specular reflection,” Int. J. Heat Mass Transfer 3(1), 42–54 (1961).
[Crossref]

Spirkl, W.

W. Spirkl and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[Crossref]

Steiner, M. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Störmer, M.

Strauch, D. J. E.

D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.

Streyer, W.

Strojnik, M.

Su, J.

Subramania, G. S.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Sun, H.

Sun, K.

Suryawanshi, C. N.

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

Swanson, R. M.

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

Tahersima, M.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Takacs, L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Tan, H.-P.

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Thilsing-Hansen, K.

Tong, J.

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

Tong, J. K.

S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
[Crossref] [PubMed]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Trupke, T.

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Tsao, J. Y.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Tschikin, M.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Ungaro, C.

Unger, B. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

Van Meter, J.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Versloot, T.

Vossmeyer, T.

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, G. T.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wang, K. X.

Wang, L. P.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of Near-Field Thermophotovoltaic Cells Enhanced with a Backside Reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

Wang, X.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
[Crossref]

Wanlass, M. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Wasserman, D.

Weimer, A. W.

Weinstein, L.

L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014).
[Crossref]

Weinstein, L. A.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Weller, H.

Whale, M. D.

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energ. Convers. 17(1), 130–142 (2002).
[Crossref]

Wierer, J. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wilcox, J. R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Wisser, M. D.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Wu, D. M.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Wu, S.

Wu, X.

Wurfel, P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Xiang Yeng, Y.

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Xu, L.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Xu, S.-D.

Xu, Y.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Yablonovitch, E.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovolt. 2(3), 303–311 (2012).
[Crossref]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Yang, C.

Yao, Y.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Yeng, Y.

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

Yerci, S.

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

Yoon, D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010).
[Crossref]

Zaccaria, R. P.

Zakutayev, A.

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Zayats, A. V.

Zhang, Z. M.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of Near-Field Thermophotovoltaic Cells Enhanced with a Backside Reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

Zheng, Y.

Zhong, Y.

Zhou, J.

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

Zhu, J.

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010).
[Crossref]

Zhu, L.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

Zilio, P.

ACS Appl. Mater. Interfaces (1)

C. N. Suryawanshi and C. T. Lin, “Radiative cooling: lattice quantization and surface emissivity in thin coatings,” ACS Appl. Mater. Interfaces 1(6), 1334–1338 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent visible-opaque fabrics for wearable personal thermal management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. 23(10), 1272–1276 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

An. Rev. Heat Transf. (1)

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Selective solar absorbers,” An. Rev. Heat Transf. 15(15), 231–254 (2012).
[Crossref]

Appl. Phys. Lett. (5)

K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, “Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor,” Appl. Phys. Lett. 106(13), 133505 (2015).
[Crossref]

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82(20), 3544–3546 (2003).
[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

C. Granqvist and A. Hjortsberg, “Surfaces for radiative cooling: Silicon monoxide films on aluminum,” Appl. Phys. Lett. 36(2), 139 (1980).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Narayanaswamy, S. Shen, L. Hu, X. Y. Chen, and G. Chen, “Breakdown of the Planck blackbody radiation law at nanoscale gaps,” Appl. Phys., A Mater. Sci. Process. 96(2), 357–362 (2009).
[Crossref]

Energy Environ. Sci. (1)

A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, “Photovoltaic performance enhancement by external recycling of photon emission,” Energy Environ. Sci. 6(5), 1499 (2013).
[Crossref]

IEEE J. Photovolt. (2)

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE J. Photovolt. 2(3), 303–311 (2012).
[Crossref]

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Shockley–Queisser Limit,” IEEE J. Photovolt. 3(2), 737–744 (2013).
[Crossref]

IEEE Trans. Energ. Convers. (1)

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energ. Convers. 17(1), 130–142 (2002).
[Crossref]

Int. J. Heat Mass (1)

P. Berdahl, M. Martin, and F. Sakkal, “Thermal performance of radiative cooling panels,” Int. J. Heat Mass 26(6), 871–880 (1983).
[Crossref]

Int. J. Heat Mass Transfer (1)

E. R. G. Eckert and E. M. Sparrow, “Radiative heat exchange between surfaces with specular reflection,” Int. J. Heat Mass Transfer 3(1), 42–54 (1961).
[Crossref]

J. Appl. Phys. (8)

W. Spirkl and H. Ries, “Solar thermophotovoltaics: an assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[Crossref]

C. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205 (1981).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

J. N. Munday, “The effect of photonic bandgap materials on the Shockley-Queisser limit,” J. Appl. Phys. 112(6), 064501 (2012).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980).
[Crossref]

P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, “Near-field heat transfer mediated by surface wave hybridization between two films,” J. Appl. Phys. 106(4), 044306 (2009).
[Crossref]

M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

J. Heat Transfer (1)

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of Near-Field Thermophotovoltaic Cells Enhanced with a Backside Reflector,” J. Heat Transfer 136(6), 062701 (2014).
[Crossref]

J. Opt. (1)

L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina, and G. Chen, “Enhanced absorption of thin-film photovoltaic cells using an optical cavity,” J. Opt. 17(5), 055901 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

J. B. Pendry, “Radiative exchange of heat between nanostructures,” J. Phys. Condens. Matter 11(35), 6621–6633 (1999).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010).
[Crossref]

J. Vac. Sci. Technol. B (1)

V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31(1), 011802 (2013).
[Crossref]

Mater. Sci. Eng. Rep. (1)

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng. Rep. 70(3-6), 330–340 (2010).
[Crossref]

Mater. Today (1)

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[Crossref]

Microscale Therm. Eng. (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6(3), 209–222 (2002).
[Crossref]

Nano Lett. (4)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[Crossref] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Opt. Commun. Press (1)

S. V. Boriskina and G. Chen, “Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons,” Opt. Commun. Press 314, 71–78 (2014).
[Crossref]

Opt. Express (21)

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20( S3), A366–A384 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).

P. Jurczak, A. Onno, K. Sablon, and H. Liu, “Efficiency of GaInAs thermophotovoltaic cells: the effects of incident radiation, light trapping and recombinations,” Opt. Express 23(19), A1208–A1219 (2015).
[Crossref] [PubMed]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express 19(22), 22024–22028 (2011).
[Crossref] [PubMed]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref] [PubMed]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref] [PubMed]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref] [PubMed]

A. Didari and M. P. Mengüç, “Near-field thermal radiation transfer by mesoporous metamaterials,” Opt. Express 23(19), A1253–A1258 (2015).
[Crossref] [PubMed]

J. Buencuerpo, J. M. Llorens, P. Zilio, W. Raja, J. Cunha, A. Alabastri, R. P. Zaccaria, A. Martí, and T. Versloot, “Light-trapping in photon enhanced thermionic emitters,” Opt. Express 23(19), A1220–A1235 (2015).
[Crossref] [PubMed]

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015).
[Crossref] [PubMed]

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2,” Opt. Express 23(24), A1388–A1397 (2015).
[Crossref]

C. Liu, M. Kong, and B. Li, “Anomalous optical Anderson localization in mixed one dimensional photonic quasicrystals,” Opt. Express 23(19), A1297–A1308 (2015).
[Crossref] [PubMed]

T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
[Crossref] [PubMed]

S. Wu and M. Povinelli, “Solar heating of GaAs nanowire solar cells,” Opt. Express 23(24), A1363–A1372 (2015).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic Materials, Structures and Devices for Reststrahlen Region Optics,” Opt. Express 23(24), A1373–A1387 (2015).

J. Foley, C. Ungaro, K. Sun, M. Gupta, and S. Gray, “Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications,” Opt. Express 23(24), A1373–A1387 (2015).
[Crossref]

M. Strojnik and G. Paez, “High-resolution bispectral imager at 1000 frames per second,” Opt. Express 23(19), A1259–A1269 (2015).
[Crossref] [PubMed]

S. C. Rowe, A. J. Groehn, A. W. Palumbo, B. A. Chubukov, D. E. Clough, A. W. Weimer, and I. Hischier, “Worst-case losses from a cylindrical calorimeter for solar simulator calibration,” Opt. Express 23(19), A1309–A1323 (2015).
[Crossref] [PubMed]

J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa, “Hot electron plasmon-protected solar cell,” Opt. Express 23(19), A1087–A1095 (2015).
[Crossref] [PubMed]

Opt. Photonics News (1)

S. V. Boriskina, J. K. Tong, V. E. Ferry, J. Michel, and A. V. Kildishev, “Breaking the limits of optical energy conversion,” Opt. Photonics News 26, 50–53 (2015).

Optica (1)

Photonics (1)

S. Boriskina, J. Tong, Y. Huang, J. Zhou, V. Chiloyan, and G. Chen, “Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films,” Photonics 2(2), 659–683 (2015).
[Crossref]

Phys. Rev. A (1)

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. J. Loomis and H. J. Maris, “Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B Condens. Matter 50(24), 18517–18524 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, “Blackbody spectrum revisited in the near field,” Phys. Rev. Lett. 110(14), 146103 (2013).
[Crossref] [PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Proc. IEEE (2)

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (4)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Nilsson, G. A. Niklasson, and C.-G. Granqvist, “Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Proc. SPIE 1727, 249–261 (1992).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Renew. Energy (1)

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[Crossref]

Sci. Rep. (2)

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep. 5, 10661 (2015).
[Crossref] [PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

N. Harder and M. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Sol. Energy (3)

L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen, “Optical cavity for improved performance of solar receivers in solar-thermal systems,” Sol. Energy 108, 69–79 (2014).
[Crossref]

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

B. Orel, M. Gunde, and A. Krainer, “Radiative cooling efficiency of white pigmented paints,” Sol. Energy 50(6), 477–482 (1993).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

Thin Solid Films (2)

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectivity IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, 654–662 (2006).
[Crossref]

Other (8)

L. Fang, K. S. Jang, N. P. Alderman, L. Danos, and T. Markvart, “Photon tunneling into a single-mode planar silicon waveguide,” Opt. Express23(24), A1528–A1532.

L. D. DiDomenico, “Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays,” Opt. Express23(24), A1398–A1417.

D. J. E. Strauch, A. Klein, P. Charles, C. Murray, and M. Du, “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications (AIAA),” in Proceedings of the 13th International Energy Conversion Engineering Conference (2015) p. 4114.

M. W. Wanlass, “Recent Advances in Low-Bandgap, InP-Based GaInAs/InAsP Materials and Devices for Thermophotovoltaic (TPV) Energy Conversion,” AIP Conf. Proc. 738, 427–435 (2004).

S. V. Boriskina, M. A. Green, K. Catchpole, E. Yablonovitch, M. C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M. Tahersima, V. J. Sorger, M. J. Naughton, K. Kempa, M. Dagenais, Y. Yao, L. Xu, X. Sheng, N. D. Bronstein, J. A. Rogers, A. P. Alivisatos, R. G. Nuzzo, D. M. Wu, M. D. Wisser, A. Salleo, J. Dionne, J. M. Gordon, P. Bermel, J.-J. Greffet, I. Celanovic, M. Soljacic, A. Manor, C. Rotschild, A. Raman, L. Zhu, S. Fan, and G. Chen, “Roadmap on optical energy conversion,” J. Opt.submitted.

T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Green Energy and Technology (Springer, 2011).

S. V. Boriskina, J. Tong, L. Weinstein, W.-C. Hsu, Y. Huang, and G. Chen, “Thermal Emission Shaping and Radiative Cooling with Thermal Wells, Wires and Dots,” in Advanced Photonics 2015 (OSA, 2015), p. IT2A.3.

O. D. Miller, S. G. Johnson, and A. W. Rodriguez, “Shape-independent limits to near-field radiative heat transfer,” http://arxiv.org/abs/1504.01323 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1 Energy balance of a passive radiative cooling device. A special thermo-photonic material system needs to be able to radiate efficiently in the mid-infrared (blue arrow), and to repel sunlight and atmosphere’s radiation (wavy red arrows), as well as to resist the convection and conduction heat gain from air (straight red arrows).

Metrics