Abstract

An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm2 SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE11, TE21, TE31, TE41, TM11, TM12) in a 1.4 × 0.22μm2 multimode SOI waveguide and the six modes (like the LP01, LP11a, LP11b modes in a few-mode fiber) in a 3 × 3μm2 SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.

© 2015 Optical Society of America

1. Introduction

In order to improve the link capacity of optical interconnects, currently it is becoming important to develop some (de)multiplexing technology to enhance the capacity for single wavelength carrier. As a promising option, the mode-division-multiplexing (MDM) technology has been attracting lots of attention in recent years [1]. In this case, multiple guided-modes in a multimode bus waveguide/fiber are utilized simultaneously to enable multiple channels carrying different data in parallel while all mode-channels share the same wavelength emitted from the same laser diode, which lowers the cost greatly [2–4 ]. Particularly, for on-chip optical networks, optical signals propagate along planar optical waveguides within the chip and the guided-modes carrying different data could be converted, transferred, as well as (de)multiplexed efficiently by introducing some specific photonic integrated circuits (PICs), which is not difficult with the mature design and fabrication technologies currently. The key device for MDM systems is mode (de)multiplexers for the realization of mode conversion and (de)multiplexing [5]. In the past years, various on-chip mode (de)multiplexers have been developed successfully by using multimode interference (MMI) couplers [6], adiabatic mode-evolution couplers [7,8 ], asymmetrical Y-junctions [9–11 ], cascaded Mach-Zehnder Interferometers (MZI) [12], and asymmetrical directional-couplers (ADCs) [13–18 ]. These mode (de)multiplexers were realized by using a very thin silicon-on-insulator (SOI) wafer which is singlemode in the vertical direction. In this case, the multimode bus waveguide is designed to support multiple modes in the lateral direction by making the silicon core region large enough [7–18 ]. For example, a 4-channel mode (de)multiplexer based on cascaded ADCs [14] was demonstrated to deal with the TM11, TM21, TM31, and TM41 modes. The field profile for the TMm 1 mode has m peaks in the lateral direction and only one peak in the vertical direction, as shown in Fig. 1(a) . These developed mode (de)multiplexers can even work together with polarization-division-multiplexing (PDM) as well as wavelength-division-multiplexing (WDM) devices to enable a kind of multi-dimensional hybrid (de)multiplexing technology [19–23 ]. These recent progresses makes the MDM technology more and more useful and attractive for ultra-high capacity optical networks.

 figure: Fig. 1

Fig. 1 The guided-modes in (a) a multimode SOI nanowire waveguide; (b) few-mode fiber (LP01, LP11a, LP11b modes).

Download Full Size | PPT Slide | PDF

As it well known, MDM has also been proposed to enhance the capacity of optical fiber communications for a long time [2]. However, it is very difficult to handle many higher-order modes in a traditional multimode optical fiber. In recent years, people have developed a modified MDM link with few-mode fibers, in which only a few modes are supported so that the mode-handling becomes simplified. Currently, the few-mode fiber supporting six guided-modes is becoming one of the most popular candidates [24,25 ]. The six guided-modes are the LP01, LP11a, LP11b modes [see Fig. 1(b)] for TM- and TE-polarizations. For the fiber case, it is still a big challenge to realize mode (de)multiplexers. Most mode (de)multiplexers for few-mode fiber systems were developed with some complicated free-space optical setups [26–28 ], e.g., including two beam splitters, two lens and two phase plates [26]. Another possible approach is using a long period fiber grating to convert a LP01 mode to LP11 mode and the converted modes are then (de)multiplexed with free-space couplers or fiber couplers [29–31 ]. Apparently these setups are usually bulky and require high-precision alignments for the elements. Moreover, a large insertion loss is introduced due to the usage of beam splitters for combining light beams, especially when many modes are involved. All-fiber mode multiplexers based on mode-selective couplers were also reported to (de)multiplex the LP modes [32,33 ]. However, the fabrication for all-fiber mode multiplexers is complicated and one has to control the parameters (e.g., the taper diameter, the length of the coupling region, etc.) very carefully. Therefore, it is still desired to develop some compact integrated-type mode (de)multiplexers for few-mode fiber systems. In [34], a smart silicon PIC including five two-dimensional grating couplers and four thermal-tunable phase-shifters was demonstrated to realize the mode-multiplexing functionalities for all the six mode-channels in a few-mode fiber. The problem is that such a silicon PIC has a complex configuration as well as large excess loss.

As mentioned above, various on-chip mode (de)multiplexers have been developed by using MMI couplers, directional couplers, Y-junctions as demonstrated in [6–18 ]. It will be very helpful if these on-chip mode (de)multiplexers are available for few-mode fiber systems. However, they are designed to deal with the higher-order modes in the lateral direction, none of which is compatible with the LP11a/b higher-order mode [whose field profile has two peaks in the vertical direction, as shown in Fig. 1(a) and 1(b)] in few-mode fibers. This mode incompatibility causes that these on-chip mode (de)multiplexers reported in [6–18 ] cannot be used for few-mode fiber systems directly. In [35], Hanzawa et al. designed and fabricated a PLC (planar lightwave circuit)-based mode multi/demultiplexer for the LP01, LP11a, and LP11b modes by using an asymmetric mode coupler and an LP11 mode rotator. In the present paper we propose and design an inverse taper to realize efficient mode conversion from six guided-modes of a multimode SOI nanowire waveguide to the six guided-modes which are compatible with the LP01, LP11a, LP11b modes in few-mode fibers. As it well known, an inverse taper has been demonstrated and used for the efficient coupling between an SOI nanowire and a singlemode optical fiber [36–39 ], which works for the fundamental mode only. In contrast, the inverse taper proposed in this paper is to enable the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter consists of an SOI inverse taper buried in a large SiN strip waveguide. As an example, an inverse taper is designed optimally to enable the conversion between the six modes (i.e., TE11, TE21, TE31, TE41, TM11, TM12) in a 1.4 × 0.22μm2 multimode SOI waveguide and the six modes (like the LP01, LP11a, LP11b modes in a few-mode fiber) in a 3 × 3μm2 SiN strip waveguide. With the inverse taper designed optimally, one has a mode conversion efficiency of >95.6% and a mode extinction ratio of <0.5% for all the six modes (including the fundamental mode as well as the higher-order modes). In this way, multimode silicon nanophotonic integrated circuits [40] will be available to work together with few-mode fibers in the future.

2. Principle and structure design

Figure 2(a) shows the schematic configuration of the present mode converter based on an inverse taper for multimode silicon photonic integrated circuits. This mode converter consists of an SOI inverse taper buried in a SiN strip which is covered by a SiO2 upper-cladding [see the cross sections at different longitudinal positions shown in Fig. 2(b)-2(d)]. This looks similarly to the inverse tapers reported in [36–39 ] for singlemode SOI nanowires. One should note that only the fundamental mode conversion was considered previously. Here we need realize low-loss mode conversion for not only the fundamental mode but also the higher-order modes, and consequently the situation becomes very complicated. Here this SiN strip waveguide, whose cross section is shown in Fig. 2(b), is designed to support at least six guided-modes (which are compatible with those six modes supported in a few-mode fiber) by choosing the width w SiN and the height h SiN of the SiN core appropriately. The SOI inverse taper is gradually tapered from a silicon nano-tip [w tip, see Fig. 2(c)] to a silicon mulitmode waveguide [w Si, see Fig. 2(d)]. Theoretically speaking, it is ideal to make the width of the nano-tip to be zero so that there is not any facet reflection as well as mode mismatching losses. However, it is impossible almost in reality due to the limitation of the feature seize of the fabrication processes. Nevertheless, the nano-tip should be narrow enough to achieve low-loss connection from the SiN strip waveguide (without any silicon core) to the silicon waveguide.

 figure: Fig. 2

Fig. 2 (a) Schematic configuration of the present mode converter based on an inverse taper for multimode silicon photonic integrated circuits; (b) cross section of a SiN strip waveguide at the end connecting with a few-mode fiber; (c) cross section at the end of the silicon nano-tip; (d) cross section of the multimode silicon waveguide.

Download Full Size | PPT Slide | PDF

In this paper, we assume that the refractive indices of Si, SiN and SiO2 are n Si = 3.455, n SiN = 2.0, and n SiO2 = 1.445, respectively, when operating at the wavelength range around λ = 1550nm. For the SiN strip waveguide, we choose w SiN = h SiN = 3 μm so that the six guided-modes (corresponding to those six LP modes supported in a few-mode fiber) are supported, as shown in Fig. 3 . Here one should note that the growth of this 3μm-thick SiN thin film might not be easy due to tensile stress [41]. Fortunately, thick low-loss SiN layers have been grown by plasma-enhanced chemical vapour deposition [42] and low-pressure chemical vapour deposition [41], which will be helpful for the fabrication of the present mode converter with a SiN strip waveguide. It is also possible to choose other material with similar refractive index like Ti2O5 (n = 2.35) [43] when needed.

 figure: Fig. 3

Fig. 3 The six guided-modes supported by the SiN strip waveguide (like the LP01, LP11a, LP11b modes in a few-mode fiber [24]).

Download Full Size | PPT Slide | PDF

As an example, here we consider an SOI wafer with a 220nm-thick top silicon layer as it is very popular for silicon nanophotonic integrated circuits [44]. In order to determine how small the tip width should be, first we calculate all the six mode coupling between the SiN strip waveguide [see Fig. 2(b)] and the SiN waveguide with a silicon nano-tip [see Fig. 2(c)] for all the six modes. Figure 4 shows the calculated coupling ratio from the lunched i-th mode in the SiN strip to the i-th mode in the SiN waveguide with a silicon nano-tip (i = 1, …, 6). From this figure, it can be seen that the dependences on the tip width are different for different modes. For example, in order to achieve a coupling ratio of >99%, modes #1, #2, and #5 can tolerate a tip width as large as 0.11μm. However, for modes #4, and #6, the tip width should be as small as 0.045μm, which is pretty difficult for the fabrication. According to the feature seize of the fabrication processes [36–39 ], here we choose the tip width w tip as 60nm. In this case, all the six mode coupling ratios between the SiN strip waveguide [see Fig. 2(b)] and the silicon nano-tip waveguide [see Fig. 2(c)] are higher than 98.4%, which indicates that the mode coupling loss is negligible.

 figure: Fig. 4

Fig. 4 The coupling ratio of the i-th mode between the SiN strip waveguide [see Fig. 2(b)] and the SiN waveguide with a silicon nano-tip [see Fig. 2(c)] as the tip width w tip varies from 0.03μm to 0.15μm. i = 1, …, 6.

Download Full Size | PPT Slide | PDF

Then it is desired to efficiently convert the guided-modes of the silicon nano-tip waveguide to the guided-modes of the silicon mulitmode waveguide through an optimally designed inverse taper which varies the silicon core width from w tip to w Si. In order to design the inverse taper appropriately, first we give a detailed analysis for the guided-modes supported in the inverse taper as the silicon core width w Si varies. A finite-difference method (FDM) mode-solver with the grid size of ∆x = 20nm and ∆y = 20nm is used for the calculation of the mode field profiles as well as the effective indices for all guided-modes. Figure 5(a) shows the calculated effective index n eff for the six lowest-order modes when the core width varies from 0.05μm to 1.6μm. Figure 5(b) and the inset in it show the enlarged view so that those guided-modes whose effective indices are close can be distinguished.

 figure: Fig. 5

Fig. 5 (a) The calculated effective indices for the guided-modes of silicon waveguide [shown in Fig. 2(d)] as the silicon core width w Si varies from 50nm to ~1.6μm; (b) the enlarged view for the part of 1.92<n eff<1.98.

Download Full Size | PPT Slide | PDF

From Fig. 5(a)-5(b), it can be seen that there are some special regions locating around w Si = w Si0 (e.g., w Si0 = 0.572μm, 0.73μm, …) remarked by the dotted-circles. In these marked regions, the two curves for the i-th mode and the j-th mode come to be close while these two close curves keep anti-crossing and there is a small gap between them. These regions with gaps indicate that there is mode hybridization happening and the electrical-field components Ex and Ey are comparable for the modes (see the insets). The mode hybridization is due to the vertical asymmetry of the cross section of the optical waveguide, which is similar to those reported previously [45,46 ]. It is well known that mode conversion will happen when light propagates in an adiabatic taper whose end-widths w 1 and w 2 are chosen to be w 1<w Si0<w 2, where w Si0 is the specific waveguide width for the mode hybridization region. For example, for the region around w Si0 = 0.73μm, when choosing w 1 = 0.6μm and w 2 = 0.8μm, the mode conversion from the TM11 mode to the TE21 mode happens when light propagates along this taper if the taper is long enough to be adiabatic. Similar phenomena for the mode conversion have also been observed theoretically and experimentally in other SOI nanowires previously [45,46 ]. Figure 6(a) shows the field profiles for all the guided-modes (mode #1~6) when w Si = 60nm. It can be seen that these six modes are similar to those six modes supported in the SiN waveguide [shown in Fig. 3(a)-3(f)]. As indicated by Fig. 5(a), these six modes will then be converted to the corresponding guided-modes [i.e., the TE11, TE21, TE31, TM11, TE41, and TM21 modes shown in Fig. 6(b)] in the multimode silicon waveguide, when the silicon width w Si of inverse taper varies from 60nm to ~1.6μm slowly. On the other hand, a compact inverse taper is desired to save physical space. Therefore, it is very important to determine how slow the taper variation could be. Definitely a non-linear inverse taper is preferred to be compact. Since there are six modes involved in the present case, it can be imaged that the current situation is more much complicated than the conventional inverse taper working for the fundamental mode only.

 figure: Fig. 6

Fig. 6 The six lowest guided-modes in the SOI nanowire waveguide when (a) w Si = 60nm; (b) w Si = 1.4μm.

Download Full Size | PPT Slide | PDF

When trying to have an optimal design for the inverse taper, we notice that there are some mode-hybridization regions, which should be considered carefully for the taper design [45]. In order to locate these mode hybridization regions, we calculate a hybridization ratio γ defined by

γx=S|Ex2|dxdyS|Ex2|dxdy+S|Ey2|dxdy,
where Ex and Ey are x-component and y-component of the electrical field for any given guided-mode. For an ideal TE mode, the x-component Ex is much significant than the y-component Ey and consequently one has γx close to 100%. In contrast, for an ideal TM mode, one will have γx≈0. When the guided-mode becomes hybridized, one has 0<γx<1 because the components Ex and Ey are comparable. Figure 7 shows the calculated ratios γx of all the six guided-modes as the waveguide width w Si varies. From Fig. 7, it can be seen very clearly that the curves for the ratios γx of some guided-modes have a transition between 100% and 0 in the regions around w co = 0.572, 0.73, 0.83, 0.99, and 1.29μm, where the mode hybridization regions locate. In these regions, the hybridization modes have comparable x-component and y-component of the electrical field. According to our previous paper for the design of adiabatic tapers [45,46 ], the taper should varies very slowly around the mode hybridization region. When light propagates along such an adiabatic taper, the

 figure: Fig. 7

Fig. 7 The calculated hybridization ratio γx = Ex 2/(Ex 2 + Ey 2) for an SOI nanowire waveguide as the silicon core width w Si varies from 50nm to ~1.6μm.

Download Full Size | PPT Slide | PDF

As shown in Fig. 5(a) and Fig. 7, the mode evolution is very complicated when the waveguide width varies from 50nm to 1.6μm. In order to simplify the taper design and realize a compact inverse taper, we divide the whole taper into a series of cascaded linearly tapered segments whose widths w Si are defined by wi 1<w Si< wi 2, where wi 1, and wi 2 are the minimal value and the maximal value for the width of the i-th segment. In this way, it becomes easy to design these segments optimally one by one. For the i-th segment with given widths (wi 1 and wi 2), we calculate the mode excitation ratio ηpq for the q-th guided-modes at the output end of the i-th segment when the p-th guided-mode is launched at the input end of the i-th segment. Here the mode excitation ratio ηpq is defined as the power percentage of the q-th guided-mode at the output end when the p-th guided mode is launched at the input end of the i-th segment. From the dependence of the mode excitation ratio ηpq on the length Li of the i-th segment, one can determine the minimal length Li , p _0 for guaranteeing a conversion efficiency of >99% when the p-th guided-mode is launched. Definitely the designed taper for the i-th segment is required to work for all the six guided-modes (p = 1, 2, ..., 6) launched at the input end. Therefore, finally the length Li should be chosen as the maximum of all the lengths Li , p _0 (p = 1, 2, ..., 6), i.e., Li = max(Li , p _0).

For the present case, the inverse taper is divided into 15 segments whose widths (wi 1, wi 2) are chosen according to the locations of the mode-hybridization regions, and a commercial software (FIMMPROP, Photon Design, UK) employing an eigenmode expansion and matching method [47] is used to simulate the light propagation in the present structure. Here we monitor the mode excitation ratio ηjq, which gives the power percentage of the q-th guided-mode at the output end when the j-th guided mode is launched at the input end of the i-th segment. Figure 8(a)-8(o) show the calculation mode excitation ratio ηjq when the j-th guided-mode is launched at the input end of the i-th segment, i = 1, ..., 15, respectively. In order to make the figure readable, here we only show the result when it is launched with the j-th guided-mode which needs the longest taper length to guarantee a mode excitation ratio of ηjq>99% for the desired mode. The results shown in Figs. 8(a)-8(o) give the calculated mode excitation ratio ηjq (q = 1, 2, ..., 6) for the cases of (wi 1, wi 2, j) = (0.06μm, 0.1μm, 3), (0.1μm, 0.2μm, 3), (0.2μm, 0.3μm, 3), (0.3μm, 0.4μm, 4), (0.4μm, 0.568μm, 6), (0.578μm, 0.67μm, 6), (0.67μm, 0.78μm, 6), (0.78μm, 0.81μm, 4), (0.81μm, 0.84μm, 4), (0.84μm, 0.94μm, 4), (0.94μm, 1.08μm, 5), (1.08μm, 1.24μm, 4), (1.24μm, 1.27μm, 6), (1.27μm, 1.32μm, 6), and (1.32μm, 1.4μm, 6), respectively.

 figure: Fig. 8

Fig. 8 The calculated mode excitation ratio ηjq of all the guided-modes (q = 1, 2, ...) when the j-th guided mode is launched at the input end of the i-th segment when (a) i = 1, wi 1 = 0.06μm, wi 2 = 0.1μm, and j = 3; (b) i = 2, wi 1 = 0.1μm, wi 2 = 0.2μm, and j = 3; (c) i = 3, wi 1 = 0.2μm, wi 2 = 0.3μm, and j = 3; (d) i = 4, wi 1 = 0.3μm, wi 2 = 0.4μm, and j = 4; (e) i = 5, wi 1 = 0.4μm, wi 2 = 0.568μm, and j = 6; (f) i = 6, wi 1 = 0.578μm, wi 2 = 0.67μm, and j = 6; (g) i = 7, wi 1 = 0.67μm, wi 2 = 0.78μm, and j = 6; (h) i = 8, wi 1 = 0.78μm, wi 2 = 0.81μm, and j = 4; (i) i = 9, wi 1 = 0.81μm, wi 2 = 0.84μm, and j = 4; (j) i = 10, wi 1 = 0.84μm, wi 2 = 0.94μm, and j = 4; (k) i = 11, wi 1 = 0.94μm, wi 2 = 1.08μm, and j = 5; (l) i = 12, wi 1 = 1.08μm, wi 2 = 1.24μm, and j = 4; (m) i = 13, wi 1 = 1.24μm, wi 2 = 1.27μm, and j = 6; (n) i = 14, wi 1 = 1.27μm, wi 2 = 1.32μm, and j = 6; (o) i = 15, wi 1 = 1.32μm, wi 2 = 1.4μm, and j = 6.

Download Full Size | PPT Slide | PDF

From Fig. 8(a)-8(o), one can easy determine the length of the i-th segment as Li = 270, 180, 126, 10, 170, 20, 60, 85, 350, 250, 375, 10, 80, 300, 15μm for i = 1, ..., 15, respectively, to guarantee a mode excitation ratio of ηjq>99% for the desired guided-mode. Meanwhile, the mode excitation ratios for the undesired modes are ηjq<1%. The parameters are summarized as shown in Table 1 . By combining all of these designed segments, one has an nonlinearly tapered structure as shown in Fig. 9 . Fimmprop tool is used to simulate the light propagation in the whole structure when different modes are launched at the input end and evaluate the mode excitation ratio ηjq in the designed nonlinear inverse taper. The Fimmprop simulation shows the present inverse taper cannot enable mode excitation ratios ηjq for all the desired modes to be sufficiently high as required (e.g., 99%) and there are some notable undesired mode excitation. The reason is that there are some accumulated mode conversions when all the segments are cascaded.

Tables Icon

Table 1. The determined parameters (wi1, wi2, Li) for all the segments of the inverse taper.

 figure: Fig. 9

Fig. 9 Top view of the designed inverse taper with 15 segments for the mode converter.

Download Full Size | PPT Slide | PDF

As it well known, one can improve the mode excitation ratio for the desired mode when the taper is long enough. Therefore, we lengthen all the segments for the inverse taper as Li' = ρLi, where ρ is the scale factor (ρ≥1), L i is the original length given in Table 1 for the i-th segment. Figure 10(a)-10(e) respectively show the calculated mode excitation ratios of all the guided-mode when the j-th guided-mode (j = 1, 2, 3, 4, 5, and 6) is launched at the input end of the inverse taper as the scale factor ρ increases from 1.0 to 5. From this figure, it can be seen that the inverse taper with ρ = 1works very well when the first, second, 5-th, and 6-th mode is launched even. The desired mode excitation ratio is higher than 94% while the mode excitation ratio for any other undesired mode is lower than 1.4%. In contrast, when the 3rd mode or the 4-th mode is launched [see Fig. 10(c)-10(d)], the mode excitation ratio for the desired mode is about 89% while the undesired mode excitation ratio P 35 (or P 43) is as large as 9.5% if choosing ρ = 1. Fortunately, when the inverse taper is lengthened by choosing ρ = 1.56, all the six modes work very well. For any launched mode (j = 1, 2, ..., 6), the desired mode excitation ratio is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%.

 figure: Fig. 10

Fig. 10 The calculated mode excitation ratios of all the guided-modes with the j-th guided-mode launched at the input end of the inverse taper (see the inset in Fig. 9(a)) as the scale factor ρ increases from 1.0 to 5.0. (a) j = 1; (b) j = 2; (c) j = 3; (d) j = 4; (e) j = 5; (f) j = 6.

Download Full Size | PPT Slide | PDF

Figure 11(a)-11(f) show the simulated light propagation in the designed inverse taper with ρ = 1.56 when the j-th guided-mode is launched, j = 1, 2, ..., 6, respectively. The operation wavelength is 1550nm. The insets in each figure show the launched field at the input end as well as the output field at the output end of the inverse taper. It can be clearly seen that the six modes (TM11, TE11, TE12, TM21, TM12, and TE21) are converted successfully to six guided-modes (TE21, TE11, TE31, TM21, TE41, and TM11) in the SOI 1.4 × 0.22μm2 nanowire waveguide. The output fields shown in the insets also show that the mode conversion is efficient without any significant crosstalk from the undesired modes, as predicted by the results given in Fig. 10(a)-10(f). Such an inverse taper should be useful for the connection between multimode silicon nanophtotonic integrated circuits and few-mode fibers in the future.

 figure: Fig. 11

Fig. 11 The simulated light propagation in the designed inverse taper when the j-th guided-mode is launched. (a) j = 1; (b) j = 2; (c) j = 3; (d) j = 4; (e) j = 5; (f) j = 6.

Download Full Size | PPT Slide | PDF

We also check the bandwidth for the designed mode converter by simulating the propagation for light with different wavelengths (λ = 1540, 1550, 1560nm). As the mode conversion for mode #1, 2, 5, and 6 is wavelength-insensitive, which allows a broadband operation, we focus on the analysis for modes #3 and #4. Figure 12 shows the calculated mode excitation ratios η 33 when the 3-rd guided-mode is launched at the input end of the inverse taper (the result for the case with the 4-th mode is similar). It can be seen that the performance degrades when the wavelength deviates from the central wavelength λc = 1550nm, which limits the bandwidth of the designed taper. On the other hand, the performance becomes less wavelength sensitivity when choosing longer taper (i.e., larger scale factor ρ). For example, when choosing ρ = 3.4, the desired mode excitation ratio η 33 is higher than 96% when the wavelength ranges from 1540nm to 1560nm, which indicates that a relatively large bandwidth is achievable.

 figure: Fig. 12

Fig. 12 The calculated mode excitation ratio η33 with the 3-rd guided-mode launched at the input end of the inverse taper as the scale factor ρ increases from 1.0 to 5.0. The wavelength λ = 1540, 1550, 1560nm.

Download Full Size | PPT Slide | PDF

3. Conclusions

In this paper, we have proposed and designed an inverse taper on silicon to realize an efficient mode converter to enable the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter consists of an SOI inverse taper buried in a large SiN strip waveguide. This mode converter based on an inverse taper is designed not only for the fundamental mode but also for the higher-order modes. The inverse taper is designed by dividing it into many segments so that each segment can be designed optimally individually. As an example, an inverse taper is designed optimally to enable the conversion between the TE11, TE21, TE31, TE41, TM11, and TM12 modes in a 1.4 × 0.22μm2 multimode SOI waveguide and the TM11, TE11, TE12, TM21, TM12, and TE21 modes (which are like the LP01, LP11a, LP11b modes in a few-mode fiber) in a 3 × 3μm2 SiN strip waveguide. The numerical simulation has shown that the desired mode excitation ratio for all these modes are higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. One can have a larger bandwidth by choosing a longer taper. With this mode converter, those on-chip mode (de)multiplexers developed well become available for few-mode fiber systems and multimode silicon nanophotonic integrated circuits can work together with few-mode fibers. On the other hand, since the dimension of the SiN strip waveguide is still smaller than a normal few-mode fiber, further mode conversion is needed. It is possible to expand the mode size of the SiN strip waveguide by using an bi-level taper, which was used previously for silicon photonics [48]. Another possible way is to use lensed or tapered few-mode fiber to match the mode size. There has been some work reported for analyzing the mode evolution in tapered few-mode fibers [49] and hopefully lensed or tapered few-mode fiber will be available in the near future.

Acknowledgments

This project was partially supported by the Nature Science Foundation of China (No. 61422510, 11374263, and 61431166001), the Doctoral Fund of Ministry of Education of China (No. 20120101110094), and the Fundamental Research Funds for the Central Universities.

References and links

1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013). [CrossRef]  

2. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000). [CrossRef]   [PubMed]  

3. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002). [CrossRef]  

4. Y. Yadin and M. Orenstein, “Parallel optical interconnects over multimode waveguides,” J. Lightwave Technol. 24(1), 380–386 (2006). [CrossRef]  

5. D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

6. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012). [CrossRef]  

7. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005). [CrossRef]   [PubMed]  

8. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013). [CrossRef]   [PubMed]  

9. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012). [CrossRef]   [PubMed]  

10. J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996). [CrossRef]  

11. W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013). [CrossRef]   [PubMed]  

12. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168. [CrossRef]  

13. D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, (Guangzhou, China, 2012), ATh3B.3. [CrossRef]  

14. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013). [CrossRef]   [PubMed]  

15. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013). [CrossRef]   [PubMed]  

16. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013). [CrossRef]   [PubMed]  

17. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014). [CrossRef]   [PubMed]  

18. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014). [CrossRef]   [PubMed]  

19. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014). [CrossRef]  

20. D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015). [CrossRef]  

21. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood Jr., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014). [CrossRef]   [PubMed]  

22. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014). [CrossRef]  

23. Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014). [CrossRef]   [PubMed]  

24. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014). [CrossRef]  

25. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle Jr., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011). [CrossRef]   [PubMed]  

26. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle Jr., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011). [CrossRef]   [PubMed]  

27. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in Proc. OFC 2011, Mar., pp. 1–3, paper PDPB10.

28. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100 Gb/s, over two modes of 40 km long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” in Proc. OFC 2011, Los Angeles, CA, Mar., pp. 1–3, paper PDPB9.

29. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011). [CrossRef]   [PubMed]  

30. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC) 2011, OWA4 (2011). [CrossRef]  

31. A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013). [CrossRef]  

32. S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014). [CrossRef]   [PubMed]  

33. S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015). [CrossRef]   [PubMed]  

34. A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012). [CrossRef]  

35. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission,” Opt. Express 22(24), 29321–29330 (2014). [CrossRef]   [PubMed]  

36. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]  

37. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]  

38. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef]   [PubMed]  

39. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005). [CrossRef]   [PubMed]  

40. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013). [CrossRef]  

41. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]  

42. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef]   [PubMed]  

43. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013). [CrossRef]   [PubMed]  

44. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]  

45. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012). [CrossRef]   [PubMed]  

46. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011). [CrossRef]   [PubMed]  

47. FIMMWAVE/FIMMPROP, Photon Design Ltd. http://www.photond.com.

48. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006). [CrossRef]  

49. A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
    [Crossref] [PubMed]
  3. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [Crossref]
  4. Y. Yadin and M. Orenstein, “Parallel optical interconnects over multimode waveguides,” J. Lightwave Technol. 24(1), 380–386 (2006).
    [Crossref]
  5. D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).
  6. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  7. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
    [Crossref] [PubMed]
  8. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
    [Crossref] [PubMed]
  9. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref] [PubMed]
  10. J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
    [Crossref]
  11. W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
    [Crossref] [PubMed]
  12. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
    [Crossref]
  13. D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, (Guangzhou, China, 2012), ATh3B.3.
    [Crossref]
  14. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  15. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  16. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  17. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
    [Crossref] [PubMed]
  18. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  19. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
    [Crossref]
  20. D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
    [Crossref]
  21. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
    [Crossref] [PubMed]
  22. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
    [Crossref]
  23. Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
    [Crossref] [PubMed]
  24. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  25. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  26. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  27. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in Proc. OFC 2011, Mar., pp. 1–3, paper PDPB10.
  28. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100 Gb/s, over two modes of 40 km long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” in Proc. OFC 2011, Los Angeles, CA, Mar., pp. 1–3, paper PDPB9.
  29. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
    [Crossref] [PubMed]
  30. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC) 2011, OWA4 (2011).
    [Crossref]
  31. A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
    [Crossref]
  32. S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
    [Crossref] [PubMed]
  33. S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015).
    [Crossref] [PubMed]
  34. A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
    [Crossref]
  35. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission,” Opt. Express 22(24), 29321–29330 (2014).
    [Crossref] [PubMed]
  36. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [Crossref]
  37. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
    [Crossref]
  38. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  39. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
    [Crossref] [PubMed]
  40. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
    [Crossref]
  41. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  42. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  43. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
    [Crossref] [PubMed]
  44. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [Crossref]
  45. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [Crossref] [PubMed]
  46. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  47. FIMMWAVE/FIMMPROP, Photon Design Ltd. http://www.photond.com .
  48. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
    [Crossref]
  49. A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
    [Crossref]

2015 (2)

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015).
[Crossref] [PubMed]

2014 (10)

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission,” Opt. Express 22(24), 29321–29330 (2014).
[Crossref] [PubMed]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
[Crossref]

S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
[Crossref] [PubMed]

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

2013 (9)

J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (5)

2010 (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

2008 (1)

2006 (2)

2005 (3)

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
[Crossref] [PubMed]

K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

2003 (1)

2002 (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

2000 (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

1996 (1)

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Al Amin, A.

Alic, N.

Almeida, V. R.

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bagheri, S.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[Crossref]

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Basak, J.

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bolle, C. A.

Bowers, J. E.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Chang, S. H.

Chen, C. P.

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, H.

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

Chen, P.

Chen, S.

Chen, W.

Chen, X.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

Cheung, S. T. S.

Chormaic, S. N.

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Chung, H. S.

Da Ros, F.

Dadap, J. I.

Dai, D.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
[Crossref]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[Crossref]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Ding, Y.

Djordjevic, S. S.

Doan, M. T.

Driscoll, J. B.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Essiambre, R. J.

Essiambre, R.-J.

Fainman, Y.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fontaine, N. K.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Frawley, M.

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gao, G.

Gnauck, A. H.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Green, W. M. J.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[Crossref]

Greenberg, M.

Grote, R. R.

Guan, B.

Han, C.

Hanzawa, N.

He, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[Crossref]

Hoepfner, C.

Hu, T.

Huang, B.

Huang, Y. Z.

Ikeda, K.

Ishizaka, Y.

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Jiang, G.

Jiang, X.

Joblin, A.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Kawaguchi, Y.

Kim, B. Y.

Kim, K.

Kim, Y. K.

Kimerling, L. C.

Koonen, A. M. J.

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

Koshiba, M.

Lee, J. C.

Lee, J. H.

Lee, K. K.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Li, A.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Li, Y.

Li, Z.

Liao, L.

Lim, D. R.

Lingle, R.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

Liu, H.-F.

Love, J. D.

N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
[Crossref] [PubMed]

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Lu, M.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Matsui, T.

McCurdy, A.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Oh, W.-Y.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Orenstein, M.

Osgood, R. M.

Ou, H.

Pan, D.

Panepucci, R. R.

Park, K. J.

Peckham, D. W.

Petcu-Colan, A.

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Peucheret, C.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Poon, A. W.

Qiu, H.

Randel, S.

Raz, O.

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

Ryf, R.

Saitoh, K.

Sakamoto, T.

Saperstein, R. E.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Shang, K.

Shao, H.

Shi, Y.

Shieh, W.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Sierra, A.

Souhan, B.

Stein, A.

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tang, Y.

Tsang, H. K.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Tsujikawa, K.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Uematsu, T.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Vance, R. W. C.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Wada, K.

Wang, J.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Wang, P.

Wang, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Winzer, P. J.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Xiao, X.

Xing, J.

Xu, J.

Yadin, Y.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Yamamoto, F.

Yang, J.

Yang, Y. D.

Yap, K. P.

Ye, J.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

Yoo, S. J. B.

Yu, H.

Yu, J.

Yu, P.

Yu, Y.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (2)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

IEEE Photon. Soc. News. (1)

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

IEEE Photonics Technol. Lett. (2)

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

J. Lightwave Technol. (3)

J. Nonlinear Opt. Phys. Mater. (1)

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Laser Photonics Rev. (2)

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

Nanophoton. (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
[Crossref]

Nat. Commun. (1)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Opt. Express (17)

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
[Crossref] [PubMed]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission,” Opt. Express 22(24), 29321–29330 (2014).
[Crossref] [PubMed]

S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
[Crossref] [PubMed]

S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015).
[Crossref] [PubMed]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Prog. Electromagnetics Res. (1)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Science (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

Other (6)

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[Crossref]

D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, (Guangzhou, China, 2012), ATh3B.3.
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in Proc. OFC 2011, Mar., pp. 1–3, paper PDPB10.

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100 Gb/s, over two modes of 40 km long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” in Proc. OFC 2011, Los Angeles, CA, Mar., pp. 1–3, paper PDPB9.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC) 2011, OWA4 (2011).
[Crossref]

FIMMWAVE/FIMMPROP, Photon Design Ltd. http://www.photond.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The guided-modes in (a) a multimode SOI nanowire waveguide; (b) few-mode fiber (LP01, LP11a, LP11b modes).
Fig. 2
Fig. 2 (a) Schematic configuration of the present mode converter based on an inverse taper for multimode silicon photonic integrated circuits; (b) cross section of a SiN strip waveguide at the end connecting with a few-mode fiber; (c) cross section at the end of the silicon nano-tip; (d) cross section of the multimode silicon waveguide.
Fig. 3
Fig. 3 The six guided-modes supported by the SiN strip waveguide (like the LP01, LP11a, LP11b modes in a few-mode fiber [24]).
Fig. 4
Fig. 4 The coupling ratio of the i-th mode between the SiN strip waveguide [see Fig. 2(b)] and the SiN waveguide with a silicon nano-tip [see Fig. 2(c)] as the tip width w tip varies from 0.03μm to 0.15μm. i = 1, …, 6.
Fig. 5
Fig. 5 (a) The calculated effective indices for the guided-modes of silicon waveguide [shown in Fig. 2(d)] as the silicon core width w Si varies from 50nm to ~1.6μm; (b) the enlarged view for the part of 1.92<n eff<1.98.
Fig. 6
Fig. 6 The six lowest guided-modes in the SOI nanowire waveguide when (a) w Si = 60nm; (b) w Si = 1.4μm.
Fig. 7
Fig. 7 The calculated hybridization ratio γ x = Ex 2/(Ex 2 + Ey 2) for an SOI nanowire waveguide as the silicon core width w Si varies from 50nm to ~1.6μm.
Fig. 8
Fig. 8 The calculated mode excitation ratio η jq of all the guided-modes (q = 1, 2, ...) when the j -th guided mode is launched at the input end of the i -th segment when (a) i = 1, wi 1 = 0.06μm, wi 2 = 0.1μm, and j = 3; (b) i = 2, wi 1 = 0.1μm, wi 2 = 0.2μm, and j = 3; (c) i = 3, wi 1 = 0.2μm, wi 2 = 0.3μm, and j = 3; (d) i = 4, wi 1 = 0.3μm, wi 2 = 0.4μm, and j = 4; (e) i = 5, wi 1 = 0.4μm, wi 2 = 0.568μm, and j = 6; (f) i = 6, wi 1 = 0.578μm, wi 2 = 0.67μm, and j = 6; (g) i = 7, wi 1 = 0.67μm, wi 2 = 0.78μm, and j = 6; (h) i = 8, wi 1 = 0.78μm, wi 2 = 0.81μm, and j = 4; (i) i = 9, wi 1 = 0.81μm, wi 2 = 0.84μm, and j = 4; (j) i = 10, wi 1 = 0.84μm, wi 2 = 0.94μm, and j = 4; (k) i = 11, wi 1 = 0.94μm, wi 2 = 1.08μm, and j = 5; (l) i = 12, wi 1 = 1.08μm, wi 2 = 1.24μm, and j = 4; (m) i = 13, wi 1 = 1.24μm, wi 2 = 1.27μm, and j = 6; (n) i = 14, wi 1 = 1.27μm, wi 2 = 1.32μm, and j = 6; (o) i = 15, wi 1 = 1.32μm, wi 2 = 1.4μm, and j = 6.
Fig. 9
Fig. 9 Top view of the designed inverse taper with 15 segments for the mode converter.
Fig. 10
Fig. 10 The calculated mode excitation ratios of all the guided-modes with the j -th guided-mode launched at the input end of the inverse taper (see the inset in Fig. 9(a)) as the scale factor ρ increases from 1.0 to 5.0. (a) j = 1; (b) j = 2; (c) j = 3; (d) j = 4; (e) j = 5; (f) j = 6.
Fig. 11
Fig. 11 The simulated light propagation in the designed inverse taper when the j-th guided-mode is launched. (a) j = 1; (b) j = 2; (c) j = 3; (d) j = 4; (e) j = 5; (f) j = 6.
Fig. 12
Fig. 12 The calculated mode excitation ratio η 33 with the 3-rd guided-mode launched at the input end of the inverse taper as the scale factor ρ increases from 1.0 to 5.0. The wavelength λ = 1540, 1550, 1560nm.

Tables (1)

Tables Icon

Table 1 The determined parameters (wi 1, wi 2, Li ) for all the segments of the inverse taper.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ x = S | E x 2 |d x d y S | E x 2 |d x d y + S | E y 2 |d x d y ,

Metrics