Abstract

We propose an ultranarrow bandwidth perfect infrared absorber consisting of a metal periodic structured surface with nanoslits, a spacer dielectric, and a metal back plate. Its bandwidth and aborption are respectively about 8 nm and 95%. The thickness of the nanobars and the spacer, and the width of the nanoslits are primary factors determining the absorption performance. This structure not only has narrow bandwidth but also can obtain the giant electric field enhancement in the tiny volume of the nanoslits. Operated as a refractive index sensor, this structure has figure of merit as high as 25. It has potential in biomedical and sensing applications.

© 2015 Optical Society of America

1. Introduction

In recent years, nanostructured metals [1–5] have obtained significantly progresses due to their exotic plasmonic and photonic properties such as field enhancement [6–9], light concentration [10], and perfect absorption at their resonance frequencies [11–17]. Resonant plasmonic absorbers have various potential applications in biosensing [18–20], photothermal therapy [21], and hot electron collection [22]. These plasmonic absorbers are commonly categorized into broadband absorber [12–14] and narrowband absorber [15–17]. Broadband absorbers are widely used in thermo harvesting and solar power harvesting [23], as well as thermo emission [24]. While narrowband absorbers are generally applied for sensing, detection, and thermal radiation tailoring [24, 25]. All the applications greatly benefit from their intrinsic localized or propagating plasmon resonance modes, which can be controlled by the size, geometry, and optical properties of the plasmonic material and surrounding dielectric medium [15]. Because the electromagnetic field enhancement is at nanoscale in the optical regimes, high sensitivity detection can be applied to biomolecule detections [18–20].

To quantify the sensing performance of a sensor based on localized surface plasmonics resonance (LSPR), the bulk refractive index sensitivity S and figure-of-merit (FOM) are usually introduced [14,15]. Since the intrinsic loss of the metal is inevitable, most metal nanostructures have bandwidth or full width at half maximum (FWHM) broader than one hundred nanometers [14], at least 40 nm [17]. Metal dielectric metal (MDM) tri-layer structure is widely used in absorber structures. Its resonance and field enhancement can be tuned by selecting the dimension parameters and material properties [8, 9, 13–15, 25]. As we know, the higher FOM indicates the biosensor with better capability for biomolecule detection. Therefore, it is desired to develop the biosensor with higher FOM. Nevertheless, in sensing applications, MDM nanostructure with narrow bandwidth is challenging to design. Chanda et al. reported a MDM structure with bandwidth 15 nm [9]. Ye et al. presented that a gold nanobar array closing to a thin gold film with a dielectric spacer can obtain FWHM 97 nm and FOM 4.68 [26]. In [15], Ameling et al. showed metal back plate to enhance sensitivity several times, i.e. FOM 7.1 with FWHM 50 nm and reflectivity dip 9%, due to the combination between localized plasmons and a photonic microcavity. Huang et al. showed a nanoring-based biosensor with sensitivity 350 nm/RI, FWHM about 100 nm, and FOM 3.1 [27].

In this paper, we introduce a metal nanobar array with nanoslits backed metal plate structure (MNNM), which has bandwidth (or FWHM) narrower than 8 nm as well as nearly perfect absorption. In refractive index sensing applications, FOM can reache 25. We also investigated the absorption performance dependence on spacer dielectric thickness, nanobar thickness, and nanoslit width per unit cell of the periodic structured surface. The proposed structure has potential in biomedical and sensing applications.

2. Structures and the simulation results

Figure 1 shows the proposed geometry of the MNNM structure, which consists of a dielectric spacer sandwiched by a periodic gold nanobar array and a gold plate over the glass substrate. The spacer dielectric is of low refractive index in the refrared regime, such as MgF2, SiO2, and Al2O3 [28–31]. The nanobar array features three nanobars per unit cell. Among three nanobars, one gap (denoted by s1) is several or several ten nanometres wide, another slit width (denoted by s2) are broader than 100 nm. Other dimensional parameters include: nanobar width w1, w2, w3, nanobars thickness t, period p, gap s3, spacer thickness L, and gold plate thickness h. Here, w1, w2, and w3 all equal w. The measured samples such as liquids or gases are diffused over the metallic periodic surface. The incident light with polarization along the x direction normally incident to the top structured surface.

 

Fig. 1 Schematic of MNNM structure and the incident light configuration. Yellow, blue, purple, and light green represent gold, SiO2, glass, and tested sample, respectively.

Download Full Size | PPT Slide | PDF

We use two-dimensional finite element methods (FEMs) in calculations. We set period boundary conditions both in the x and y directions. The permittivity of gold is from [32]. The refractive index of the central layer SiO2 is 1.4 [31]. Geometric parameters are t = 70 nm, w = 380 nm, L = 250 nm, h = 40 nm, p = 1.5 μm, s1 = 20 nm, s2 = 120 nm, and s3 = 220 nm. In the calculation, maximum mesh and minimum mesh are 10 nm and 0.1 nm, respectively.

As the thickness of bottom gold plate is thicker than the skin depth in the infrared regime, the transmission of the absorber structure is nearly zero (T ≃ 0), as shown in Fig. 2. Therefore, the absorption A = 1−R−T of the structure is 1−R. Figure 2(a) shows that the distinctive resonance is at the wavelength of 1536.9 nm with FWHM about 7 nm, which is far narrower than those of solely cavity structures, 60 nm in [15] and about 150 nm in [14].

 

Fig. 2 (a) Calculated reflectivity, transmission and absorption spectra of the MNNM structure. The dot curve represents the reflective spectrum of the MNN structure. (b) Power flux density Poav, loss of electromagnetic Qe, (c) electric field E and magnetic field H distributions in the MNNM structure. Parameters are t = 70 nm, w = 380 nm, L = 250 nm, h = 40 nm, p = 1.5 μm, s1, s2, and s3 are 20 nm, 120 nm, and 220 nm, respectively.

Download Full Size | PPT Slide | PDF

To understand the effects of metal plate on the narrow FWHM and the perfect absorption properties, we calculate reflective spectrum of a metal nanobar array structure without metal back plate (MNN), of which other parameters are the same as those of MNNM structure. Results are shown by the dot curve of Fig. 2(a). It can be seen that the absorption of MNNM is significantly larger and FWHM of MNNM is much narrower than those of MNN. For the sensing applications, the large modulation depth of spectrum is one major point for the large sensitivity [15]. Due to the absorption is perfect at the resonance frequency, the ability of detecting the shift of resonance wavelength is enhanced by the narrow FWHM and the large modulation depth, while the refractive index of surrounding is changed slightly [26].

To explicitly learn about physical mechanism of narrow band spectrum with perfect absorption of the MNNM structure, we calculate the distributions of loss of electromagnetic Qe, average power flux density Poav, electric field E, and magnetic field H at on resonance frequency. Figure 2(b) presents that average power flux (red arrows) passing through the nanoslit is larger than through the other slits, which represents a nanoslit guided mode [33]. Loss of electromagnetic concentrates on the surface of the sturctured surface. Figure 2(c) shows that magnetic field locates on top of the structured surface, which features the surface plasmons propagating on the surface. Thus, we attribute the perfect absorption with ultranarrow bandwidth to hybrid nanoslit guide mode and propagating surface plasmonic resonance mode with microcavity mode which is introduced by the metal back plate. This plasmon coupling effect produces a stronger and more confined near field in the nanoslits with a more exposure to the environment. In addition, at the resonant frequency, the electric field amplitude [8] in the nanoslit s1 can reach a level as high as 15 times larger than the incident light. Hence, our MNNM structure can obtain not only the perfect narrow band absorption but also the giant electric field enhancement in extremely tiny volume, which is a key point in bio-sensing applications.

3. Properties and performance

Figure 3 presents effects of spacer thickness on the reflective spectrum of the MNNM. When the spacer thickness is increased from 85 nm to 168 nm, the resonant wavelength blueshifts, and the modulation depth becomes larger. While, the resonance redshifts when the thickness is increased from 168 nm to 500 nm. The reflectivity dip is minimum when the spacer thickness is 168 nm. By the definition of sensitivity of sensor [14, 15], the structure can obtain the high sensitivity performance when the thickness of the dielectric spacer is 168 nm.

 

Fig. 3 (a) The dependence of reflective spectra of the MNNM structure on spacer thickness. Inset demonstrates the resonant wavelength shift with increasing spacer thickness. (b) FWHM and dips of reflective spectra when spacer thickness is increased. Parameters: s1 = 20 nm, s2 = 120 nm, s3 = 220 nm, h = 40 nm, t = 70 nm, w = 380 nm.

Download Full Size | PPT Slide | PDF

Figure 4(a) shows the effects of the nanoslit width on the bandwidth and the reflectivity of the MNNM structure. The resonance blueshifts with nanoslit width increased from 7 nm to 43 nm, whereas FWHM become narrower (the top right inset of Fig. 4(b)). In addition, the modulation depth is deteriorated when the nanoslit width is increased. For comparison, we calculate the reflectivity of a nanobar array without nanoslits backed metal plate structure, i.e. s1 = 0. The reflectivity is shown in the bottom left inset of Fig. 4(a). Its FWHM is 12 nm. Figure 4(b) shows that the resonance blueshifts when the nanobars thickness is increased from 38 nm to 166 nm, whereas FWHM becomes narrower.

 

Fig. 4 (a) Reflectivity spectra, FWHM and reflectivity dip as a function of nanoslit width. Bottom left inset: reflectivity spectrum of MNNM without nanoslit (or s1 = 0 nm). (b) Reflectivity spectra, FWHM, reflectivity dip at resonant frequency with nanobar thickness increasing. Parameters: L = 250 nm, t = 70 nm (a), s1 = 20 nm (b).

Download Full Size | PPT Slide | PDF

For its narrow bandwidth and large modulation depth, the proposed MNNM structure can be used to detect the refractive index of environment on the meta-surface [14, 18]. In the real operating environment, the light intensity is usually measured when the refractive index surrounding the meta surface of LSPR sensor [15] is variable with a fixed incident wavelength. So, to demonstrate the sensing performance of the proposed structure, we adapt the definitions of sensitivity, figure of merit [14, 15] from

S=ΔλΔn,FOM=SFWHM,S*=ΔIΔn,FOM*=S*I

Figure 5 shows that resonance is red-shifted when the surrounding refractive index changes from 1.302 to 1.352. The reflectivity dip is as high as 0.04 at the resonant frequency, while FWHMs are narrower than 8 nm. The FWHM is 5 times narrower than that of the structure in Ref. [15], though the wavelength shift is slightly weaker. Therefore, a slight spectral shift can cause a large optical intensity variation. From Eqs. (1), we can obtain S = 190 nm/RIU, FOM = 25, FOM* = 322, and S* = 25. Though the resonance wavelength shift is smaller than the value 350 nm/RIU in [27], the FWHM 8 nm is far narrower than that 89 nm in the reference. Thus, FOM of the MNNM can be as large as 25.

 

Fig. 5 (a) Reflective spectra of the MNNM structure with varying refractive index of surrounding the nanobar array. (b) Resonant Wavelength of the MNNM structure as a function of the surrounding refractive index of nanobar array. Parameters: L = 168 nm, s1 = 18 nm, w = 380 nm, p = 1.5 μm, t = 70 nm, and h = 40 nm. The refractive index is from 1.302 to 1.352.

Download Full Size | PPT Slide | PDF

4. Conclusion

We propose a MNNM absorber consisting of a metal nanobar array, dielectric spacer, and a metal plate. In each unit cell, there is a nanoslit with several nanometers (or up to several ten nanometers) width in the three nanobars. We can obtain the narrow bandwidth (or FWHM) of 8 nm and absorption of 95%. Operating as a refractive index sensor, its sensitivity can reach 190 nm/RIU and FOM 25. The sensitivity is much improved by the nanoslits while it has been enhanced by the cavity between the nanobars array and metal plate. The proposed structure may be found applications in biomedical and sensing applications.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61176084, 11174282, 61475191, 11304375).

References and links

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]   [PubMed]  

2. N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014). [CrossRef]   [PubMed]  

3. J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013). [CrossRef]  

4. J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010). [CrossRef]   [PubMed]  

5. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012). [CrossRef]   [PubMed]  

6. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef]   [PubMed]  

7. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004). [CrossRef]  

8. X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014). [CrossRef]   [PubMed]  

9. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011). [CrossRef]  

10. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef]   [PubMed]  

11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]  

12. Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011). [CrossRef]  

13. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19, 19310–19322 (2011). [CrossRef]   [PubMed]  

14. N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef]   [PubMed]  

15. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010). [CrossRef]  

16. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39, 1137–1140 (2014). [CrossRef]   [PubMed]  

17. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014). [CrossRef]   [PubMed]  

18. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]   [PubMed]  

19. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001). [CrossRef]   [PubMed]  

20. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010). [CrossRef]  

21. J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013). [CrossRef]   [PubMed]  

22. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014). [CrossRef]  

23. H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]   [PubMed]  

24. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012). [CrossRef]  

25. Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013). [CrossRef]  

26. J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011). [CrossRef]  

27. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012). [CrossRef]  

28. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein). [CrossRef]  

29. I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

30. M. J. Dodge, Refractive Index in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, (CRC, 1986).

31. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [CrossRef]  

32. A. D. Rakic, A. B. Djuric, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]  

33. C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref] [PubMed]
  3. J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
    [Crossref]
  4. J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
    [Crossref] [PubMed]
  5. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
    [Crossref] [PubMed]
  6. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [Crossref] [PubMed]
  7. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
    [Crossref]
  8. X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014).
    [Crossref] [PubMed]
  9. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
    [Crossref]
  10. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  12. Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
    [Crossref]
  13. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19, 19310–19322 (2011).
    [Crossref] [PubMed]
  14. N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  15. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
    [Crossref]
  16. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39, 1137–1140 (2014).
    [Crossref] [PubMed]
  17. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
    [Crossref] [PubMed]
  18. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  19. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
    [Crossref] [PubMed]
  20. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
    [Crossref]
  21. J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
    [Crossref] [PubMed]
  22. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
    [Crossref]
  23. H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  24. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
    [Crossref]
  25. Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
    [Crossref]
  26. J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
    [Crossref]
  27. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
    [Crossref]
  28. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
    [Crossref]
  29. I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).
  30. M. J. Dodge, Refractive Index in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, (CRC, 1986).
  31. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  32. A. D. Rakic, A. B. Djuric, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  33. C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
    [Crossref]

2014 (5)

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

X. Y. Lu, R. G. Wan, G. X. Wang, T. Y. Zhang, and W. F. Zhang, “Giant and tunable electric field enhancement in the terahertz regime,” Opt. Express 22, 27001–27006 (2014).
[Crossref] [PubMed]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39, 1137–1140 (2014).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

2013 (3)

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

2012 (4)

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

2011 (4)

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19, 19310–19322 (2011).
[Crossref] [PubMed]

2010 (6)

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

2008 (3)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

2004 (1)

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

1998 (1)

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
[Crossref]

1972 (1)

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

1965 (1)

Albrektsen, O.

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Apell, S. P.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

Asano, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Atwater, H. A.

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Bozhevolnyi, S. I.

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Chen, L.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Chen, S.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Chen, X.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Copner, N.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Cui, D.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Cui, Y. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

De Zoysa, M.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Djuric, A. B.

Dodge, M. J.

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

M. J. Dodge, Refractive Index in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, (CRC, 1986).

Dorpe, P. V.

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

Duyne, R. P. V.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Elazar, J. M.

Fang, N. X.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Federico, C.

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

Fung, K. H.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Giessen, H.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Gong, Y. K.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Gramotnev, D. K.

Hägglund, C.

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

He, J.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

He, S. L.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Hentschel, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Huang, C.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Huang, J.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Huang, P.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Huang, W. P.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Inoue, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Jeon, K. S.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Jin, Y.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Kimerling, L. C.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Kumar, A.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Lagae, L.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
[Crossref]

Li, K.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Li, Q.

Li, W.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Li, X.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

Lieber, C. M.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Lim, D. K.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Lin, J.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
[Crossref] [PubMed]

Lu, G.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Lu, H.

Lu, X. Y.

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Majewski, M. L.

Malitson, I. H.

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
[Crossref]

Mao, D.

Martinez, J. J.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Meng, L.

Mesch, M.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Michel, J.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Mu, J. W.

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. W. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18, 15893–15900 (2010).
[Crossref] [PubMed]

Nam, J. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Nie, Z.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Nielsen, M. G.

Niu, G.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Noda, S.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Park, H. K.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

Polman, A.t

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Pors, A.

Qiu, M.

Rakic, A. D.

Rees Whippey, D.

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Ruan, Z.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Stakenborg, T.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Suh, Y. D.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Wan, R. G.

Wang, G.

Wang, G. X.

Wang, S.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Wang, Z.

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

Wei, Q. Q.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Xu, J.

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

Yang, Y.

Ye, J.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

Yu, N. F.

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

Zhang, T. Y.

Zhang, W. F.

Zhao, D.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

ACS Nano (2)

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8, 8242–8248 (2014).
[Crossref] [PubMed]

J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, and Z. Nie, “Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy,” ACS Nano 7, 5320–5329 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantenns,” Appl. Phys. Lett. 99, 253101 (2011).
[Crossref]

J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, “Hybrid nano ridge plasmonic polaritons waveguides,” Appl. Phys. Lett. 103, 131107 (2013).
[Crossref]

J. Opt. Soc. Am. (2)

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
[Crossref]

J. Phys. Chem. Lett. (1)

C. Hägglund and S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett. 3, 1275–1283 (2012).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980). (and references therein).
[Crossref]

Nano Lett. (2)

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153–158 (2004).
[Crossref]

N. Liu, M. Mesch, and T. Weiss, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 1–5 (2011).
[Crossref]

Nat. Mater. (5)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

N. F. Yu and C. Federico, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

H. A. Atwater and A.t Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Nat. Photonics (2)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrow-band thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Nature (2)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

Y. K. Gong, X. Liu, K. Li, J. Huang, J. J. Martinez, D. Rees Whippey, and N. Copner, “Coherent emission of light using stacked gratings,” Phys. Rev. B 87, 205121 (2013).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Plasmonics (1)

J. Ye and P. V. Dorpe, “Improvement of figure of merit for gold nanobar array plasmonic sensors,” Plasmonics 6, 665–671 (2011).
[Crossref]

Science (1)

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[Crossref] [PubMed]

Other (1)

M. J. Dodge, Refractive Index in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, (CRC, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of MNNM structure and the incident light configuration. Yellow, blue, purple, and light green represent gold, SiO2, glass, and tested sample, respectively.
Fig. 2
Fig. 2 (a) Calculated reflectivity, transmission and absorption spectra of the MNNM structure. The dot curve represents the reflective spectrum of the MNN structure. (b) Power flux density Poav, loss of electromagnetic Qe, (c) electric field E and magnetic field H distributions in the MNNM structure. Parameters are t = 70 nm, w = 380 nm, L = 250 nm, h = 40 nm, p = 1.5 μm, s1, s2, and s3 are 20 nm, 120 nm, and 220 nm, respectively.
Fig. 3
Fig. 3 (a) The dependence of reflective spectra of the MNNM structure on spacer thickness. Inset demonstrates the resonant wavelength shift with increasing spacer thickness. (b) FWHM and dips of reflective spectra when spacer thickness is increased. Parameters: s1 = 20 nm, s2 = 120 nm, s3 = 220 nm, h = 40 nm, t = 70 nm, w = 380 nm.
Fig. 4
Fig. 4 (a) Reflectivity spectra, FWHM and reflectivity dip as a function of nanoslit width. Bottom left inset: reflectivity spectrum of MNNM without nanoslit (or s1 = 0 nm). (b) Reflectivity spectra, FWHM, reflectivity dip at resonant frequency with nanobar thickness increasing. Parameters: L = 250 nm, t = 70 nm (a), s1 = 20 nm (b).
Fig. 5
Fig. 5 (a) Reflective spectra of the MNNM structure with varying refractive index of surrounding the nanobar array. (b) Resonant Wavelength of the MNNM structure as a function of the surrounding refractive index of nanobar array. Parameters: L = 168 nm, s1 = 18 nm, w = 380 nm, p = 1.5 μm, t = 70 nm, and h = 40 nm. The refractive index is from 1.302 to 1.352.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = Δ λ Δ n , FOM = S FWHM , S * = Δ I Δ n , FOM * = S * I

Metrics