Abstract

We demonstrate experimentally that in pump-probe experiment of H2 fragmentation by intense laser fields, the Coulomb explosion (CE) paths induced by the second ionization of dissociating H2+ show varied dependencies on the laser intensity. While the charge resonance enhanced ionization (CREI) channel is intensity dependent, the probe induced CE (PICE) channel is intensity independent at certain delay time. By using a classical model, we calculated the dissociation trajectories which agree well with the experimental data.

© 2015 Optical Society of America

1. Introduction

The fragmentation dynamics of simple molecules in strong laser fields is an important topic of molecular physics. A wealth of phenomena including bond softening (BS) which is correspond to one-photon excitation (1ω) [1], bond hardening (BH) [2], above threshold dissociation (ATD) which is correspond to net-two-photon excitation (net-2ω) [3], directional dissociative ionization (DDI) [4,5], and CREI [6,7] has been discovered over the past decades. As the simplest molecular system, the hydrogen molecule has been extensively studied both theoretically and experimentally [1–4,8–14]. Among them, femtosecond (fs) pump-probe experiment and the CE imaging technique together are able to probe the temporal evolution of the nuclear wave packets [12–14].

As shown in Fig. 1, the pump pulse removes one electron from a neutral H2, initiating a dissociating vibrational motion of the H2+. The second, delayed, probe pulse is then introduced at a fixed time delay to ionize the dissociating H2+, projecting the nuclear wave packet to the CE potential. And the protons from the following CE process can then be measured with the kinetic energy (KE) release dictated by the internuclear separation (R) at the moment when the second ionization takes place. This method has been applied to measure the motion of two different dissociative wave packets in I2 [15], and was then widely used in the measurements of R-dependent ionization probability of diatomic molecules [12–14]. Few-cycle pulses with duration less than 10 fs has also been used to observe the vibrational motion of bound H2 molecules [13,14].

 figure: Fig. 1

Fig. 1 Schematic view of the relevant potential curves of H2 and H2+ in pump-probe experiments. Three-photon transition and one-photon transition are indicated by three arrows and one arrow, respectively.

Download Full Size | PPT Slide | PDF

It has been shown that the KE distribution of protons from CE can be modulated by the laser intensity [16–20]. For CE induced by CREI, the KE spectrum broadens and shifts to higher energy as the laser intensity increases, because the CREI occurs at smaller R as the laser intensity is increased [18–20]. In pump-probe experiments, the varying pump and probe laser intensities both can introduce excitation mechanisms to enrich the KE spectrum. However, the effect of field intensity in such the experimental scheme has not been elucidated systematically. In this work, we investigate the intensity dependence of the pump-probe study of the dissociating H2+ molecules. The results reveal that the PICE channel is intensity independent at a certain delay time while the CREI channel is intensity dependent, as previously reported [18–20].

2. Experiment and results

The experiments were performed using a Ti:sapphire chirped pulse amplifier laser system (Coherent Elite-HP) with the output pulses of 5 mJ, 40 fs, 1 kHz at the center wavelength of 800 nm. The pump and probe beams were produced by passing a portion of the laser output beam (1.2 mJ) through a Mach-Zehnder type interferometer. A motor stage with a resolution of 0.2 fs is used in one arm of the interferometer to adjust the time delay of the two pulses in the accuracy of 0.8 fs. The dual laser beams were then focused by an f = 75 mm concave mirror inside the ultrahigh vacuum chamber (2 × 10−10 mbar). The product ions from the fragmentation processes are guided by a weak electrical field of 8 V⋅cm−1 to the position-sensitive detector (Roentdek Handels GmbH). Three dimensional momentum vectors of the ions were calculated by its time-of-flight and position on the detector, and were used for determining the coincident events. For H2 molecule, the coincident events mean two protons [H+(A), H+(B)] were detected simultaneously and fulfill the momentum conservation condition, Psum = |P[H+(A)] + P[H+(B)]| < 5 a. u. (atomic unit).

We first carried out the pump-probe experiments on H2 molecules with the delay time beyond 70 fs, when the main part of pump and probe pulses were separated enough to avoid the strong interference. The intensity of each pulse was estimated to be 3.5 × 1014 W/cm2. We choose three time intervals during 70 fs - 200 fs to measure the fragmentation signal for saving the acquisition time, the KE spectra of protons for the coincident events are plotted in Fig. 2. The spectra consist of two parts, the upper stripe around the energy of 3 eV and the lower stripe whose KE is delay dependent. The former is seen to be independent of the time delay, and represents the CREI of the H2+ molecular ion at R = 6 a. u [12,13,18–20]. The lower stripe is shown to be dependent on the delay time. As the delay of probe pulses increases, it shifts to the smaller kinetic energy. This is from the PICE at different R of the dissociating H2+ ions. This observation is consistent with the previous pump-probe experiments [12,13].We reconstructed the dissociation trajectories by assuming a classical motion of the protons, and the simulated kinetic energy shows good agreement with the experimental data as shown by the solid lines in Fig. 2.

 figure: Fig. 2

Fig. 2 The measured coincident proton KE spectrum versus the pump-probe delay. Two solid lines: classically simulated dissociation trajectories (KE at different time delay) of 1ω and net-2ω channels.

Download Full Size | PPT Slide | PDF

We changed the intensities of the pump and probe pulses simultaneously while fixing the delay time at 90 fs. Both the noncoincident and coincident proton KE spectra for different intensities are plotted in Fig. 3. The noncoincident spectra shown in Fig. 3(a) include both dissociation and CE events, whilst the coincident spectra shown in Fig. 3(b) include only CE events where two protons [H+(A), H+(B)] were detected simultaneously and fulfill the momentum conservation condition, Psum = |P[H+(A)] + P[H+(B)]| < 5 a. u.. By applying these selection criteria to the measured data, we can separate CE events from dissociation fragments (one H+ ion and one H atom were released and only one H+ can be detected).

 figure: Fig. 3

Fig. 3 (a) Noncoincident KE spectra of protons from the pump-probe experiments at the different intensities; (b) Same as (a) but only coincident events.

Download Full Size | PPT Slide | PDF

Figure 3(a) shows there are four peaks in the noncoincident spectrum. Protons with KE near 0.09 eV and 0.63 eV are due to the 1ω path and net-2ω path, respectively, whilst the protons with KE near 1.2 eV and 3 eV represent the PICE and CREI, respectively. The positions of the 1ω peak and the net-2ω peak do not change on varying the laser intensity, which agrees with previous studies [19]. The CREI peak shifts toward higher energy because CREI occurs at smaller R as the intensity is increased. By using a single pulse, we also observed similar shift effect for CREI peak, which is consistent with the previous studies [12,13,18–20]. For the PICE peak, no observable shift can be seen following the intensity change because the time delay between the two ionization steps driven by the pump and probe pulses stays relatively unchanged as both the pump and probe intensity are increased in tandem, which means the PICE almost occurs at the same R as the intensity is increased. This can be seen more clearly in Fig. 3(b) where only coincident events were shown and the spectra were normalized with proton yield at 1.2 eV.

The relative ratios between different fragmentation channels show complex intensity dependence in our experiment. Roughly, Fig. 3(a) shows the proportions of CE channels (PICE and CREI) increase when compared with dissociation channels (1ω and net-2ω) as the intensity is increased, because more H2+ was ionized at higher intensity. Figure 3(b) shows the relative ratio between PICE and CREI changes complexly. As we used two 40 fs laser pulses, the CREI is mainly induced by the second ionization of the pump pulse and the PICE is induced by the second ionization of the probe pulse. Both the second ionization probabilities for pump and probe pulse increased simultaneously as we increased the pump and probe intensities in tandem, which induced the complex intensity dependence.

3. Discussion

We reconstructed the dissociation trajectories by calculating the classical motion of the protons during the fragmentation process. First we estimate the internulcear separation R at different delay times. The final velocity ν of the H+ ion relative to the H atom is given by

v=2Ed/μ,
in which μ is the reduced mass of the H2+ and Ed is the total KE release of H2+ dissociation [21]. For the 1ω and net-2ω channels, Ed (1ω) = 0.18 eV, Ed (net-2ω) = 1.26 eV from our measurement shown in Fig. 3(a).

The internuclear separation R (a. u.) at the delay time τ (fs) can be calculated by

R=R0+v¯×τ,
where R0 denotes the initial internuclear separation at the beginning of the dissociation, and for 800nm pulses, R0 (1ω) = 4.8 a. u., R0 (net-2ω) = 3.3 a. u.. Approximately it takes about 3 fs for the wave packet to propagate from 3.3 a.u. to 4.8 a.u [14]. We assume‾ν = ν / 2 because the dissociation is an acceleration motion. The dissociation trajectories of 1ω and net-2ω can be calculated by [15]

R(1ω)=4.8+0.0785×(τ3),
R(net2ω)=3.3+0.2075×τ.

The KE of the proton produced by second ionization of dissociating H2+ at R can then be given by [21]

ECE=12(Ed+e2R),
where e2/R is the Coulomb repulsion energy of two protons at the internuclear separation R.

The simulation results are plotted in Fig. 4. Figure 4(a) shows the H2+ potential energy curves for the 1sσg electronic ground state and 2pσu first excited state. Figure 4(b) shows the simulated dissociation trajectories for 1ω and net-2ω channels, there is an intersection (9.8 fs, 5.3 a. u.) which was induced by the smaller R0 and larger‾v for net-2ω channel when compared with the 1ω channel. Figure 4(c) shows the simulated KE of the protons produced by second ionization of the dissociating H2+ at different delay times. For the delay times after 70 fs, both curves in Fig. 4(c) present small slopes, which lead to the slow shift of PICE peak versus delay time in the delay-dependent experiment, as shown in Fig. 2.

 figure: Fig. 4

Fig. 4 (a) H2+ potential energy curves for the 1sσg electronic ground state and 2pσu first excited state. (b) Simulated dissociation trajectories for 1ω and net-2ω channels. (c) Simulated KE of the protons produced by second ionization of the dissociating H2+ at different delay times.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we have observed different dependencies of laser field intensity for different CE channels in H2 pump-probe experiment. The results reveal that the CREI channel is intensity dependent because CREI occurs at smaller R as the intensity is increased, while the PICE channel is intensity independent at a certain delay time because PICE almost occurs at the same R as both the pump and probe intensity are increased in tandem. We reconstructed the dissociation trajectories by calculating the classical motion of the protons during the fragmentation process, the calculation result agrees well with the experimental data. By choosing different laser pulse intensity and time delay in pump-probe experiment, different KE spectra can be obtained. Our studies complement earlier pump-probe works carried out at single laser pulse intensity. The observed different dependencies for different CE channels can be used to tune the proton KE spectra in H2 spectroscopy studies.

Acknowledgments

This work is supported by the Chinese Academy of Sciences, the Ministry of Science and Technology of the People's Republic of China (2011CB808103), and the National Natural Science Foundation of China (Grant Nos. 11274326, 61221064, 11134010 and 11127901).

References and links

1. P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990). [CrossRef]   [PubMed]  

2. L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999). [CrossRef]  

3. A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990). [CrossRef]   [PubMed]  

4. X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014). [CrossRef]   [PubMed]  

5. M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013). [CrossRef]   [PubMed]  

6. E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76(22), 4140–4143 (1996). [CrossRef]   [PubMed]  

7. J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012). [CrossRef]   [PubMed]  

8. T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52(4), R2511–R2514 (1995). [CrossRef]   [PubMed]  

9. G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997). [CrossRef]  

10. T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013). [CrossRef]   [PubMed]  

11. C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010). [CrossRef]  

12. T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005). [CrossRef]   [PubMed]  

13. Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006). [CrossRef]  

14. A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005). [CrossRef]  

15. H. Stapelfeldt, E. Constant, and P. B. Corkum, “Wave packet structure and dynamics measured by Coulomb explosion,” Phys. Rev. Lett. 74(19), 3780–3783 (1995). [CrossRef]   [PubMed]  

16. D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005). [CrossRef]   [PubMed]  

17. J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012). [CrossRef]  

18. T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behavior of H2 and D2 in a strong, femtosecond, titanium:sapphire laser field,” J. Phys. At. Mol. Opt. Phys. 30(9), 2167–2175 (1997). [CrossRef]  

19. C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000). [CrossRef]  

20. S. Saugout, E. Charron, and C. Cornaggia, “H2 double ionization with few-cycle laser pulses,” Phys. Rev. A 77(2), 023404 (2008). [CrossRef]  

21. C. Trump, H. Rottke, and W. Sandner, “ Multiphoton ionization of dissociating D 2 + molecules, ” Phys. Rev. A 59(4), 2858–2863 (1999). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990).
    [Crossref] [PubMed]
  2. L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
    [Crossref]
  3. A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990).
    [Crossref] [PubMed]
  4. X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
    [Crossref] [PubMed]
  5. M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013).
    [Crossref] [PubMed]
  6. E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76(22), 4140–4143 (1996).
    [Crossref] [PubMed]
  7. J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
    [Crossref] [PubMed]
  8. T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52(4), R2511–R2514 (1995).
    [Crossref] [PubMed]
  9. G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997).
    [Crossref]
  10. T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
    [Crossref] [PubMed]
  11. C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010).
    [Crossref]
  12. T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
    [Crossref] [PubMed]
  13. Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
    [Crossref]
  14. A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
    [Crossref]
  15. H. Stapelfeldt, E. Constant, and P. B. Corkum, “Wave packet structure and dynamics measured by Coulomb explosion,” Phys. Rev. Lett. 74(19), 3780–3783 (1995).
    [Crossref] [PubMed]
  16. D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005).
    [Crossref] [PubMed]
  17. J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
    [Crossref]
  18. T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behavior of H2 and D2 in a strong, femtosecond, titanium:sapphire laser field,” J. Phys. At. Mol. Opt. Phys. 30(9), 2167–2175 (1997).
    [Crossref]
  19. C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
    [Crossref]
  20. S. Saugout, E. Charron, and C. Cornaggia, “H2 double ionization with few-cycle laser pulses,” Phys. Rev. A 77(2), 023404 (2008).
    [Crossref]
  21. C. Trump, H. Rottke, and W. Sandner, “ Multiphoton ionization of dissociating D 2 + molecules, ” Phys. Rev. A 59(4), 2858–2863 (1999).
    [Crossref]

2014 (1)

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

2013 (2)

M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013).
[Crossref] [PubMed]

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

2012 (2)

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

2010 (1)

C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010).
[Crossref]

2008 (1)

S. Saugout, E. Charron, and C. Cornaggia, “H2 double ionization with few-cycle laser pulses,” Phys. Rev. A 77(2), 023404 (2008).
[Crossref]

2006 (1)

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

2005 (3)

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005).
[Crossref] [PubMed]

2000 (1)

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

1999 (2)

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

C. Trump, H. Rottke, and W. Sandner, “ Multiphoton ionization of dissociating D 2 + molecules, ” Phys. Rev. A 59(4), 2858–2863 (1999).
[Crossref]

1997 (2)

G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997).
[Crossref]

T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behavior of H2 and D2 in a strong, femtosecond, titanium:sapphire laser field,” J. Phys. At. Mol. Opt. Phys. 30(9), 2167–2175 (1997).
[Crossref]

1996 (1)

E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76(22), 4140–4143 (1996).
[Crossref] [PubMed]

1995 (2)

T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52(4), R2511–R2514 (1995).
[Crossref] [PubMed]

H. Stapelfeldt, E. Constant, and P. B. Corkum, “Wave packet structure and dynamics measured by Coulomb explosion,” Phys. Rev. Lett. 74(19), 3780–3783 (1995).
[Crossref] [PubMed]

1990 (2)

P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990).
[Crossref] [PubMed]

A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990).
[Crossref] [PubMed]

Ali, R.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Alnaser, A. S.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Anis, F.

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Atabek, O.

A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990).
[Crossref] [PubMed]

Bandrauk, A. D.

T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52(4), R2511–R2514 (1995).
[Crossref] [PubMed]

Ben-Itzhak, I.

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Bryan, W. A.

C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010).
[Crossref]

Bucksbaum, P. H.

P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990).
[Crossref] [PubMed]

Calvert, C. R.

C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010).
[Crossref]

Carnes, K. D.

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Chang, Z.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Charron, E.

S. Saugout, E. Charron, and C. Cornaggia, “H2 double ionization with few-cycle laser pulses,” Phys. Rev. A 77(2), 023404 (2008).
[Crossref]

Chin, S. L.

T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behavior of H2 and D2 in a strong, femtosecond, titanium:sapphire laser field,” J. Phys. At. Mol. Opt. Phys. 30(9), 2167–2175 (1997).
[Crossref]

Cocke, C. L.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Codling, K.

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

Constant, E.

E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76(22), 4140–4143 (1996).
[Crossref] [PubMed]

H. Stapelfeldt, E. Constant, and P. B. Corkum, “Wave packet structure and dynamics measured by Coulomb explosion,” Phys. Rev. Lett. 74(19), 3780–3783 (1995).
[Crossref] [PubMed]

Corkum, P. B.

E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76(22), 4140–4143 (1996).
[Crossref] [PubMed]

H. Stapelfeldt, E. Constant, and P. B. Corkum, “Wave packet structure and dynamics measured by Coulomb explosion,” Phys. Rev. Lett. 74(19), 3780–3783 (1995).
[Crossref] [PubMed]

Cornaggia, C.

S. Saugout, E. Charron, and C. Cornaggia, “H2 double ionization with few-cycle laser pulses,” Phys. Rev. A 77(2), 023404 (2008).
[Crossref]

Czasch, A.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

de Vivie-Riedle, R.

M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013).
[Crossref] [PubMed]

Ding, J.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

Dörner, R.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Engel, V.

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

Ergler, T.

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

Ergler, Th.

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

Esry, B. D.

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Feuerstein, B.

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

Figger, H.

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005).
[Crossref] [PubMed]

Frasinski, L. J.

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

Gaire, B.

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Ghimire, S.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Gibson, G. N.

G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997).
[Crossref]

Giusti-Suzor, A.

A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990).
[Crossref] [PubMed]

Gong, X.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

Guo, C.

G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997).
[Crossref]

Hänsch, T. W.

D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005).
[Crossref] [PubMed]

He, F.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

He, P.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

He, X.

A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990).
[Crossref] [PubMed]

Ilkov, F. A.

T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behavior of H2 and D2 in a strong, femtosecond, titanium:sapphire laser field,” J. Phys. At. Mol. Opt. Phys. 30(9), 2167–2175 (1997).
[Crossref]

Jahnke, T.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Ji, Q.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

Johnson, N. G.

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Kiess, A.

D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005).
[Crossref] [PubMed]

Kim, H.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Kling, M. F.

M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013).
[Crossref] [PubMed]

Korn, G.

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

Kunitski, M.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Langley, A. J.

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

Lein, M.

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

Li, M.

G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997).
[Crossref]

Lin, C. D.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Litvinyuk, I. V.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Maharjan, C. M.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

McKenna, J.

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Meckel, M.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Mies, F. H.

A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990).
[Crossref] [PubMed]

Moshammer, R.

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

Muller, H. G.

P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990).
[Crossref] [PubMed]

Neira, J.

G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997).
[Crossref]

Newell, W. R.

C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010).
[Crossref]

Osipov, T.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Pan, H.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

Parke, E.

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Paulus, G. G.

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

Pavicic, D.

D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005).
[Crossref] [PubMed]

Plumridge, J.

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

Posthumus, J. H.

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

Ranitovic, P.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Rathje, T.

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

Rottke, H.

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

C. Trump, H. Rottke, and W. Sandner, “ Multiphoton ionization of dissociating D 2 + molecules, ” Phys. Rev. A 59(4), 2858–2863 (1999).
[Crossref]

Rudenko, A.

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

Sandner, W.

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

C. Trump, H. Rottke, and W. Sandner, “ Multiphoton ionization of dissociating D 2 + molecules, ” Phys. Rev. A 59(4), 2858–2863 (1999).
[Crossref]

Sann, H.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Saugout, S.

S. Saugout, E. Charron, and C. Cornaggia, “H2 double ionization with few-cycle laser pulses,” Phys. Rev. A 77(2), 023404 (2008).
[Crossref]

Sayler, A. M.

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Schmidt, L. Ph. H.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Schröter, C. D.

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

Schumacher, D. W.

P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990).
[Crossref] [PubMed]

Song, Q.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

Stapelfeldt, H.

E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76(22), 4140–4143 (1996).
[Crossref] [PubMed]

H. Stapelfeldt, E. Constant, and P. B. Corkum, “Wave packet structure and dynamics measured by Coulomb explosion,” Phys. Rev. Lett. 74(19), 3780–3783 (1995).
[Crossref] [PubMed]

Taday, P. F.

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

Tong, X. M.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

Trump, C.

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

C. Trump, H. Rottke, and W. Sandner, “ Multiphoton ionization of dissociating D 2 + molecules, ” Phys. Rev. A 59(4), 2858–2863 (1999).
[Crossref]

Ullrich, J.

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

Ulrich, B.

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

von den Hoff, P.

M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013).
[Crossref] [PubMed]

Voss, S.

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Walsh, T. D. G.

T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behavior of H2 and D2 in a strong, femtosecond, titanium:sapphire laser field,” J. Phys. At. Mol. Opt. Phys. 30(9), 2167–2175 (1997).
[Crossref]

Williams, I. D.

C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010).
[Crossref]

Wittmann, M.

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

Wu, J.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Wustelt, P.

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

Zavriyev, A.

P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990).
[Crossref] [PubMed]

Zeng, H.

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

Zeng, S.

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

Znakovskaya, I.

M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013).
[Crossref] [PubMed]

Zrost, K.

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

Zuo, T.

T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52(4), R2511–R2514 (1995).
[Crossref] [PubMed]

J. Phys. At. Mol. Opt. Phys. (2)

Th. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Ultrafast mapping of H2+ (D2+) nuclear wave packets using time-resolved Coulomb explosion imaging,” J. Phys. At. Mol. Opt. Phys. 39(13), S493–S501 (2006).
[Crossref]

T. D. G. Walsh, F. A. Ilkov, and S. L. Chin, “The dynamical behavior of H2 and D2 in a strong, femtosecond, titanium:sapphire laser field,” J. Phys. At. Mol. Opt. Phys. 30(9), 2167–2175 (1997).
[Crossref]

Nat. Commun. (1)

J. Wu, M. Meckel, L. Ph. H. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dörner, “Probing the tunnelling site of electrons in strong field enhanced ionization of molecules,” Nat. Commun. 3, 1113 (2012).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, “(Sub-)femtosecond control of molecular reactions via tailoring the electric field of light,” Phys. Chem. Chem. Phys. 15(24), 9448–9467 (2013).
[Crossref] [PubMed]

Phys. Rep. (1)

C. R. Calvert, W. A. Bryan, W. R. Newell, and I. D. Williams, “Time-resolved studies of ultrafast wavepacket dynamics in hydrogen molecules,” Phys. Rep. 491(1), 1–28 (2010).
[Crossref]

Phys. Rev. A (6)

A. S. Alnaser, B. Ulrich, X. M. Tong, I. V. Litvinyuk, C. M. Maharjan, P. Ranitovic, T. Osipov, R. Ali, S. Ghimire, Z. Chang, C. D. Lin, and C. L. Cocke, “Simultaneous real-time tracking of wave packets evolving on two different potential curves in H2+ and D2+,” Phys. Rev. A 72(3), 030702 (2005).
[Crossref]

T. Zuo and A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52(4), R2511–R2514 (1995).
[Crossref] [PubMed]

C. Trump, H. Rottke, M. Wittmann, G. Korn, W. Sandner, M. Lein, and V. Engel, “Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation of H2+ and D2+,” Phys. Rev. A 62(6), 063402 (2000).
[Crossref]

S. Saugout, E. Charron, and C. Cornaggia, “H2 double ionization with few-cycle laser pulses,” Phys. Rev. A 77(2), 023404 (2008).
[Crossref]

C. Trump, H. Rottke, and W. Sandner, “ Multiphoton ionization of dissociating D 2 + molecules, ” Phys. Rev. A 59(4), 2858–2863 (1999).
[Crossref]

J. McKenna, F. Anis, A. M. Sayler, B. Gaire, N. G. Johnson, E. Parke, K. D. Carnes, B. D. Esry, and I. Ben-Itzhak, “Controlling strong-field fragmentation of H2+ by temporal effects with few-cycle laser pulses,” Phys. Rev. A 85(2), 023405 (2012).
[Crossref]

Phys. Rev. Lett. (10)

G. N. Gibson, M. Li, C. Guo, and J. Neira, “Strong-field dissociation and ionization of H2+ using ultrashort laser pulses,” Phys. Rev. Lett. 79(11), 2022–2025 (1997).
[Crossref]

T. Rathje, A. M. Sayler, S. Zeng, P. Wustelt, H. Figger, B. D. Esry, and G. G. Paulus, “Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2+ molecular ion beam target,” Phys. Rev. Lett. 111(9), 093002 (2013).
[Crossref] [PubMed]

P. H. Bucksbaum, A. Zavriyev, H. G. Muller, and D. W. Schumacher, “Softening of the H2+ molecular bond in intense laser fields,” Phys. Rev. Lett. 64(16), 1883–1886 (1990).
[Crossref] [PubMed]

L. J. Frasinski, J. H. Posthumus, J. Plumridge, K. Codling, P. F. Taday, and A. J. Langley, “Manipulation of bond hardening in H2+ by chirping of intense femtosecond laser pulses,” Phys. Rev. Lett. 83(18), 3625–3628 (1999).
[Crossref]

A. Giusti-Suzor, X. He, O. Atabek, and F. H. Mies, “Above-threshold dissociation of H2+ in intense laser fields,” Phys. Rev. Lett. 64(5), 515–518 (1990).
[Crossref] [PubMed]

X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, “Two-dimensional directional proton emission in dissociative ionization of H2.,” Phys. Rev. Lett. 113(20), 203001 (2014).
[Crossref] [PubMed]

H. Stapelfeldt, E. Constant, and P. B. Corkum, “Wave packet structure and dynamics measured by Coulomb explosion,” Phys. Rev. Lett. 74(19), 3780–3783 (1995).
[Crossref] [PubMed]

D. Pavičić, A. Kiess, T. W. Hänsch, and H. Figger, “Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances,” Phys. Rev. Lett. 94(16), 163002 (2005).
[Crossref] [PubMed]

T. Ergler, A. Rudenko, B. Feuerstein, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields,” Phys. Rev. Lett. 95(9), 093001 (2005).
[Crossref] [PubMed]

E. Constant, H. Stapelfeldt, and P. B. Corkum, “Observation of enhanced ionization of molecular ions in intense laser fields,” Phys. Rev. Lett. 76(22), 4140–4143 (1996).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic view of the relevant potential curves of H2 and H2+ in pump-probe experiments. Three-photon transition and one-photon transition are indicated by three arrows and one arrow, respectively.
Fig. 2
Fig. 2 The measured coincident proton KE spectrum versus the pump-probe delay. Two solid lines: classically simulated dissociation trajectories (KE at different time delay) of 1ω and net-2ω channels.
Fig. 3
Fig. 3 (a) Noncoincident KE spectra of protons from the pump-probe experiments at the different intensities; (b) Same as (a) but only coincident events.
Fig. 4
Fig. 4 (a) H2+ potential energy curves for the 1sσg electronic ground state and 2pσu first excited state. (b) Simulated dissociation trajectories for 1ω and net-2ω channels. (c) Simulated KE of the protons produced by second ionization of the dissociating H2+ at different delay times.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

v= 2 E d /μ ,
R= R 0 + v ¯ ×τ,
R(1ω)=4.8+0.0785×(τ3),
R(net2ω)=3.3+0.2075×τ.
E CE = 1 2 ( E d + e 2 R ),

Metrics