Abstract

We present a multi-orbital-angular-momentum (OAM) multi-core supermode fiber (MOMCSF) to transmit OAM modes. The MOMCSF consists of equally-spaced and circularly-arranged multiple cores, in which the core pitch is small enough to support strong coupling OAM supermodes. The characteristics of OAM modes in MOMCSFs with different core pitches and core numbers are analyzed. The performances of mode coupling and nonlinearity are optimized by designing multiple degrees of freedom of the supermode fiber. The obtained results show that the designed MOMCSF can transmit multiple OAM modes with favorable performance of low mode coupling, low nonlinearity, and low modal dependent loss.

© 2015 Optical Society of America

1. Introduction

Angular momentum (AM) is one of the fundamental quantities in physics, along with energy and linear momentum. In optics, the total AM of a light beam can contain a spin contribution associated with polarization, and an orbital contribution associated with the spatial profile of the light intensity and phase. When a light beam is circularly polarized, each of its photons carries a spin angular momentum (SAM) of , where ħ is the reduced Planck constant and s = ± 1 corresponds to left- or right-circular polarization [1]. While for a light beam with spiral phase front exp(ilφ), each of its photons carries an orbital angular momentum (OAM) of , where φ is azimuth angle and l is an integer called topological charge number [2]. An OAM carrying beam is twisted like a corkscrew around its axis of travel and the light waves at the axis itself cancel each other out resulting in a doughnut intensity profile. Due to the special phase structure (spiral phase front), intensity structure (doughnut intensity), and dynamic characteristic (orbital angular momentum), OAM beams have been applied to explore for a variety of novel natural phenomena. For instance, OAM beams can be used for particle trapping, imaging, quantum information processing, and so on [3–6 ]. Very recently, OAM beams have also shown their potential use in communication systems to overcome the capacity crunch [7]. The unlimited topological charge values of OAM and the inherent orthogonality between different OAMs provide the great potential to multiplex a large number of OAM beams to tremendously increase the total capacity. In the recent years, OAM multiplexing has witnessed remarkable advancements in both free-space and fiber communication systems [7–12 ].

In order to mitigate the influence of external environment and realize long-distance or flexible bending-route OAM transmission, it is believed that using fibers for OAM transmission is preferable. A lot of theoretical and experimental efforts have been devoted for OAM transmission in fibers [8, 13–21 ]. Remarkably, most of the previous works adopt small-size high-contrast-index ring-core fiber structures. Such structures can reduce the inter-mode crosstalk, restrict radially higher order modes and stably support multiple OAM modes. However, high-contrast-index and small core area will result in a small mode effective area (Aeff), i.e. a large nonlinear coefficient. From the view of OAM transmission, high nonlinearity is not expected. For long-distance OAM transmission, nonlinear effects could cause nonlinearity-induced power loss and destroy the purity of the transmitted OAM spectrum. Nonlinear effect is considered to be a fundamental limit on fiber transmission capacity, especially for long-distance OAM multiplexing transmissions. Moreover, small-size high-contrast-index structure is also not conducive to fiber fabrication and mode excitation.

In this paper, we propose a multi-OAM multi-core supermode fiber (MOMCSF) for OAM transmission. Multi-core supermode fibers offering both large mode Aeff and high core density, have been used in high power fiber transmission, sensing, high power laser, and space-division multiplexing [22–26 ]. Here, we focus on using multi-core supermode fibers for low-crosstalk and low-nonlinearity OAM transmission. Although uncoupled multi-core fibers have been used for OAM transmission [27, 28 ]. However, to the best of our knowledge, there have been limited research efforts on supermode fibers for OAM transmission. We study in detail the characteristics of OAM modes guided by MOMCSFs with different core numbers and core pitches. By optimizing the design of the core pitch, relative refractive index difference, and core radius, a 6-core MOMCSF has been presented with low nonlinearity, low mode coupling, and low modal dependent loss.

2. Fiber structure and OAM characteristics

The schematic three dimensional (3D) structure and cross-section of a typical MOMCSF are shown in Fig. 1 . The MOMCSF consists of multiple identical cores and each of them supports only two degenerate polarization modes. The cores are arranged equally-spaced and circularly from the fiber center. In Fig. 1, the number of cores, as an example, is assumed to be 6.The radius of each core is a, the core pitch between adjacent cores is Λ, and the relative refractive index difference between core and cladding is defined as Δ = (n1-n2)/n2. When the core-to-core distance Λ becomes shorter, isolated modes in each core will undergo strong mode coupling. During light propagation, evanescent field coupling occurs resulting in the formation of so-called supermodes. By combining the high-order eigensupermodes with appropriate phase difference, one can get OAM modes. As an example, the calculated intensity and phase profiles of OAM-1 guided by the 6-core MOMCSF are depicted in the insets of Fig. 1.

 figure: Fig. 1

Fig. 1 Three dimensional structure and cross-section of a multi-OAM multi-core supermode fiber (MOMCSF) for OAM transmission. Insets are intensity and phase profiles of OAM-1 guided by MOMCSF.

Download Full Size | PPT Slide | PDF

A 6-core MOMCSF can support 12 eigensupermodes (including degenerate polarization modes) which can be divided into four groups (0-order, 1-order, 2-order, 3-order) according to the propagation constants (modes of each group have the same propagation constant). The 0- and 3-order supermodes are double degenerate, while the 1- and 2-order supermodes are quadruple degenerate [25]. Figure 2(a) illustrates the intensity and polarization distributions of the 2-order supermodes. OAM states exist as coherent combinations of the quadruple degenerate supermodes. By combining two supermodes with a phase difference of ±π/2, one can get two OAM modes with opposite sign of topological charge numbers, as shown in Fig. 2(b). From the phase profiles, one can believe that such a supermode fiber structure can support OAM transmission. Meanwhile, the obtained OAM modes are circularly polarized. Remarkably, the possible combinations forming an OAM beam can be varied. By combining all four degenerate supermodes together with appropriate phase difference, arbitrarily polarized OAM beams can also be obtained.

 figure: Fig. 2

Fig. 2 (a) Intensity and polarization distributions of the 2-order supermodes. (b) Phase profiles of the guided OAM2and OAM-2in a 6-core MOMCSF.

Download Full Size | PPT Slide | PDF

To further evaluate the characteristics of OAM modes in a MOMCSF, we analyze the quality of OAM modes with different core pitches and different core numbers. The core radius a, wavelength λ, and relative refractive index difference Δ are set to 4µm, 1.55µm, and 0.3%, respectively. For a 6-core MOMCSF with different Λ (9µm, 12µm, 16µm), the intensity profiles, phase distributions and azimuthal phase variations for OAM-1 and OAM2are shown in Fig. 3(a) . Moreover, the calculated results for OAM-1, OAM2, OAM-3 and OAM4 of a 10-core MOMCSF are displayed in Fig. 3(b). The maximum order of the OAM modes guided by an N-core MOMCSF is less than N/2 which means that a 6-core MOMCSF can support the 2-order OAM (the max |l| is 2) transmission and a 10-core MOMCSF can support the 4-order OAM (the max |l| is 4) transmission. From Fig. 3 it can be clearly seen that the OAM supermodes have helical phase fronts.

 figure: Fig. 3

Fig. 3 (a) Intensity profiles, phase distributions and azimuthal phase variations for OAM-1 and OAM2 in a 6-core MOMCSF with different Λ (9 μm, 12 μm, 16 μm). (b) Intensity profiles, phase distributions and azimuthal phase variations for OAM-1, OAM2, OAM-3 and OAM4 in a 10-core MOMCSF with different Λ (9 μm, 12 μm, 16 μm).

Download Full Size | PPT Slide | PDF

To estimate the purity of the OAM supermodes, we calculate the OAM power weight. Assuming that the phase function of an OAM supermode isf(φ). Expanding f(φ) in Fourier series, one can obtain

f(φ)=l=Clexp(ilφ)l=|Cl|2=1
whereCl=1/2π02πf(φ)exp(ilφ)dφis the complex coefficient. |Cl|2is the normalized power weight of the OAM l [29]. Using Eq. (1), we calculate the mode purity of the 6-core and 10-core MOMCSF as a function of Λ. The results are depicted in Figs. 4 and 5 . From the figure, we can find that the purity of OAM modes almost linear decrease with the increase of Λ. And the purity of high-order OAM modes decrease faster than low-order OAM modes. Moreover, for the same Λ and the same order OAM modes, the more cores we put in the structure, the purer OAM mode with higher purity we can achieve. For instance, the purity of OAM1 in the 10-core MOMCSF is larger than the one in the 6-core MOMCSF. For a larger Λ (e.g. 16um), the purity of high-order (e.g. OAM4) OAM mode become relatively low (77.58%). In this case, one can use a shot length ring fiber at output end of the MOMCSF to improve the mode purity, just as ref [30]. does. Even though without the ring fiber filter, the characteristics of the OAM is still obvious which can meet most application situations. From Fig. 4 we can also find that crosstalk of OAMl of an N-core MOMCSF are concentrated on the OAMl- N and OAMl+ N. So when a pure free-space OAMl is used to excite OAMl in a MOMCSF, it will not cause serious mode crosstalk. In addition, different OAM modes have similar intensity distributions giving similar confinement factors and leading to small modal dependent loss.

 figure: Fig. 4

Fig. 4 OAM charge weight for OAM-1 and OAM2 in a 6-core MOMCSF with different Λ (9 μm, 12 μm, 16 μm).

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 (a) OAM purity for OAM-1 and OAM2 in a 6-core MOMCSF as a function of Λ. (b) OAM purity for OAM-1, OAM2, OAM-3 and OAM4 in a 10-core MOMCSF as a function of Λ.

Download Full Size | PPT Slide | PDF

3. Fiber optimization design for OAM modes transmission

It is noteworthy that, compared with conventional fiber structures, MOMCSFs have more degrees of design freedom, such as number of cores, core size, pitch length, relative refractive index difference and so on. Even compared to a ring fiber, the MOMCSF also has an additional degree, i.e. the number of cores which can be used to control the density of OAM states. The abundant design freedoms are very favorable for optimizing fiber performances. We consider two design goals to optimize the performance of the MOMCSF for OAM transmission: (1) large effective index difference (ΔNeff) between adjacent higher order modes to avoid mode coupling; (2) large Aeff to reduce nonlinearity. In this optimization design, the number of cores is selected to be 6. The cladding diameter, wavelength and cladding refractive index n2are assumed to be 125µm, 1.55µm and 1.444, respectively. We first fix the core radius a to be 4µm to optimize the fiber structure. Due to strong mode coupling, the number of eigensupermodes is not always a constant as Λ decreases. The number of supermodes (including spatial and polarization degrees of freedom) as variations of Λ and Δ is shown in Fig. 6(a) .For a small Λ, large Δ can increase the number of supermodes, while small Δ can reduce the number of supermodes. In order to keep the number of supermodes of 12, only the parameters in light blue area are available. The minimum ΔNeff among different order supermodes as a function of Λ and Δ is illustrated in Fig. 6(b) (only the 12 supermodes area (i.e. light blue area corresponding to Fig. 6 (a)) is effective).As shown in Fig. 6(b), it is found that minimum ΔNeff increase with the decrease of Λ. While the variations of Δ has a small effect on minimum ΔNeff, especially for a small Λ. The minimum ΔNeff is larger than 1e-4 for most of the scan range which can guarantee a lower mode coupling. So considering large ΔNeff, small Λ is more favorable. Figure 7 shows Aeff as functions of Λ and Δ for the 0-, 1-, 2- and 3- order supermodes. For a smaller Λ, Aeff decreases with the increase of Δ and decrease of Λ. For a lager Λ and fixed Δ, the variations of Aeff become smooth. However, in most of the scan range, the Aeff is larger than 350 µm2 which is large enough to guarantee a small nonlinearity. From Figs. 6 and 7 , one can see that the design parameters have broad available scope, featuring favorable fabrication tolerance. Considering the practical fabrication process, we choose a group of optimized parameters as Δ = 0.33 and Λ = 12µm.The minimum ΔNeff is 1.38e-4 and the Aeff of the 0-, 1-, 2- and 3-order supermodes are536.2 µm2, 507.4 µm2, 444.9µm2 and 392.2 µm2, respectively. It is noted that even Δ and Λ deviate slightly from the designed values, the relatively large fabrication tolerance can still guarantee a favorable fiber performance.

 figure: Fig. 6

Fig. 6 (a) Number of supermodes as functions of Λ and Δ. (b) Minimum ΔNeff among different order supermodes as functions of Λ and Δ.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 Aeff as functions of Λ and Δ for the (a) 0-, (b) 1-, (c) 2- and (d) 3-order supermodes.

Download Full Size | PPT Slide | PDF

We then give a detailed analysis of the impact of coupling on Aeff. For a single mode fiber with core radius of 4 μm and relative refractive index difference Δ of 0.33%, the Aeff of fiber fundamental mode is about 81.9 µm2, shown in Fig. 8 (blackdot dash line). To compare with a MOMCSF, we calculate average Aeff in one core as a function of Λ of different order supermodes. The average Aeff is defined as the Aeff of one supermode is divided by 6.The results are displayed in Fig. 8. From the curves, one can see that the mode coupling can influent Aeff. When Λ is relatively small, strong mode coupling can cause a small Aeff. However, for an appropriate Λ, the average Aeff in one core of 0- and 1- order supermodes can be larger than 81.9 µm2. With the increase of core pitch Λ, the coupling between cores become very weak, and each core can be regard as an independent core. Then all the modes will have the same average effective area (approaches 81.9 μm2).

 figure: Fig. 8

Fig. 8 Average Aeff in one core as a function of Λ of the 0- (S0), 1- (S1), 2- (S2) and 3- (S3) order supermodes. Aeff of the fundamental mode of a single-mode fiber with the same size of one core of the MOMCSF.

Download Full Size | PPT Slide | PDF

To further assess the performance of the 6-core MOMCSF with different structure parameters, we fix the Δ to be 0.33% and analyze the number of supermodes, minimum ΔNeff and Aeff as functions of the core radius a and Λ/a. As shown in Fig. 9(a) , for a small Λ/a, the variation of a can also cause the change of the mode number. When the Λ/a is larger than 2.5, the number of supermodes remains 12 with a changing from 3.5 to 4.5 µm. The minimum ΔNeff as functions of a and Λ/a is depicted in Fig. 9(b). The minimum ΔNeff increases with the decrease of a and Λ/a. For most of the scan range, the minimum ΔNeff is larger than 1e-4. A small a benefits large ΔNeff, but goes against the Aeff, as shown in Fig. 10 . For a larger Λ and a, Aeff changes slightly and remains a larger value. Remarkably, even for a smaller Λ and a, Aeff larger than 350 µm2 is still available.

 figure: Fig. 9

Fig. 9 (a) Number of supermodes as functions of Λ/a and a. (b) Minimum ΔNeff among different order supermodes as functions of Λ/a and a.

Download Full Size | PPT Slide | PDF

 figure: Fig. 10

Fig. 10 Aeff as functions of Λ/a and a for the (a) 0-, (b) 1-, (c) 2- and (d) 3-order supermodes.

Download Full Size | PPT Slide | PDF

Moreover, if the MOMCSF is used for communication, compatible with wavelength division multiplexing(WDM) is very important. Here, we still consider a 6-core MOMCSF, the core radius a, core pitch Λ, wavelength λ, relative refractive index difference Δ are set to be 4 μm, 12 μm, 1.55 μm, and 0.3%, respectively. OAM purity as a function of wavelength is shown in Fig. 11(a) . From 1525 nm to 1630 nm, the purity of OAM-1 and OAM2 are larger than 90% and the purity increase with the increase of wavelength. As shown in Fig. 11(b), ΔNeff between adjacent order supermodes is larger than 1e-4 for all the wavelength scanning range. The Aeff is larger than 400 μm2 for all modes, shown in Fig. 11(c). From Fig. 11, it can be confirmed that the fiber is suitable for WDM transmission.

 figure: Fig. 11

Fig. 11 (a) OAM purity for OAM-1 and OAM2 in a 6-core MOMCSF as a function of wavelength. (b) Neff difference between adjacent order supermodes as a function of wavelength. (c) A eff as functions wavelength of the 0- (S0),1- (S1), 2- (S2) and3-(S3) order supermodes.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we have designed a MOMCSF featuring both low mode coupling and low nonlinearity for multiple OAM modes transmission. The proposed supermode fiber structure consists of multiple strong coupled cores which are arranged equally-spaced and circularly from the fiber center. The characteristics of OAM modes in a 6-core MOMCSF with different core pitches and core numbers have been studied in detail. OAM modes can be guided by such fiber structure with small distortion for a small core pitch. Even for a larger core pitch, one can still clearly see the distinct spiral phase profiles of OAM modes and only slight quality degradation of OAM modes is induced. Through the optimized design of the core pitch, relative refractive index difference, and core radius, the MOMCSF has featured superior properties such as low nonlinearity, low mode coupling, and large fabrication tolerance. Moreover, the MOMCSF is WDM compatible. The presented MOMCSF with favorable performance may find wide potential use in long-distance OAM multiplexing transmission systems and other OAM communication applications.

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) under grant 2014CB340004, the National Natural Science Foundation of China (NSFC) under grants 11274131, 61222502 and L1222026, the Program for New Century Excellent Talents in University (NCET-11-0182), the Wuhan Science and Technology Plan Project under grant 2014070404010201, the Fundamental Research Funds for the Central Universities (HUST) under grants 2012YQ008 and 2013ZZGH003, and the seed project of Wuhan National Laboratory for Optoelectronics (WNLO).

References and links

1. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909). [CrossRef]  

2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]   [PubMed]  

3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]  

4. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005). [CrossRef]   [PubMed]  

5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef]   [PubMed]  

6. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [CrossRef]  

7. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]  

8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef]   [PubMed]  

9. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014). [CrossRef]   [PubMed]  

10. J. Wang, S. Li, C. Li, L. Zhu, C. Gui, D. Xie, Y. Qiu, Q. Yang, and S. Yu, “Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes,” in Proceedings of Optical Fiber Communication Conference(OFC), paper W1H.4 (2014). [CrossRef]  

11. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014). [CrossRef]   [PubMed]  

12. J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, J. Sun, X. Zhang, W. Shieh, and A. E. Willner, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper Mo.4.5.1 (2014). [CrossRef]  

13. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009). [CrossRef]   [PubMed]  

14. S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, “Nonlinear generation of broadband polarisation vortices,” Opt. Express 18(22), 23212–23217 (2010). [CrossRef]   [PubMed]  

15. N. Bozinovic, P. Kristensen, and S. Ramachandran, “Long-range fiber-transmission of photons with orbital angularmomentum,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper CTuB1 (2011).

16. Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

17. P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of12 OAM states in air-core fiber,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper CTu2K.2 (2013).

18. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014). [CrossRef]   [PubMed]  

19. S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013). [CrossRef]  

20. S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014). [PubMed]  

21. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes,” Opt. Express 22(15), 18044–18055 (2014). [CrossRef]   [PubMed]  

22. C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010). [CrossRef]  

23. Z. Liu, M. L. Tse, C. Wu, D. Chen, C. Lu, and H. Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20(19), 21749–21757 (2012). [CrossRef]   [PubMed]  

24. C. Jollivet, A. Mafi, D. Flamm, M. Duparré, K. Schuster, S. Grimm, and A. Schülzgen, “Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser,” Opt. Express 22(24), 30377–30386 (2014). [CrossRef]   [PubMed]  

25. C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011). [CrossRef]   [PubMed]  

26. R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km transmission over coupled-core fibre supporting 6 spatial modes,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper PD.3.2 (2014). [CrossRef]  

27. Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper We.10.P1.55 (2011). [CrossRef]  

28. Y. Awaji, N. Wada, and Y. Toda, “Observation of orbital angular momentum spectrum in propagating mode through seven-core fibers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper JTu2K.3 (2012). [CrossRef]  

29. B. Jack, M. J. Padgett, and S. Franke Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008). [CrossRef]  

30. Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
    [Crossref]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  4. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
    [Crossref] [PubMed]
  5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  6. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  7. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  9. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref] [PubMed]
  10. J. Wang, S. Li, C. Li, L. Zhu, C. Gui, D. Xie, Y. Qiu, Q. Yang, and S. Yu, “Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes,” in Proceedings of Optical Fiber Communication Conference(OFC), paper W1H.4 (2014).
    [Crossref]
  11. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
    [Crossref] [PubMed]
  12. J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, J. Sun, X. Zhang, W. Shieh, and A. E. Willner, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper Mo.4.5.1 (2014).
    [Crossref]
  13. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [Crossref] [PubMed]
  14. S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, “Nonlinear generation of broadband polarisation vortices,” Opt. Express 18(22), 23212–23217 (2010).
    [Crossref] [PubMed]
  15. N. Bozinovic, P. Kristensen, and S. Ramachandran, “Long-range fiber-transmission of photons with orbital angularmomentum,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper CTuB1 (2011).
  16. Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).
  17. P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of12 OAM states in air-core fiber,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper CTu2K.2 (2013).
  18. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref] [PubMed]
  19. S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
    [Crossref]
  20. S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
    [PubMed]
  21. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes,” Opt. Express 22(15), 18044–18055 (2014).
    [Crossref] [PubMed]
  22. C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
    [Crossref]
  23. Z. Liu, M. L. Tse, C. Wu, D. Chen, C. Lu, and H. Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20(19), 21749–21757 (2012).
    [Crossref] [PubMed]
  24. C. Jollivet, A. Mafi, D. Flamm, M. Duparré, K. Schuster, S. Grimm, and A. Schülzgen, “Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser,” Opt. Express 22(24), 30377–30386 (2014).
    [Crossref] [PubMed]
  25. C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
    [Crossref] [PubMed]
  26. R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km transmission over coupled-core fibre supporting 6 spatial modes,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper PD.3.2 (2014).
    [Crossref]
  27. Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper We.10.P1.55 (2011).
    [Crossref]
  28. Y. Awaji, N. Wada, and Y. Toda, “Observation of orbital angular momentum spectrum in propagating mode through seven-core fibers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper JTu2K.3 (2012).
    [Crossref]
  29. B. Jack, M. J. Padgett, and S. Franke Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
    [Crossref]
  30. Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
    [Crossref] [PubMed]

2014 (6)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
[Crossref] [PubMed]

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes,” Opt. Express 22(15), 18044–18055 (2014).
[Crossref] [PubMed]

C. Jollivet, A. Mafi, D. Flamm, M. Duparré, K. Schuster, S. Grimm, and A. Schülzgen, “Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser,” Opt. Express 22(24), 30377–30386 (2014).
[Crossref] [PubMed]

2013 (2)

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Z. Liu, M. L. Tse, C. Wu, D. Chen, C. Lu, and H. Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20(19), 21749–21757 (2012).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

2011 (3)

C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, “Supermodes for optical transmission,” Opt. Express 19(17), 16653–16664 (2011).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2010 (2)

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, “Nonlinear generation of broadband polarisation vortices,” Opt. Express 18(22), 23212–23217 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

B. Jack, M. J. Padgett, and S. Franke Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

2005 (1)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1909 (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Ahmed, N.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bai, N.

Balling, P.

Bao, C.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bernet, S.

Birnbaum, K. M.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brunet, C.

Cao, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Chen, D.

Chitgarha, M. R.

Dolinar, S.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dolinar, S. J.

Duparré, M.

Erkmen, B. I.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Fazal, I. M.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Flamm, D.

Franke Arnold, S.

B. Jack, M. J. Padgett, and S. Franke Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Fürhapter, S.

Grimm, S.

Guan, C.

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Huang, H.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Jack, B.

B. Jack, M. J. Padgett, and S. Franke Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Jesacher, A.

Jollivet, C.

Kristensen, P.

LaRochelle, S.

Lavery, M. P. J.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Li, G.

Li, L.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Li, S.

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

Liu, Z.

Lu, C.

Mafi, A.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Messaddeq, Y.

Molisch, A. F.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Ozdur, I.

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

B. Jack, M. J. Padgett, and S. Franke Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Poynting, J. H.

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Ramachandran, S.

Ren, Y.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Ritsch-Marte, M.

Rogawski, D.

Rusch, L. A.

Schülzgen, A.

Schuster, K.

Shi, J.

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Smith, C.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Tam, H. Y.

Tse, M. L.

Tur, M.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Ung, B.

Vaity, P.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wang, J.

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, L.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Willner, A. E.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Willner, M. J.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, C.

Xia, C.

Xie, G.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yan, M. F.

Yan, Y.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Yang, J.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

Yang, J.-Y.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yuan, L.

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Yue, Y.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zhang, L.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

Zhao, Z.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Zhou, X.

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

IEEE Photonics J. (2)

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ringfiber,” IEEE Photonics J. 4(2), 535–543 (2012).

S. Li and J. Wang, “Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

Nat. Commun. (1)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

B. Jack, M. J. Padgett, and S. Franke Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Opt. Commun. (1)

C. Guan, L. Yuan, and J. Shi, “Supermode analysis of multicore photonic crystal fibers,” Opt. Commun. 283(13), 2686–2689 (2010).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Sci. Rep. (1)

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (7)

J. Wang, S. Li, C. Li, L. Zhu, C. Gui, D. Xie, Y. Qiu, Q. Yang, and S. Yu, “Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes,” in Proceedings of Optical Fiber Communication Conference(OFC), paper W1H.4 (2014).
[Crossref]

J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, J. Sun, X. Zhang, W. Shieh, and A. E. Willner, “N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper Mo.4.5.1 (2014).
[Crossref]

N. Bozinovic, P. Kristensen, and S. Ramachandran, “Long-range fiber-transmission of photons with orbital angularmomentum,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper CTuB1 (2011).

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of12 OAM states in air-core fiber,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper CTu2K.2 (2013).

R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km transmission over coupled-core fibre supporting 6 spatial modes,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper PD.3.2 (2014).
[Crossref]

Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, “World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode,” in Proceedings of European Conference and Exhibition on Optical Communication (ECOC), paper We.10.P1.55 (2011).
[Crossref]

Y. Awaji, N. Wada, and Y. Toda, “Observation of orbital angular momentum spectrum in propagating mode through seven-core fibers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), paper JTu2K.3 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Three dimensional structure and cross-section of a multi-OAM multi-core supermode fiber (MOMCSF) for OAM transmission. Insets are intensity and phase profiles of OAM-1 guided by MOMCSF.
Fig. 2
Fig. 2 (a) Intensity and polarization distributions of the 2-order supermodes. (b) Phase profiles of the guided OAM2and OAM-2in a 6-core MOMCSF.
Fig. 3
Fig. 3 (a) Intensity profiles, phase distributions and azimuthal phase variations for OAM-1 and OAM2 in a 6-core MOMCSF with different Λ (9 μm, 12 μm, 16 μm). (b) Intensity profiles, phase distributions and azimuthal phase variations for OAM-1, OAM2, OAM-3 and OAM4 in a 10-core MOMCSF with different Λ (9 μm, 12 μm, 16 μm).
Fig. 4
Fig. 4 OAM charge weight for OAM-1 and OAM2 in a 6-core MOMCSF with different Λ (9 μm, 12 μm, 16 μm).
Fig. 5
Fig. 5 (a) OAM purity for OAM-1 and OAM2 in a 6-core MOMCSF as a function of Λ. (b) OAM purity for OAM-1, OAM2, OAM-3 and OAM4 in a 10-core MOMCSF as a function of Λ.
Fig. 6
Fig. 6 (a) Number of supermodes as functions of Λ and Δ. (b) Minimum ΔNeff among different order supermodes as functions of Λ and Δ.
Fig. 7
Fig. 7 Aeff as functions of Λ and Δ for the (a) 0-, (b) 1-, (c) 2- and (d) 3-order supermodes.
Fig. 8
Fig. 8 Average Aeff in one core as a function of Λ of the 0- (S0), 1- (S1), 2- (S2) and 3- (S3) order supermodes. Aeff of the fundamental mode of a single-mode fiber with the same size of one core of the MOMCSF.
Fig. 9
Fig. 9 (a) Number of supermodes as functions of Λ/a and a. (b) Minimum ΔNeff among different order supermodes as functions of Λ/a and a.
Fig. 10
Fig. 10 Aeff as functions of Λ/a and a for the (a) 0-, (b) 1-, (c) 2- and (d) 3-order supermodes.
Fig. 11
Fig. 11 (a) OAM purity for OAM-1 and OAM2 in a 6-core MOMCSF as a function of wavelength. (b) Neff difference between adjacent order supermodes as a function of wavelength. (c) A eff as functions wavelength of the 0- (S0),1- (S1), 2- (S2) and3-(S3) order supermodes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f ( φ ) = l = C l e x p ( i l φ ) l = | C l | 2 = 1

Metrics