Abstract

Terahertz (THz) time domain spectroscopy (THz-TDS) of a CoCr2O4 single crystal has been performed under magnetic fields up to 8 Tesla. The magnetic field dependences of inter-sublattice exchange resonance at different temperatures have been investigated. Benefiting from the phase and polarization sensitive detection technique in THz-TDS, the circular absorption dichroism and Faraday ellipticity in the THz frequency region are observed and are found to be tunable by the external magnetic field. The complex indices of refraction are obtained under different magnetic field, which present distinct rotatory dispersions arising from the exchange magnetic resonance.

© 2015 Optical Society of America

1. Introduction

The magnetic dynamics theory shows that there are two resonance modes with different frequency and opposite precession chirality in the ferrimagnet containing two non-equivalent spin sublattices [1, 2 ]. The lower frequency mode corresponds to the ordinary ferromagnetic resonance dominated by total magnetization and effective magnetic field, which normally fall in the microwave range and is observable by electron spin resonance (ESR) spectroscopy. In addition, the exchange interaction between sublattice spins give rise to an upper branch resonance,ωex, which is determined by the sublattice magnetizationM1 ,M2, as well as the coupling constant λ.This exchange magnon can be described by the following equation [1, 3 ],

ωex=λ(γ2M1γ1M2)
Here the γ1 and γ2 denotes the gyromagnetic ratio of M1 and M2, respectively. Different from the ferromagnetic resonance, the exchange resonance lies in the Terahertz (THz) or infrared (IR) region in most cases [3, 4 ].The CoCr2O4 cobalt chromite is a cubic normal spinel ferrimagnet with Tc = 97 K. It is composed with two magnetic sublattices, in which the magnetic Co2+ ions occupy the A sites and magnetic Cr3+ ions occupy the B sites. The Magnetic order in CoCr2O4 consists of long-range ferrimagnetic component below TC, and the short-range spiral component appears below 50 K [5, 6 ].An interest in the CoCr2O4 compound was renewed after the discovery of multiferroic effects in this system in recent years [7–10 ]. Very recently, D. Kamenskyi et al. observed an intersublattice-exchange magnetic resonance in THz spectra region in CoCr2O4 powder samples by backward-wave oscillators and Fourier transform infrared spectrometer [10].

The development of terahertz (THz) spectroscopy stimulated the research interests on the THz spin dynamics [11–14 ]. This is mainly attributed to the great advantage on the coherently generation and detection of the broadband THz electromagnetic pulse via time domain spectroscopy (TDS) [15–17 ]. Especially, recently developed terahertz (THz) magneto-optical time domain spectroscopy (MO-TDS) allows for the coherently detection of the field amplitude, phase and polarization of broadband THz pulse [11, 18–21 ]. Such techniques have been successfully used to study the THz optical chiralities such as circular dichroism and Faraday rotation induced by the ferromagnetic resonance, electron cyclotron resonance, magneto-plasmon resonance in magnetic materials and semiconductors [11, 22–26 ], which have significant importance to understand the spin dynamics and develop the tunable polarization optics in THz frequency range. However, such magneto-optic effects related to the intersublattice exchange magnon in ferrimagnets in THz frequency region remain unexplored so far. In this work, we investigated the THz transmission spectroscopy of CoCr2O4 single crystal under low temperature and magnetic field up to 8 Tesla by using THz MO-TDS. We observed distinct resonance absorption induced by the magnetic dipole transition from inter-sublattice exchange mode. The THz Faraday ellipsometry spectroscopy revealed the exchange-magnon-induced magneto-optic phenomena including optical rotatory dispersion, circular absorption dichroism, as well as the Faraday ellipticity in THz spectra range under different magnetic fields.

2. Samples and experiments

The single crystals of CoCr2O4 with <111> face were grown by the chemical vapor transport method [27]. The measured sample has trapezoid shape (2mm x 3mm size) with 0.8 mm thickness and is optically polished. For THz time domain spectroscopy experiment, a mode-locked Ti:sapphire laser is used to deliver femtosecond pulses with duration of 150 fs, center wavelength of 800 nm, and repetition rate of 76 MHz, which are divided into pump and probe beams. The pumping laser pulses are focused onto a LT-GaAs photoconductive antenna, which generates the broadband THz pulses. Free-space electro-optic sampling in a ZnTe single crystal is employed to detect the p-polarized electric field amplitude of the THz waveforms in the time domain. The superconducting magnet (Oxford Spectromag SM4000) is used to exert the magnetic field and tune the temperature for the sample. During the measurement for the transmission, the Faraday geometry was used, i.e., the direction of the magnetic field was parallel or antiparallel to the propagation direction of the THz beam. The incident THz pulse has an electric field with p polarization (polarized in the x-direction). The sample is fixed on a copper cold finger with 2 mm-diameter hole and is orientated arbitrarily around the <111> crystal axis. We used the THz MO-TDS method as reported in reference [19, 26 ] to measure the THz polarization change. One wire-grid THz polarizer (WGP) was placed to resolve the polarization of the transmitted THz pulse into one of two orthorhombic components defined by the rotation of its transmission axis to either + 45° or −45°. The transmitted pulse is further projected on a second WGP with horizontal orientation. Finally, a coordinate transformation is applied to obtain the THz electric field vector in two dimensional (x-y) space. The THz spectroscopy measurements were taken under a dry nitrogen purge.

3. Results and discussions

3.1 Exchange magnetic resonance

Figure 1 shows the amplitude of the complex transmission, T(ω)=|E˜t(ω)E˜ref(ω)|, in the range from 0.2 to 1.2 THz as measured in different external magnetic fields and temperatures. Here E˜t(ω) and E˜ref(ω) correspond to the fast Fourier (FFT) spectra for the THz waveforms transmitted through sample and empty sample holder, respectively. These spectra were taken without applying the THz WGPs and only present the p-polarized THz electric field transmission. It can be seen that the two absorption dips can be well distinguished in the spectrum as indicated by the dot lines. The low energy absorption around 0.3 THz is independent of applied magnetic field and temperature, which may be related to the birefringence in single crystal [13]. The high energy absorption peaks as guided by blue dot lines, which are originated from the inter-sublattice exchange resonance [10], moves toward high frequency side with increasing external magnetic field. In Fig. 2 , we plotted the minimum values of absorption dips as the function of magnetic field at different temperature. For comparison, the experimental data at 30 K taken from [10] are also displayed as open circles in this figure. The magnetic-field dependences of the magnetic resonances show nearly linear dependences in the studied magnetic field range at each temperature, which agree well with the experimental results measured by backward-wave oscillators and Fourier transform infrared spectrometer in [10]. The measurements were performed on powder samples in [10], where the anisotropic field can be counteracted. Therefore, the consistency with [10] indicates that the anisotropic-field contribution to the exchange mode can be neglected in our measurement configuration. Actually, it is reasonable considering that the anisotropic field in CoCr2O4 was estimated to be only in the order of 0.1 T by the earlier ESR experiment [28]. As the temperature goes down, the resonance frequency is increased and arrive maximum at 25 K, however, shows a small drop at 15 K. This anomaly is consistent with the structural transition occurs at Ts = 26 K, below which an incommensurate conical magnetic structure sets in [3].

 figure: Fig. 1

Fig. 1 Measured amplitude transmission spectra without using THz WGP under different external magnetic field and at temperature of (a) 15 K, (b) 25 K, (c) 50 K, (d) 90 K, respectively. The dot lines are guides for the eye.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 The magnetic resonance frequencies as the function of applied magnetic field at different temperatures. The open circles represent the data measured by backward-wave oscillators technique at 30 K, which is taken from [10].

Download Full Size | PPT Slide | PDF

3.2 Circular dichroic absorption

To further reveal the THz transmission chirality arising from the exchange resonance, we measured the electric-field-vector temporal profiles of transmitted THz pulses in k (wave vector) plane by using the same experimental method as in reference [19, 26 ]. The obtained x- (Ex) and y-components (Ey) of THz electric field waveforms under different magnetic field and 25 K temperature are displayed in Fig. 3 . In the following, the symbol + and - represent the magnetic fields parallel and antiparallel to the propagation direction of THz beam, respectively. As can be seen, the Ey is not zero without the application of magnetic field although the incident THz beam is x-direction polarized. The main feature revealed by Fig. 3 is that the sign of Ey is changed when reversing the external magnetic field, however, the Ex is independent of the magnetic field direction. Such polarity reversion of the transmitted THz waveforms indicates that the circular dichroic absorption take place, which can be revealed more clearly in frequency domain. The left-handed circularly polarized (LCP) or right-handed circularly polarized (RCP) THz radiation can be regarded as the superposition of two linearly polarized components orthogonal to each other with the phase delay of π2orπ2 [19, 26 ], i.e.,

ELCP(ω)=22[Ex(ω)+iEy(ω)]
ERCP(ω)=22[Ex(ω)iEy(ω)]
TheEx(ω)and Ey(ω)correspond to the complex Fourier spectrum from the THz waveform of Ex(t) and Ey(t) in Fig. 3, respectively. Figure 4 shows the amplitude of the complex transmission for LCP (-) and RCP ( + ) light,|t˜±(ω)|=|E˜±t(ω)E˜±ref(ω)|, under different external magnetic fields and at 25 K temperature. Here E˜±t(ω) and E˜±ref(ω) correspond to the complex circular FFT spectrum transmitted through the sample and through the empty sample holder, respectively. It should be mentioned that there is an absorption dip around 0.3 THz for the RCP transmission, which is independent of applied magnetic field and disappear in the LCP transmission spectra. This anomalous absorption may be related to the THz waveform distortion due to the birefringence in single crystal as mentioned above. In the case of zero magnetic field, a absorption dip from the exchange resonance at 0.5 THz shows up in the RCP THz transmission spectrum, while is absent for the LCP transmission. When the external magnetic field parallel with the wave vector of THz radiation, i.e., positive field, is applied, the LCP exchange magnon absorption is active while the RCP absorption is suppressed obviously. In contrast, the negative magnetic field tends to enhance RCP exchange resonance absorption but weaken the LCP absorption. It is clear that the exchange-resonance absorption dip moves toward high frequency side with increasing external magnetic field as guided by dot lines. The magnetic field dependence of resonance frequency accords with the result measured without using WGP as shown in Fig. 1.

 figure: Fig. 3

Fig. 3 The x- (a) and y-components (b) of THz waveforms transmitted through the sample under the different external magnetic field at 25 K. The upper panel represents the configuration for measuring two THz radiation components with orthogonal polarization directions.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Amplitude transmission spectra under different external magnetic fields for LCP and RCP THz radiation at 25 K. The dot lines are guides for the eye.

Download Full Size | PPT Slide | PDF

3.3 Faraday ellipticity

The circular dichroic absorption is expected to induce the polarization state change of transmitted THz wave with the external magnetic field, which can be visualized in time domain. In Fig. 5 , we plotted the E x and E y with the parameters of time delays that correspond to the projections of the electric-field vector tips of THz pulse on the x-y plane and describe the rotation trajectory of THz electric-field vector. For comparisons, the electric field amplitude of the THz pulse (reference) passing through empty sample holder is scaled down by 0.33. The reference. i.e., incident THz pulse, shows almost linear polarization state along x direction as displayed in Fig. 5(a). However, the passing through the sample makes it elliptical with the counterclockwise sense at zero magnetic field. As shown in Figs. 5(c) and 5(d), the distinct polarization ellipticity persists by applying the magnetic field. Meanwhile, the polarization rotation sense with time is reversed as reversing the magnetic field, but the ellipticity under −3 T is larger than that in + 3 T. In the case of positive magnetic field, the exchange resonance tends to selectively absorb the LCP THz photon due to the precession motion of sublattice magnetization. As a result, the transmitted THz radiation exhibits the RCP ellipticity from the point of receiver. The local magnetic moment is reversed with reversing the magnetic field direction, which induce the opposite optical chirality. The coupling between AC magnetic field component of electromagnetic wave and precession of sublatice magnetizations in ferrimagnet can produce two resonance modes, i.e., ferromagnetic resonanc and exchange resonance. In principle, the exchange resonance mode can be excited by the circular polarization electromagnetic wave with the sense opposite to that excites the ferromagnetic resonance in microwave range [2]. As for CoCr2O4, the total magnetic moment is a sum of a long-range order of the ferrimagnetic component and a short-range order of a spiral incommensurate component at low temperature [6]. This adds the complexity to understand its optical chirality quantitatively. CoCr2O4 single crystal has easy axis along [001] direction for the ferrimagnetic component [6]. For our measurement, the wave vector of THz beam is along [111] direction. At low temperature and zero external magnetic field, the spontaneous magnetization is aligned in the [001] direction and the spiral component of spins rotate in its plane [3, 6 ]. Such spin structure induced magnetization precession may be associated with the THz ellipticity at 0 T.

 figure: Fig. 5

Fig. 5 The parametric plots of x- (Ex) and y-components (Ey) of THz waveforms. (a) the electric field vector without sample, which is scaled down by 0.33 for comparison. (b) under 0 T (c) and + 3 T (d) −3 T magnetic field. The measurements were carried out at 25 K.

Download Full Size | PPT Slide | PDF

The Faraday ellipticity ηin frequency domain is defined as [8, 12 ]

η(ω)=abs[ERCP(ω)]abs[ELCP(ω)]abs[ERCP(ω)]+abs[ELCP(ω)]
The extracted η(ω) at different magnetic fields is plotted in Fig. 6 . As can be seen, the Faraday ellipticity spectrum has two extreme values. The low-frequency valley with negative ellipticity is independent of the applied magnetic field strength and direction, which emphasizes the birefringence related to the anisotropic dielectric constant in CoCr2O4 single crystal. The high-frequency ellipticity takes place in the opposite sign when the magnetic field is reversed, which coincide with typical magnetic resonance behavior [9]. With increasing external magnetic field strength, the absolute value of the high-frequency Faraday ellipticity is increased and the profile is moved to higher frequency side. The peak position,ωex, as the function of external magnetic field is plotted in the inset, which shows nearly linear magnetic field dependence same as the result in Fig. 2.

 figure: Fig. 6

Fig. 6 The frequency dependent Faraday ellipticity under different external magnetic field at 25 K. The inset shows the peak position as the function of magnetic field.

Download Full Size | PPT Slide | PDF

3.4 THz rotatory dispersion

The observed magnetic resonance is due to the strong interaction between the THz electric-magnetic pulse and the electron spin occurs through the magnetic field component, which can be described by the circular magnetic susceptibilityμ±(ω). The complex index of refraction that determined by both magnetic susceptibility and dielectric permeability, i.e., n˜±(ω)=μ±(ω)ε±(ω),can be derived from the circular polarized THz transmission according to Fresnel laws,

t˜±(ω)=4n˜±(ω)(1+n˜±(ω))2e(n˜±(ω)1)ωd/c
The d and c denote the thickness of sample and light speed, respectively. The obtained circular refractive indices under different magnetic fields are displayed in Fig. 7 . As shown in Fig. 7(a), the imaginary part of refractive index for RCP light is peaked around 0.5THz in the case without external magnetic field, which corresponds to the exchange magnon resonance absorption. When the positive magnetic fields are applied, no resonance absorption peaks can be distinguished, however, a negative magnetic field can strengthen the RCP exchange resonance. Oppositely, the LCP resonance peaks in imaginary parts become more robust when the applied magnetic field has positive direction as illustrated in Fig. 7(b). The resonance peak shifts toward the high frequency side with increasing magnetic field. The same THz propagation chirality can be revealed by the real part of refractive index in Figs. 7(c) and 7(d), i.e., the positive magnetic field is able to boost the LCP THz dispersion and induce the blueshift of the dispersion profile, but the negative magnetic field lead to the suppression of the exchange-resonance dispersion.

 figure: Fig. 7

Fig. 7 Real and imaginary parts of the index of refraction as the function of frequency and magnetic field for LCP and RCP THz radiation. The measurements were taken at 25 K.

Download Full Size | PPT Slide | PDF

7. Conclusion

In summary, we have investigated the THz transmission through CoCr2O4 single crystal with THz-TDS at different temperatures and under the magnetic fields up to 8 T. The magnetic resonance originating from the sublattice exchange magnon in CoCr2O4 ferrimagnet are revealed. We observed the circular absorption dichroism in THz spectra range by THz MO-TDS. When the applied magnetic field is along THz wave vector, the LCP absorption is active and RCP absorption is suppressed. The pronouncedly Faraday ellipticity can be found both in time and frequency domain. The complex indices of refraction for LCP and RCP THz are obtained under different magnetic field. The dispersions show remarkable chirality determined by the exchange magnon resonance.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11004199, 11374304, 11304323, 11304317) and Natural Science Foundation of Anhui (1208085MA10). X. L. was supported by the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences' Large-Scale Scientific Facility (Grant No. U1432139).

References and links

1. J. Kaplan and C. Kittel, “Exchange frequency electron spin resonance in ferrites,” J. Chem. Phys. 21(4), 760–761 (1953). [CrossRef]  

2. B. Dreyfus, “Study on ferrite magnetic resonance equation,” Compt. Rend. 241(19), 1270–1272 (1955).

3. V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012). [CrossRef]  

4. T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012). [CrossRef]  

5. N. Menyuk, K. Dwight, and A. Wold, “Ferrimagnetic spiral configurations in cobalt chromite,” J. Phys. (Paris) 25(5), 528–536 (1964). [CrossRef]  

6. K. Tomiyasu, J. Fukunaga, and H. Suzuki, “Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements,” Phys. Rev. B 70(21), 214434 (2004). [CrossRef]  

7. Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006). [CrossRef]   [PubMed]  

8. V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013). [CrossRef]   [PubMed]  

9. V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013). [CrossRef]  

10. D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013). [CrossRef]  

11. J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011). [CrossRef]   [PubMed]  

12. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011). [CrossRef]  

13. R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012). [CrossRef]  

14. T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014). [CrossRef]  

15. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef]   [PubMed]  

16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]  

17. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011). [CrossRef]  

18. Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004). [CrossRef]  

19. O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006). [CrossRef]  

20. D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. Léotin, “Step-scan time-domain terahertz magneto-spectroscopy,” Opt. Express 20(6), 5993–6002 (2012). [CrossRef]   [PubMed]  

21. M. Neshat and N. P. Armitage, “Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration,” Opt. Express 20(27), 29063–29075 (2012). [PubMed]  

22. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011). [CrossRef]   [PubMed]  

23. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009). [CrossRef]  

24. K. Kozuki, T. Nagashima, and M. Hangyo, “Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy,” Opt. Express 19(25), 24950–24956 (2011). [CrossRef]   [PubMed]  

25. R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012). [CrossRef]   [PubMed]  

26. T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012). [CrossRef]   [PubMed]  

27. K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008). [CrossRef]  

28. S. Funahashi, K. Siratori, and Y. Tomono, “Magnetic resonance of CoCr2O4 and MnCr2O4,” J. Phys. Soc. Jpn. 29(5), 1179–1193 (1970). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Kaplan and C. Kittel, “Exchange frequency electron spin resonance in ferrites,” J. Chem. Phys. 21(4), 760–761 (1953).
    [Crossref]
  2. B. Dreyfus, “Study on ferrite magnetic resonance equation,” Compt. Rend. 241(19), 1270–1272 (1955).
  3. V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
    [Crossref]
  4. T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
    [Crossref]
  5. N. Menyuk, K. Dwight, and A. Wold, “Ferrimagnetic spiral configurations in cobalt chromite,” J. Phys. (Paris) 25(5), 528–536 (1964).
    [Crossref]
  6. K. Tomiyasu, J. Fukunaga, and H. Suzuki, “Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements,” Phys. Rev. B 70(21), 214434 (2004).
    [Crossref]
  7. Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
    [Crossref] [PubMed]
  8. V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
    [Crossref] [PubMed]
  9. V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
    [Crossref]
  10. D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
    [Crossref]
  11. J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011).
    [Crossref] [PubMed]
  12. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
    [Crossref]
  13. R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
    [Crossref]
  14. T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
    [Crossref]
  15. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  17. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  18. Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004).
    [Crossref]
  19. O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
    [Crossref]
  20. D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. Léotin, “Step-scan time-domain terahertz magneto-spectroscopy,” Opt. Express 20(6), 5993–6002 (2012).
    [Crossref] [PubMed]
  21. M. Neshat and N. P. Armitage, “Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration,” Opt. Express 20(27), 29063–29075 (2012).
    [PubMed]
  22. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
    [Crossref] [PubMed]
  23. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
    [Crossref]
  24. K. Kozuki, T. Nagashima, and M. Hangyo, “Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy,” Opt. Express 19(25), 24950–24956 (2011).
    [Crossref] [PubMed]
  25. R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
    [Crossref] [PubMed]
  26. T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
    [Crossref] [PubMed]
  27. K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
    [Crossref]
  28. S. Funahashi, K. Siratori, and Y. Tomono, “Magnetic resonance of CoCr2O4 and MnCr2O4,” J. Phys. Soc. Jpn. 29(5), 1179–1193 (1970).
    [Crossref]

2014 (1)

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

2013 (3)

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

2012 (7)

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. Léotin, “Step-scan time-domain terahertz magneto-spectroscopy,” Opt. Express 20(6), 5993–6002 (2012).
[Crossref] [PubMed]

M. Neshat and N. P. Armitage, “Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration,” Opt. Express 20(27), 29063–29075 (2012).
[PubMed]

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

2011 (5)

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

K. Kozuki, T. Nagashima, and M. Hangyo, “Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy,” Opt. Express 19(25), 24950–24956 (2011).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011).
[Crossref] [PubMed]

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

2009 (1)

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

2008 (1)

K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (2)

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

2004 (2)

K. Tomiyasu, J. Fukunaga, and H. Suzuki, “Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements,” Phys. Rev. B 70(21), 214434 (2004).
[Crossref]

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004).
[Crossref]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1970 (1)

S. Funahashi, K. Siratori, and Y. Tomono, “Magnetic resonance of CoCr2O4 and MnCr2O4,” J. Phys. Soc. Jpn. 29(5), 1179–1193 (1970).
[Crossref]

1964 (1)

N. Menyuk, K. Dwight, and A. Wold, “Ferrimagnetic spiral configurations in cobalt chromite,” J. Phys. (Paris) 25(5), 528–536 (1964).
[Crossref]

1955 (1)

B. Dreyfus, “Study on ferrite magnetic resonance equation,” Compt. Rend. 241(19), 1270–1272 (1955).

1953 (1)

J. Kaplan and C. Kittel, “Exchange frequency electron spin resonance in ferrites,” J. Chem. Phys. 21(4), 760–761 (1953).
[Crossref]

Abouelsayed, A.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

Ahn, K. H.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Anzinb, V. B.

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Arikawa, T.

Arima, T.

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

Armitage, N. P.

M. Neshat and N. P. Armitage, “Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration,” Opt. Express 20(27), 29063–29075 (2012).
[PubMed]

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Astakhov, G. V.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Ballon, G.

Bansal, N.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Beigang, R.

Belyanin, A. A.

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Bernhard, C.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Bilbro, L. S.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Bordács, S.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

Brüne, C.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Buhmann, H.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Bush, A. A.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Cerne, J.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Cheng, Z. X.

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

Cheong, S.-W.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Choi, Y. J.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Crassee, I.

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011).
[Crossref] [PubMed]

Crooker, S. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Deisenhofer, J.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Dekorsy, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Dresse, M.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Dressel, M.

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Dreyfus, B.

B. Dreyfus, “Study on ferrite magnetic resonance equation,” Compt. Rend. 241(19), 1270–1272 (1955).

Drigo, L.

Dubroka, A.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Dwight, K.

N. Menyuk, K. Dwight, and A. Wold, “Ferrimagnetic spiral configurations in cobalt chromite,” J. Phys. (Paris) 25(5), 528–536 (1964).
[Crossref]

Engelkamp, H.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Felea, V.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fiebig, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Fischer, T.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Fukunaga, J.

K. Tomiyasu, J. Fukunaga, and H. Suzuki, “Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements,” Phys. Rev. B 70(21), 214434 (2004).
[Crossref]

Funahashi, S.

S. Funahashi, K. Siratori, and Y. Tomono, “Magnetic resonance of CoCr2O4 and MnCr2O4,” J. Phys. Soc. Jpn. 29(5), 1179–1193 (1970).
[Crossref]

George, D. K.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Gorshunov, B. P.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Hamh, S. Y.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Han, J. W.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Hangyo, M.

K. Kozuki, T. Nagashima, and M. Hangyo, “Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy,” Opt. Express 19(25), 24950–24956 (2011).
[Crossref] [PubMed]

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

He, J. P.

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

Huber, R.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Ino, Y.

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Jin, Z. M.

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

Jung, S.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Kamenskyi, D.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Kampfrath, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Kaneko, Y.

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

Kang, C.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Kang, T. D.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Kaplan, J.

J. Kaplan and C. Kittel, “Exchange frequency electron spin resonance in ferrites,” J. Chem. Phys. 21(4), 760–761 (1953).
[Crossref]

Kee, C.-S.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Kézsmárki, I.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

Kim, T. H.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Kittel, C.

J. Kaplan and C. Kittel, “Exchange frequency electron spin resonance in ferrites,” J. Chem. Phys. 21(4), 760–761 (1953).
[Crossref]

Klatt, G.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kocsis, V.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

Kolodiazhnyi, T.

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011).
[Crossref] [PubMed]

Komandin, G. A.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Kono, J.

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Kozuki, K.

Krug von Nidda, H.-A.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Kuntscher, C. A.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

Kuwata-Gonokami, M.

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004).
[Crossref]

Lee, J. S.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Leitenstorfer, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Léotin, J.

Li, G. F.

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

Liu, W.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Loidl, A.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Ma, G. H.

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

Mährlein, S.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Markelz, A. G.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Menyuk, N.

N. Menyuk, K. Dwight, and A. Wold, “Ferrimagnetic spiral configurations in cobalt chromite,” J. Phys. (Paris) 25(5), 528–536 (1964).
[Crossref]

Mittleman, D. M.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Miyasaka, S.

K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
[Crossref]

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

Molenkamp, L. W.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Molter, D.

Morikawa, O.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

Nagashima, T.

K. Kozuki, T. Nagashima, and M. Hangyo, “Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy,” Opt. Express 19(25), 24950–24956 (2011).
[Crossref] [PubMed]

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

Nashima, S.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

Neshat, M.

Ogasawara, T.

K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
[Crossref]

Oh, S.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Ohgushi, K.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
[Crossref]

Okimoto, Y.

K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
[Crossref]

Park, J.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Park, S.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Pashkin, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Penc, K.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

Pimenov, A.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Prokhorov, A. S.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Prokhorovb, A. S.

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Pronin, A. V.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Quema, A.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

Rabkin, L. M.

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Rogers, P. D.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Sell, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Shimano, R.

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004).
[Crossref]

Shuvaev, A. M.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Siratori, K.

S. Funahashi, K. Siratori, and Y. Tomono, “Magnetic resonance of CoCr2O4 and MnCr2O4,” J. Phys. Soc. Jpn. 29(5), 1179–1193 (1970).
[Crossref]

Sirenko, A. A.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Skourski, Y.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Standard, E. C.

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Stier, A. V.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Sumikura, H.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

Suzuki, H.

K. Tomiyasu, J. Fukunaga, and H. Suzuki, “Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements,” Phys. Rev. B 70(21), 214434 (2004).
[Crossref]

Svirko, Y.

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004).
[Crossref]

Talanov, V. M.

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Tokunaga, Y.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Tokura, Y.

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
[Crossref]

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

Tomiyasu, K.

K. Tomiyasu, J. Fukunaga, and H. Suzuki, “Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements,” Phys. Rev. B 70(21), 214434 (2004).
[Crossref]

Tomono, Y.

S. Funahashi, K. Siratori, and Y. Tomono, “Magnetic resonance of CoCr2O4 and MnCr2O4,” J. Phys. Soc. Jpn. 29(5), 1179–1193 (1970).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Torgashev, V. I.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Torosyan, G.

Tsurkan, V.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Uhlarz, M.

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Valdés Aguilar, R.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

van der Marel, D.

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011).
[Crossref] [PubMed]

van Mechelen, J. L. M.

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011).
[Crossref] [PubMed]

Varjas, D.

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

Wang, X.

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Wang, X. L.

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

Wold, A.

N. Menyuk, K. Dwight, and A. Wold, “Ferrimagnetic spiral configurations in cobalt chromite,” J. Phys. (Paris) 25(5), 528–536 (1964).
[Crossref]

Wolf, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Wosnitza, J.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Wu, L.

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Yamasaki, Y.

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

Yasin, S.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zherlitsyn, S.

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

Zhou, R. Z.

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

Zhukova, E. S.

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Appl. Phys. Express (1)

T. H. Kim, S. Y. Hamh, J. W. Han, C. Kang, C.-S. Kee, S. Jung, J. Park, Y. Tokunaga, Y. Tokura, and J. S. Lee, “Coherently controlled spin precession in canted antiferromagnetic YFeO3 using terahertz magnetic field,” Appl. Phys. Express 7(9), 093007 (2014).
[Crossref]

Appl. Phys. Lett. (1)

R. Z. Zhou, Z. M. Jin, G. F. Li, G. H. Ma, Z. X. Cheng, and X. L. Wang, “Terahertz magnetic field induced coherent spin precession in YFeO3,” Appl. Phys. Lett. 100(6), 061102 (2012).
[Crossref]

Compt. Rend. (1)

B. Dreyfus, “Study on ferrite magnetic resonance equation,” Compt. Rend. 241(19), 1270–1272 (1955).

J. Appl. Phys. (1)

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[Crossref]

J. Chem. Phys. (1)

J. Kaplan and C. Kittel, “Exchange frequency electron spin resonance in ferrites,” J. Chem. Phys. 21(4), 760–761 (1953).
[Crossref]

J. Phys. (Paris) (1)

N. Menyuk, K. Dwight, and A. Wold, “Ferrimagnetic spiral configurations in cobalt chromite,” J. Phys. (Paris) 25(5), 528–536 (1964).
[Crossref]

J. Phys. Soc. Jpn. (2)

K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, “Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se),” J. Phys. Soc. Jpn. 77(3), 034713 (2008).
[Crossref]

S. Funahashi, K. Siratori, and Y. Tomono, “Magnetic resonance of CoCr2O4 and MnCr2O4,” J. Phys. Soc. Jpn. 29(5), 1179–1193 (1970).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[Crossref]

Nat. Phys. (1)

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Opt. Express (4)

Phys. Rev. B (5)

V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, “Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu),” Phys. Rev. B 87(6), 064416 (2013).
[Crossref]

D. Kamenskyi, H. Engelkamp, T. Fischer, M. Uhlarz, J. Wosnitza, B. P. Gorshunov, G. A. Komandin, A. S. Prokhorov, M. Dresse, A. A. Bush, V. I. Torgashev, and A. V. Pronin, “Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering,” Phys. Rev. B 87(13), 134423 (2013).
[Crossref]

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B 70(15), 155101 (2004).
[Crossref]

K. Tomiyasu, J. Fukunaga, and H. Suzuki, “Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements,” Phys. Rev. B 70(21), 214434 (2004).
[Crossref]

T. D. Kang, E. C. Standard, P. D. Rogers, K. H. Ahn, A. A. Sirenko, A. Dubroka, C. Bernhard, S. Park, Y. J. Choi, and S.-W. Cheong, “Far-infrared spectra of the magnetic exchange resonances and optical phonons and their connection to magnetic and dielectric properties of Dy3Fe5O12 garnet,” Phys. Rev. B 86(14), 144112 (2012).
[Crossref]

Phys. Rev. Lett. (5)

Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Phys. Rev. Lett. 96(20), 207204 (2006).
[Crossref] [PubMed]

V. Tsurkan, S. Zherlitsyn, S. Yasin, V. Felea, Y. Skourski, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl, “Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields,” Phys. Rev. Lett. 110(11), 115502 (2013).
[Crossref] [PubMed]

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in EuTiO3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett. 106(21), 217601 (2011).
[Crossref] [PubMed]

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3.,” Phys. Rev. Lett. 108(8), 087403 (2012).
[Crossref] [PubMed]

Phys. Solid State (1)

V. I. Torgashev, A. S. Prokhorovb, G. A. Komandin, E. S. Zhukova, V. B. Anzinb, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, and B. P. Gorshunov, “Magnetic and dielectric response of cobalt chromium spinel CoCr2O4 in the terahertz frequency range,” Phys. Solid State 54(2), 350–359 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Measured amplitude transmission spectra without using THz WGP under different external magnetic field and at temperature of (a) 15 K, (b) 25 K, (c) 50 K, (d) 90 K, respectively. The dot lines are guides for the eye.
Fig. 2
Fig. 2 The magnetic resonance frequencies as the function of applied magnetic field at different temperatures. The open circles represent the data measured by backward-wave oscillators technique at 30 K, which is taken from [10].
Fig. 3
Fig. 3 The x- (a) and y-components (b) of THz waveforms transmitted through the sample under the different external magnetic field at 25 K. The upper panel represents the configuration for measuring two THz radiation components with orthogonal polarization directions.
Fig. 4
Fig. 4 Amplitude transmission spectra under different external magnetic fields for LCP and RCP THz radiation at 25 K. The dot lines are guides for the eye.
Fig. 5
Fig. 5 The parametric plots of x- (Ex) and y-components (Ey) of THz waveforms. (a) the electric field vector without sample, which is scaled down by 0.33 for comparison. (b) under 0 T (c) and + 3 T (d) −3 T magnetic field. The measurements were carried out at 25 K.
Fig. 6
Fig. 6 The frequency dependent Faraday ellipticity under different external magnetic field at 25 K. The inset shows the peak position as the function of magnetic field.
Fig. 7
Fig. 7 Real and imaginary parts of the index of refraction as the function of frequency and magnetic field for LCP and RCP THz radiation. The measurements were taken at 25 K.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω e x = λ ( γ 2 M 1 γ 1 M 2 )
E L C P ( ω ) = 2 2 [ E x ( ω ) + i E y ( ω ) ]
E R C P ( ω ) = 2 2 [ E x ( ω ) i E y ( ω ) ]
η ( ω ) = a b s [ E R C P ( ω ) ] a b s [ E L C P ( ω ) ] a b s [ E R C P ( ω ) ] + a b s [ E L C P ( ω ) ]
t ˜ ± ( ω ) = 4 n ˜ ± ( ω ) ( 1 + n ˜ ± ( ω ) ) 2 e ( n ˜ ± ( ω ) 1 ) ω d / c

Metrics