Abstract

A miniature all-fiber temperature sensor is demonstrated by using a Michelson interferometer formed with a short length of Germania-core, silica-cladding optical fiber (Ge-fiber) fusion-spliced to a conventional single-mode fiber (SMF). Thanks to the large differential refractive index of the Ge-fiber sensing element, a reasonably small free spectral range (FSR) of 18.6 nm is achieved even with an as short as 0.9 mm Ge-fiber that may help us increase the measurement accuracy especially in point sensing applications and, at the same time, keep large measurement temperature range without overlapping reading problem. Experimental results show that high sensitivity of 89.0 pm/°C is achieved and the highest measurement temperature is up to 500°C.

© 2015 Optical Society of America

1. Introduction

In past decades, optical fiber temperature sensors have been intensively studied due to their many intrinsic advantages such as electrically passive operation, long life-time and immunity to electromagnetic interference. Several configurations such as fiber Bragg gratings (FBGs) [1,2 ], long period fiber gratings (LPFGs) [3,4 ] and fiber interferometers have been employed. All of them, FBG-based temperature sensors are widely used in some industrial areas but the sensitivity is relatively low, ~10 pm/°C [5]. LPFG-based temperature sensors have relatively high sensitivity but they are cross sensitive to fiber bending and surrounding materials. Optical fiber interferometers including Fabry-Perot (F-P) interferometers [6–9 ], Mach-Zenhder interferometers (MZIs) [10–13 ], Sagnac fiber loops [14] and Michelson interferometers [15] are good candidates for highly sensitive temperature sensors. However, these sensors are mostly based on conventional silica fibers or silica-based microstructure fibers. Their sensitivities are usually limited by the relatively a low thermal-optical coefficient of silica material. Recently, an optical fiber Michelson interferometer-based temperature sensor was demonstrated with a 4-mm-long dispersion compensation fiber. The sensitivity is up to 68.6 pm/°C and the maximum temperature for measurement is up to 600°C [16]. A Mach-Zenhder interferometer (MZI) based on a 25 mol.% Germania-doped core optical fiber sandwiched between two single mode fibers was reported, which demonstrated high temperature sensitivity of 98 pm/°C from room temperature to 90°C [17]. However, the MZI configuration was operated in transmission mode that is inconvenient in practical applications and the relatively small (less than 5 nm) free spectral range (FSR) makes tracking the transmission minimum/maximum difficult.

In this work, a miniature all-fiber temperature sensor is proposed and experimentally demonstrated by using a Michelson interferometer formed by a 0.9 mm-long 75 mol.% Germania-doped core, silica-cladding optical fiber (Ge-fiber) fusion-spliced to a normal single-mode fiber (SMF). Due to the higher differential refractive index of the Ge-fiber compared to that of the conventional step-index fibers, a suitable FSR of 18.6 nm is obtained even with such a short Ge-fiber. That helps to maintain relatively high wavelength reading accuracy in measurement and simultaneously, keeps the sensor head miniature. Good linear response with sensitivity of 89.0 pm/°C is realized in a large measurement range from room temperature to 500°C.

2. Sensor fabrication and principle

The Ge-fiber has a core and cladding diameters of 4 and 125 μm, respectively. The core of the fiber contains 75 mol.% germania (i.e., GeO2) and 25 mol.% silica (i.e., SiO2). The cladding is made from pure silica. The parameters including diameters and material refractive indices for the core and cladding of Ge-fiber and SMF respectively are shown in Table 1 . To fabricate the sensor head, we spliced the Ge-fiber to a normal SMF by using a fusion splicer in an automatic mode, and then cut the Ge-fiber at certain distance away from the splicing point as shown in the details of Fig. 1(a) . We fabricated seventeen samples and measured their lengths of Ge-fiber and FSRs at around 1550 nm by microscopy (Nikon, Eclipse, TS100) and an optical spectrum analyzer (OSA, Yokogawa, AQ6370C), respectively.

Tables Icon

Table 1. Parameters of Ge-fiber and single mode fiber.

 

Fig. 1 (a) Experimental setup of Ge-fiber based sensor, (b) Intensity distribution and (c) normalized intensity for light coupling from SMF to Ge-fiber.

Download Full Size | PPT Slide | PDF

When light propagates from the SMF to the Ge-fiber, various modes may be excited at the splicing point due to the large mismatch of core and mode field diameters between the two fibers. Figure 1(b) and (c) shows the simulated light intensity distribution around the splicing point based on the beam propagation method. It indicates that about two third of the incident light is coupled into core of the Ge-fiber and the rest is into cladding. Note that the color in most of the core area in the Ge-fiber is white in Fig. 1(b), because the calculated normalized intensity in the core area of the Ge-fiber is higher than 1, the maximum value normalized based on the optical intensity in the input SMF. There is an equivalent convergent effect when light propagates from the SMF to the Ge-fiber [18] because the Ge-fiber has a much smaller mode field diameter than the SMF. In addition, it can be seen that there is a periodical fluctuation on the intensity in the core of Ge-fiber. It is caused by the self-imaging effect because the Ge-fiber is multimode at this wavelength range [19].

When the excited modes are reflected from the cleaved end of the Ge-fiber and recoupled back into the core of the SMF, interference occurs because different modes experience different optical paths. A Michelson interferometer is therefore formed and FSR of the interference pattern, depending on optical path difference between the two involved modes, can be described as

FSR=λ22ΔneffL
where Δneff is differential refractive index, i.e. the difference between effective indices of interference modes in the Ge-fiber, L is length of the Ge-fiber, and λ is the wavelength.

Figure 2(a) and (b) show respectively the measured spectra of three samples with 0.493, 0.599 and 1.300 mm of Ge-fiber and the dependence of FSR on length of Ge-fiber for all the twelve samples. The data in Fig. 2(b) fit well to the inverse function y = 16.02/x with a high R-squared value of 0.9713. According to Eq. (1), the calculated differential effective refractive index is 0.07498. It is much larger than that in normal single-mode fibers so length of the sensing fiber can be greatly reduced in our sensor.

 

Fig. 2 (a) Measured spectra with different length of Ge-fiber. (b) Free spectrum range against length of Ge-fiber. (c) Spatial frequency spectrum of above interference (Length = 1.3 mm).

Download Full Size | PPT Slide | PDF

In order to analyze the detailed modes participated in the Michelson interferometer, we transformed the wavelength spectrum (Length = 1.3 mm) into the spatial frequency domain through fast Fourier transform (FFT). The achieved spatial frequency spectrum, as shown in Fig. 2(c), has only one clear peak, indicating that there are only two modes involving the interference. We then figured out the possible LP modes in the Ge-fiber by using the finite element method (FEM). Table 2 shows the effective refractive indices of these modes. We found that the LP02 mode is the only possible one because its effective refractive index is smaller than that of LP01 mode by 0.0754, which is very close to the above-achieved value from measurement data. The field profiles of two modes are shown in the inset of Fig. 2(c). Therefore, the Michelson interference in our design is most probably introduced by LP01 and LP02 modes of the Ge-fiber.

Tables Icon

Table 2. Effective refractive indices of modes that may propagate in the Ge-fiber.

When temperature is changed, optical path difference of the Ge-fiber based Michelson interferometer will be changed due to thermal expansion and thermo-optic effects of the Ge-fiber. As a result, wavelength shift of the interference fringe pattern against temperature will be observed. It can be expressed by [17]

Δλλ=[dLLdT+dΔneffΔneffdT]ΔT
where dL/LdT is the thermal expansion ratio and dΔneffneff dT is the temperature sensitivity of differential refractive index of LP01 and LP02 in the Ge-fiber. Therefore temperature measurement can be realized by detecting wavelength shift of the interference spectrum.

3. Experimental results and discussions

The experimental setup for temperature measurement is shown in Fig. 1(a). Light from a broadband source (BBS) with wavelength range from 1530 to 1630 nm was launched into the sensor head through an optical circulator. The reflected light was guided into the OSA with the wavelength resolution of 0.02 nm for measurement. We chose the sample with 0.9-mm-long Ge-fiber with a suitable FSR of 18.6 nm in experimental value as the sensor head, whose optical microscope image is shown in the inset of Fig. 1(a). The sensor head, free from any bending and vibration, was placed in a temperature-controlled oven with accuracy of 0.5°C and the maximum testing temperature is up to 600°C. A calibrated commercially available temperature meter was placed next to the sensor head for reference.

When temperature was changed from room temperature to 500°C, reflection pattern of the sensor head shifted towards longer wavelength as shown in Fig. 3 . Figure 4(a) shows the wavelengths shift against temperature for the three chosen fringe dips A, B and C with initial wavelengths of 1550.52, 1569.14 and 1588.02 nm, respectively. The temperature sensitivities are 87.2, 88.1 and 89.0 pm/°C for dip A to C, respectively. They are quite close but longer the dip wavelength locates at, higher the temperature sensitivity can achieve. That agrees well with the prediction by Eq. (2). The temperature test was repeated with ascending and descending orders several times and all the data fit well. The temperature measurement resolution of the proposed sensor is 0.25°C, based on the sensitivity of 89.0 pm/°C and the wavelength resolution, 0.02 nm, of the OSA.

 

Fig. 3 Measured spectra of the Ge-fiber based temperature sensor under different temperatures.

Download Full Size | PPT Slide | PDF

 

Fig. 4 (a) Wavelength of dip A to C against temperature. (b) Stability test at various temperature (@ dip B).

Download Full Size | PPT Slide | PDF

The stability test was carried out under four temperature from 300 to 550 °C. The chamber temperature was first fixed at 300°C in time duration of 80 minutes and the reflection spectrum was recoded in every 10 minutes. Then temperature was changed to 400°C, 500°C and 550°C and at each temperature the testing was repeated. The experimental results (for dip B) are shown in Fig. 4(b). The maximum fluctuation under temperature of 300°C, 400°C and 500°C is only ± 0.08 nm, which corresponds to a maximum measurement error of less than ± 1°C, if we take the temperature sensitivity of 88.1 pm/°C into account. For temperature of 550°C, the dip wavelength was shifting to longer wavelength with time as shown in Fig. 4(b). It should be related to the phase transition of the Germania fiber core because it already reached the glass-transition temperature range of the GeO2 [20]. Under this condition, the refractive index of fiber core will decrease with heat-absorption even at fixed temperature. Therefore, the proposed sensor is recommended to operate below the temperature 500°C to make sure good stability and repeatability.

As predicted by the theoretical analysis, experimental measurements also testified that length of Ge-fiber has no impact on temperature sensitivity. However, length of the sensing fiber determines FSR of the interference pattern and the latter affects the sensor performance significantly. For example, a too large FSR leads to bandwidth requirement for the light source while a too small one results in serious overlapping in wavelength between interference maxima or minima when the spectrum is shifted. For optical fiber sensors based on this particular Michelson interferometer configuration, normally long sensing fibers are required to decrease the FSR to a reasonable value because differential refractive indices of the normal used sensing fibers are usually much lower than that of the Ge-fiber we used. A comparative table is given in Table 3 , which compares the sensor head details and performances of our sensor with that of previously reported ones with similar sensor head designs, including Mach-Zehnder, mode-mode and Michelson interferometers relying on different kinds of fibers. It can be seen that the FSR of our sensor is medium but the sensing fiber is the shortest. It should be noticed that reducing length of the sensing fiber may enhance accuracy of the temperature measurement especially in point sensing applications. Our proposed temperature sensor is therefore the best choice if only this point is taken into consideration. For sensitivity and measurement range, our sensor is among the best for both parameters. And the reflection operation mode also contributes to more convenience in practical application than the transmission one.

Tables Icon

Table 3. Comparison of optical fiber temperature sensors based on similar designs.

4. Conclusion

A miniature all-fiber temperature sensor has been demonstrated by using a Michelson interferometer configuration formed by a Ge-fiber with a length of 0.9 mm. Due to the high differential refractive index of the Ge-fiber, a reasonable FSR of 18.6 nm has been achieved even with such a short sensing fiber. The achieved sensitivity is up to 89.0 pm/°C in the measurement range from room temperature to 500°C. It may have good potential applications in a wide range of temperature measurement, especially when point sensing is required.

Acknowledgments

This work was supported partially by Singapore A*STAR “Advanced Optics in Engineering” Program under Grant No. 1223600006, National Natural Science Foundation of China under Grant No. 61475147, National Natural Science Foundation of Zhejiang Province, China under Grant No. Z13F050003 and the Energy Market Authority (LA/Contract No. NRF2013EWT-EIRP001-006). We also appreciate Dr. Gengzhi Sun from School of Chemical and Biomedical Engineering of Nanyang Technological University for fruitful discussion.

References and links

1. N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA. T 39, 169 (2000). [CrossRef]  

2. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005). [CrossRef]  

3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996). [CrossRef]   [PubMed]  

4. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011). [CrossRef]   [PubMed]  

5. J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014). [CrossRef]  

6. C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H.-Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011). [CrossRef]   [PubMed]  

7. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013). [CrossRef]   [PubMed]  

8. T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010). [CrossRef]  

9. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008). [CrossRef]   [PubMed]  

10. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011). [CrossRef]   [PubMed]  

11. T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010). [CrossRef]  

12. J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010). [CrossRef]  

13. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013). [CrossRef]   [PubMed]  

14. A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997). [CrossRef]  

15. Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014). [CrossRef]  

16. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014). [CrossRef]  

17. B. Dong, L. Wei, and D.-P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48(33), 6466–6469 (2009). [CrossRef]   [PubMed]  

18. Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012). [CrossRef]  

19. Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014). [CrossRef]  

20. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005). [CrossRef]  

21. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009). [CrossRef]  

22. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011). [CrossRef]   [PubMed]  

23. E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008). [CrossRef]  

24. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA. T 39, 169 (2000).
    [Crossref]
  2. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
    [Crossref]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  4. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
    [Crossref] [PubMed]
  5. J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
    [Crossref]
  6. C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H.-Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [Crossref] [PubMed]
  7. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
    [Crossref] [PubMed]
  8. T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
    [Crossref]
  9. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  10. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [Crossref] [PubMed]
  11. T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
    [Crossref]
  12. J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
    [Crossref]
  13. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
    [Crossref] [PubMed]
  14. A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
    [Crossref]
  15. Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
    [Crossref]
  16. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
    [Crossref]
  17. B. Dong, L. Wei, and D.-P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48(33), 6466–6469 (2009).
    [Crossref] [PubMed]
  18. Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
    [Crossref]
  19. Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
    [Crossref]
  20. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  21. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  22. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [Crossref] [PubMed]
  23. E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
    [Crossref]
  24. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]

2014 (4)

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (4)

2010 (3)

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

2009 (2)

B. Dong, L. Wei, and D.-P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48(33), 6466–6469 (2009).
[Crossref] [PubMed]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (2)

2007 (1)

2005 (2)

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

1997 (1)

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

1996 (1)

Bartelt, H.

Bhatia, V.

Canning, J.

Chan, J.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Chen, K. P.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, R.

Chen, T.

Chen, Z.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Chiang, K. S.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Choi, E. S.

Choi, H. Y.

Cook, K.

De La Rosa, E.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Dianov, E. M.

Dong, B.

Dong, X.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Du, Y.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Favero, F. C.

Feng, D.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Feng, Z.

Fu, H. Y.

Gu, B.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Guan, B.-O.

Guo, T.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Hawkins, A. R.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

He, S.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Hu, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Hu, M.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Huang, J.

Huang, T.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Ipson, B. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Jewart, C.

Jiang, L.

Just, F.

Kaur, A.

Ke, T.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Kobelke, J.

Lam, H. Q.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Lan, X.

Lee, B. H.

Li, B.

Li, E.

E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
[Crossref]

Li, Y.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Liu, Y.

Lowder, T. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Mashinsky, V. M.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Meng, Q.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Monzon, D.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Ni, K.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Paek, U.-C.

Park, K. S.

Park, S. J.

Peng, G. D.

E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
[Crossref]

Qiao, X.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Qureshi, K. K.

Rao, Y.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Rong, Q.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Rothhardt, M.

Schultz, S. M.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Selfridge, R. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Shao, X.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Shum, P.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Shum, P. P.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Smith, K. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Spittel, R.

Starodumov, A.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Su, D.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Sun, H.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Sun, Y.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Tam, H.-Y.

Vengsarkar, A. M.

Wang, M.

Wang, R.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Wang, S.

Wei, L.

Wu, C.

Wu, Z.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Xia, T.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Xia, T.-H.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Xiao, H.

Xu, B.

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

Xue, W.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Yang, H.

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

Yang, J.

Yuan, L.

Zenteno, L.

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

Zhang, A.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Zhang, A. P.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Zhang, B.

Zhang, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu, and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. Lightwave Technol. 30(11), 1645–1650 (2012).
[Crossref]

Zhang, Y.

Zheng, Y.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

Zhou, D.-P.

Zhu, J.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Zhu, J.-J.

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Zhu, T.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

A. Starodumov, L. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70(1), 19 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Q. Rong, X. Qiao, T. Guo, H. Yang, Y. Du, D. Su, R. Wang, H. Sun, D. Feng, and M. Hu, “High temperature measurement up to 1100 °C using a polarization-maintaining photonic crystal fiber,” IEEE Photonics Technol. Lett. 6(1), 1–10 (2014).
[Crossref]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
[Crossref]

IEEE Sens. J. (3)

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
[Crossref]

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, and Z. Chen, “Optical fiber laser salinity sensor based on multimode interference effect,” IEEE Sens. J. 14(6), 1813–1816 (2014).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (4)

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry–Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

T. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Opt. Commun. 281(23), 5768–5770 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
[Crossref] [PubMed]

C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H.-Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
[Crossref] [PubMed]

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
[Crossref] [PubMed]

L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
[Crossref] [PubMed]

Other (1)

N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA. T 39, 169 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental setup of Ge-fiber based sensor, (b) Intensity distribution and (c) normalized intensity for light coupling from SMF to Ge-fiber.
Fig. 2
Fig. 2 (a) Measured spectra with different length of Ge-fiber. (b) Free spectrum range against length of Ge-fiber. (c) Spatial frequency spectrum of above interference (Length = 1.3 mm).
Fig. 3
Fig. 3 Measured spectra of the Ge-fiber based temperature sensor under different temperatures.
Fig. 4
Fig. 4 (a) Wavelength of dip A to C against temperature. (b) Stability test at various temperature (@ dip B).

Tables (3)

Tables Icon

Table 1 Parameters of Ge-fiber and single mode fiber.

Tables Icon

Table 2 Effective refractive indices of modes that may propagate in the Ge-fiber.

Tables Icon

Table 3 Comparison of optical fiber temperature sensors based on similar designs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F S R = λ 2 2 Δ n e f f L
Δ λ λ = [ d L L d T + d Δ n e f f Δ n e f f d T ] Δ T

Metrics