M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]
K. H. Kim and X. D. Fan, “Surface sensitive microfluidic optomechanical ring resonator sensors,” Appl. Phys. Lett. 105(19), 191101 (2014).
[Crossref]
K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]
K. W. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref]
[PubMed]
K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]
M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]
[PubMed]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
Y. Deng, F. F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21(4), 4653–4664 (2013).
[Crossref]
[PubMed]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]
F. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
[Crossref]
[PubMed]
M. Li, X. Wu, L. Y. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
G. Bahl, X. D. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14(11), 115026 (2012).
[Crossref]
M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]
[PubMed]
S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36(17), 3521–3523 (2011).
[Crossref]
[PubMed]
H. Li, Y. B. Guo, Y. Z. Sun, K. Reddy, and X. D. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18(24), 25081–25088 (2010).
[Crossref]
[PubMed]
H. Li and X. D. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref]
[PubMed]
T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]
[PubMed]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]
T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref]
[PubMed]
R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref]
[PubMed]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]
[PubMed]
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]
[PubMed]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]
R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref]
[PubMed]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]
M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]
[PubMed]
K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]
K. W. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref]
[PubMed]
K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
G. Bahl, X. D. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14(11), 115026 (2012).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
G. Bahl, X. D. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14(11), 115026 (2012).
[Crossref]
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]
[PubMed]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref]
[PubMed]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]
[PubMed]
K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]
K. H. Kim and X. D. Fan, “Surface sensitive microfluidic optomechanical ring resonator sensors,” Appl. Phys. Lett. 105(19), 191101 (2014).
[Crossref]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]
[PubMed]
G. Bahl, X. D. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14(11), 115026 (2012).
[Crossref]
H. Li and X. D. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]
H. Li, Y. B. Guo, Y. Z. Sun, K. Reddy, and X. D. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18(24), 25081–25088 (2010).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]
K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]
K. W. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
Y. Deng, F. F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21(4), 4653–4664 (2013).
[Crossref]
[PubMed]
F. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
[Crossref]
[PubMed]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref]
[PubMed]
K. H. Kim and X. D. Fan, “Surface sensitive microfluidic optomechanical ring resonator sensors,” Appl. Phys. Lett. 105(19), 191101 (2014).
[Crossref]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]
T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]
[PubMed]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]
T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref]
[PubMed]
R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref]
[PubMed]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]
[PubMed]
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
F. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
[Crossref]
[PubMed]
Y. Deng, F. F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21(4), 4653–4664 (2013).
[Crossref]
[PubMed]
H. Li and X. D. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]
H. Li, Y. B. Guo, Y. Z. Sun, K. Reddy, and X. D. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18(24), 25081–25088 (2010).
[Crossref]
[PubMed]
M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]
[PubMed]
M. Li, X. Wu, L. Y. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref]
[PubMed]
M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]
[PubMed]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
F. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
[Crossref]
[PubMed]
Y. Deng, F. F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21(4), 4653–4664 (2013).
[Crossref]
[PubMed]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]
[PubMed]
M. Li, X. Wu, L. Y. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref]
[PubMed]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref]
[PubMed]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref]
[PubMed]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]
[PubMed]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]
[PubMed]
M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]
[PubMed]
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]
[PubMed]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]
R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref]
[PubMed]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]
[PubMed]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]
[PubMed]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]
[PubMed]
T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref]
[PubMed]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]
[PubMed]
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]
[PubMed]
M. Li, X. Wu, L. Y. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref]
[PubMed]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]
M. Li, X. Wu, L. Y. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref]
[PubMed]
M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]
[PubMed]
K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]
K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]
M. Li, X. Wu, L. Y. Liu, X. D. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]
[PubMed]
H. Li and X. D. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]
K. H. Kim and X. D. Fan, “Surface sensitive microfluidic optomechanical ring resonator sensors,” Appl. Phys. Lett. 105(19), 191101 (2014).
[Crossref]
K. W. Han, K. Y. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]
K. Zhu, K. Han, T. Carmon, X. Fan, and G. Bahl, “Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators,” Eur. Phys. J. Spec. Top. 223(10), 1937–1947 (2014).
[Crossref]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]
I. Alonso, V. Alonso, I. Mozo, I. G. de la Fuente, J. A. González, and J. C. Cobos, “Thermodynamics of ketone + amine mixtures. I. Volumetric and speed of sound data at (293.15, 298.15, and 303.15) K for 2-propanone + aniline, + n-methylaniline, or + pyridine systems,” J. Chem. Eng. Data 55(7), 2505–2511 (2010).
[Crossref]
K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light- Sci. Appl. 2, e110 (2013).
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. D. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]
[PubMed]
M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]
[PubMed]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
G. Bahl, X. D. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14(11), 115026 (2012).
[Crossref]
A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10(9), 095015 (2008).
[Crossref]
T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref]
[PubMed]
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref]
[PubMed]
Y. Deng, F. F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21(4), 4653–4664 (2013).
[Crossref]
[PubMed]
M. Li, X. Wu, L. Y. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref]
[PubMed]
H. Li, Y. B. Guo, Y. Z. Sun, K. Reddy, and X. D. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18(24), 25081–25088 (2010).
[Crossref]
[PubMed]
F. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013).
[Crossref]
[PubMed]
K. W. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref]
[PubMed]
R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007).
[Crossref]
[PubMed]
S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36(17), 3521–3523 (2011).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]
[PubMed]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]
[PubMed]
A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref]
[PubMed]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]
T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]
[PubMed]
M. J. Weber, “Stimulated brillouin scattering” in Handbook of Optical Materials, (CRC Press, 2003), pp426–431.
R. S. Hydro, Company, Tools & Support, Technical Reference, http://www.rshydro.co.uk/sound-speeds.html .