Abstract

Magnetic domains and magnetization reversal in 40 nm thick films of Fe0.6Al0.4, have been studied by longitudinal magneto-optical Kerr effect. By varying the Ne+ ion-energy E between 2 and 30 keV (keeping a constant fluence), we varied the depth-penetration of the ions, and thereby influenced the homogeneity of the induced saturation magnetization Ms. The dependence of coercivity on ion energy shows maximum for 5 keV Ne+. Considerable differences in the magnetic domain formation and magnetization reversal processes were observed: at low E (≤ 5keV), the reversal process is dominated by domain nucleation mechanism (high density of domain nucleation sites), consistent with the occurrence of an inhomogeneous Ms. Films irradiated with E > 5keV ions exhibit significantly low domain nucleation density, and the reversal is dominated by domain propagation mechanism, suggesting homogeneity in induced Ms. These results demonstrate the tunability of magnetization reversal behavior in materials possessing disorder induced magnetic phase transitions.

© 2015 Optical Society of America

1. Introduction

Ion irradiation is a powerful tool to modify and tune magnetic properties of thin films and multilayered structures. A variety of parameters, such as magnetic anisotropy, coercive field (Hc), magnetic relaxation, saturation magnetization (Ms), domain wall nucleation and propagation can be strongly modified by ion-irradiation [14]. High lateral resolution ion driven modification of magnetization is especially important for bit patterned media, magnetic and magnonic device architecture. Ion-induced modification of Ms usually proceeds via suppression of the magnetic phase and can be achieved by destroying the chemical order through large atomic displacements [5], alloying with the ions [68], or amorphization by intermixing with a cap layer [9]. These destructive processes require quite high ion-fluences (typically ~1016 to 1018 ions cm−2), which lead to the formation of magnetic inhomogenities and will eventually lower the patterning resolution [10]. Conversely, ion irradiation can also serve as a useful tool to induce ferromagnetism in certain alloys consisting of magnetic and non-magnetic species by introducing chemical disorder. Fe-Al alloys are interesting materials due to their low density and high strength, high corrosion resistance, and inexpensive price [11]. It is well known that Fe0.6Al0.4 alloys are paramagnetic in their chemically stable B2 phase. They can be transformed to the chemically disordered A2 phase (ferromagnetic) by means of mechanical deformation [12], nanoindentation [13], and ion irradiation [14, 15]. Such systems can act as prototypes for studying disorder-induced magnetic phenomena such as magnetic domain structures, the mechanisms of the magnetization reversal and magnetic patterning [12, 1417]. From a technological point of view such systems are promising candidates for their use in high density data storage applications. An understanding of the magnetization reversal process is necessary for exploring the potential of materials possessing disorder induced ferromagnetism for applications in data storage media.

Disorder is directly related to the collisions between the energetic ions and host atoms, thus creating inhomogeneous distribution of ferromagnetic (FM) regions in thin Fe0.6Al0.4 films. In the present work, depending on the depth of disorder-induced FM, the magnetic state, magnetic domain structures, and mechanisms involved in magnetization reversal have been studied using longitudinal magneto-optical Kerr effect (LMOKE) with magnetic domains imaging.

2. Experimental

Fe0.6Al0.4 films of 40 nm thickness were prepared by magnetron sputtering on SiO2 (150nm)/Si(001) substrates. The samples were annealed in vacuum at 773 K for 60 minutes to obtain the chemically ordered B2 phase. The B2 phase possesses a low saturation magnetization (Ms) of ~20 kA m−1 [16]. Ne+ irradiation was performed keeping the fluence fixed at 6.1014 ions cm−2, but with different energies E in the range of 2 - 30keV respectively. Irradiation with Ne+-ions induced chemical disorder, forming the A2 phase with saturation magnetization increased to 480 and 780 kA m−1 for 10 and 30keV respectively [16]. The ion irradiation produces a quasi-gaussian depth variation of atomic displacements, which could lead to an inhomogeneous A2/B2 phase distribution. Figure 1 schematically shows possible depth distribution of the ferromagnetic A2 phase (black) formed in a pre-existing B2 phase (grey) due to ion-irradiation at various energies. The effective thickness of the ferromagnetic layer (black area) increases with increasing ion energy, as increasing ion-energy leads to deeper penetration. It has been shown that in the case of 40 nm thick Fe0.6Al0.4 films studied here, flat magnetization depth profiles are achieved by irradiating with Ne+ ions at 20 keV and 6.1014 ions cm−2 fluence. More details on the sample preparation can be found in the ref [16].

 

Fig. 1 Schematic of the penetration of ions with different energies. TRIM based calculation shows, that ions with minimum energies of 20keV fully penetrate the film.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Longitudinal magneto-optical Kerr effect (LMOKE) based magnetometry and microscopy measurements were carried out at room temperature. Magnetic domain images were observed as a function of time using LMOKE with a specially modified wide-field optical polarization microscope equipped with a CCD camera. The normalized magnetization m (defined as (Sw-Sb)/(Sw + Sb) (where Sw and Sb are white and black domain areas, respectively) was calculated from the magnetic domain images for quantitative determination of the magnetization state.

LMOKE hysteresis loops for samples irradiated with energies of 2.5, 5, 7.5 and 30keV are shown in Fig. 2(a). Hysteresis loops measured at various in-plane azimuthal angles did not show significant differences in Hc and remanance, suggesting that the samples are isotropic within the film plane. Figure 2(b) shows the dependence of the coercivity (Hc) and the effective magnetic thickness on the energy of irradiated ions. The effective magnetic thickness is expected to increase with increasing ion-energy, until the whole film has been penetrated beyond which the effective thickness remains 40 nm. A rapid increase in Hc is observed, until a maximum is reached for 5 keV ions corresponding to an effective magnetic thickness of 13 nm. As the ion energy is further increased, the Hc gradually decreases. For E > 5keV, Hc decreases from 51 Oe (ion energy of 5k eV) to 11 Oe (ion energy of 30keV) by a factor of ~4.7. The sharp increase in Hc for E < 5keV can be connected with increase in magnetic interaction between individual island. Similar dependence of Hc on film thickness was also observed in ultrathin Co [18, 19].The decrease in coercivity for E > 5keV can be related to the increase in thickness where magnetization changes by domain wall motion (consistent with the experimental results of magnetization reversal explained later in discussion) [20, 21].

 

Fig. 2 (a) LMOKE hysteresis for samples with irradiation energies of 2.5, 5, 10 and 30keV respectively. (b) Dependence of coercivity and effective thickness on the irradiation energy

Download Full Size | PPT Slide | PDF

Magnetization reversal (MR) was studied by imaging the change of the magnetic domain patterns in an applied reversal magnetic field (HR), as a function of time (t). The scheme of the experimental procedure is shown in Fig. 3. Initially, the samples were magnetized by an applied magnetic field -HM parallel to the sample plane with field amplitude larger than its coercivity value. In the next step, at time t = 0 the reversal magnetic field HR with opposite direction to -HM with HR < + Hc was applied inducing the magnetization reversal process. The values of the normalized magnetization (m) were calculated from the magnetic domain images for t > 0. Examples of such magnetic domain patterns for samples irradiated with ion energies of 2.5, 5, 7.5, and 30keV are presented in Fig. 4.

 

Fig. 3 Schematic of in-plane applied magnetic field changes for magnetization reversal studies.

Download Full Size | PPT Slide | PDF

 

Fig. 4 Magnetic field HII driven evolution of magnetic domain structures with time registered for ion energy E: (i) 2.5keV (first row), HR = 36.8 Oe. a) 1.5 sec, b) 8 sec, c) 74 sec; (ii) 5keV (second row), HR = 44.6 Oe. d) 1.5 sec, e) 10 sec, f) 128sec; (iii) 7.5keV (third row), HR = 28.9 Oe. g) 1.5 sec, h) 45 sec, i) 218 sec; (iv) 30keV (fourth row) HR = 9.6 Oe, j) 1.5 sec, k) 61 sec, l) 232 sec). The black and white arrows show the direction of magnetization in domains.

Download Full Size | PPT Slide | PDF

In Fig. 4, the black areas correspond to the initially, un-switched domains, while white areas correspond to the switched domains with magnetization along the direction of the applied magnetic field HR. Subsequent magnetization reversal cycles exhibit similar magnetic domain patterns although the location of black and white areas is statistical. The density of nucleation centers varies with ion energy. For samples irradiated with an ion energy of 2.5 keV, the evolution of magnetic domain patterns are shown in Figs. 4(a)-4(c) for HR (26.8 Oe). The magnetization reversal proceeds via nucleation of white domains, Fig. 4(a). For the completion of the magnetization process the white domains coalesce (Fig. 4(b)) approaching finally an almost saturated state. The small black non-reversed regions (magnetically harder) are still visible (Fig. 4(c) shown by red arrows). The magnetization reversal processes for samples irradiated with ion energies E ≥ 7.5keV are different. Magnetic domain patterns for samples irradiated with E of 7.5keV and 30kV are shown in Figs. 4(g)-4(i) and Figs. 4(j)-4(l), respectively. For samples irradiated with E ≥ 7.5keV, the magnetization reversal proceeds via a much smaller number of nucleation centers within the observation area (see Fig. 4(g)). HR driven white domains nucleate: (i) in both, inside selected places of the observation region as well as outside this region; (ii) outside the observation region (no nucleation in observation region, Fig. 4(j). The white domains grow in size through propagating with the preference of the applied field direction (Figs. 4(h) and 4(k)). Non-reversed black regions (hard centers) are still visible in Fig. 5(l).

 

Fig. 5 Time dependence of magnetization reversal for samples irradiated with different energy E. (a) 2.5keV, (b) 5keV (inset shows the different MR mechanisms based on [22, 23]), (c) 7.5keV, and (d) dependence of log t1/2 on HR for samples irradiated with energies of 2.5, 5, 7.5, 15 and 30keV.

Download Full Size | PPT Slide | PDF

The Figs. 5(a-c) show the time dependent normalized magnetization m(t) reversal for samples irradiated with ion energy of 2.5, 5, and 7.5keV, respectively. By increasing the reversal field amplitude HR the magnetization reversal proceeds faster as compared to the lower values of HR. The reversal speed is characterized by the time t1/2 needed to reverse half of the magnetization within the probed area. The inset of Fig. 5(b) shows two MR curves constructed after considering only domain nucleation or only domain propagation mechanism basing on Fatuzzo-Labrune model [22, 23]. By comparing the experimental relaxation curves, Figs. 5(a-c) with inset Fig. 5(b), one can see (around E = 5keV) the crossover of magnetization reversal dominated by domain nucleation mechanism (almost exponential type) and dominated by domain wall propagation mechanism (S-shaped like). For E > 5keV, the shapes of the magnetization reversal curves suggest that MR is proceeded through domain wall propagation. This can also be confirmed with the help of the magnetic domain images, where one can see larger magnetic domains, Figs. 4(g, j). Intermediate shape of MR curve can be found for sample with E = 5keV (Fig. 5(b)) despite of large number of nucleation centers observed see Fig. 4(e). Figure 5(d) shows the logarithmic plots of the relaxation time (t1/2) for samples irradiated with ion energies of 2.5, 5, 7.5, 15 and 30keV versus reversal field (HR) where strong dependence of t1/2 on HR is visible. The dependence of t1/2 on normalized HR is observed to be linear suggesting that magnetic aftereffect is due to thermal activation of magnetization reversal. The magnetization reversal analysis enables to estimate the Barkhausen volume to be in the range of 5 x10−24m3 .

4. Summary and conclusion

Depending on an ion energy evolution of magnetic domain patterns and mechanisms in reversal processes were studied by employing LMOKE techniques. The maximum Hc was found around an ion energy of 5keV, corresponding to an effective magnetic film thickness of 13 nm which identifies the crossover from single domain to multi-domain behavior. This was further verified from the study of magnetic domain images and time dependence MR curves, where for (E ≤ 5keV), MR was dominated through nucleation centers (large numbers of nucleation centers) and for E > 5keV, MR was processed through domain wall propagation (a fewer nucleation centers). Unlike conventional magnetic alloys such as Fe-Ni, Co-Fe, Co-Cr, disordered A2/B2 alloys can possess a depth varying magnetization and A2/B2 phase boundary that may affect reversal behavior. Our findings suggest that the effect of higher ion-energy (larger effective magnetic thickness) on the coercivity is similar as in conventional magnetic system such as Co where Hc, and magnetization reversal process depends on the thickness of the ferromagnetic layer.

Acknowledgments

This work is supported by Foundation for Polish Science within the Team Program co-financed by the EU European Regional Development Fund, OPIE 2007-2013.

References and links

1. C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998). [CrossRef]   [PubMed]  

2. J. Fassbender, D. Ravelosona, and Y. Samson, “Tailoring magnetism by light-ion irradiation,” J. Phys. D Appl. Phys. 37(16), R179–R196 (2004). [CrossRef]  

3. H. Bernas, Material Science with Ion Beams (Springer-Verlag, 2010).

4. A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012). [CrossRef]  

5. O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001). [CrossRef]  

6. A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

7. D. McGrouther and J. N. Chapman, “Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation,” Appl. Phys. Lett. 87(2), 022507 (2005). [CrossRef]  

8. J. McCord, L. Schultz, and J. Fassbender, “Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation,” J. Adv. Mater. 20(11), 2090–2093 (2008). [CrossRef]  

9. J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006). [CrossRef]  

10. N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013). [CrossRef]   [PubMed]  

11. J. H. Wesbrook and R. L. Fleischer, Intermetallic Compounds Volume 3: Structural Applications of Intermettalic Compounds (John Wiley and Sons, 2000).

12. A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998). [CrossRef]  

13. J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006). [CrossRef]  

14. J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008). [CrossRef]  

15. E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009). [CrossRef]   [PubMed]  

16. R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014). [CrossRef]   [PubMed]  

17. N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014). [CrossRef]  

18. M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003). [CrossRef]  

19. J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000). [CrossRef]  

20. D. J. Sellmyer, C. P. Luo, Y. Qiang, and J. P. Liu, Magnetism of Nanophase Composite Films, Handbook of Thin Film Materials, H. S. Nalwa ed. (Academic Press, 2002).

21. B. D. Cullity, Introduction to Magnetic Materials, 2nd ed. (John Wiley and Sons, 2009).

22. E. Fatuzzo, “Theoretical considerations on the switching transient in ferroelectrics,” Phys. Rev. 127(1999), 6 (1962). [CrossRef]  

23. M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
    [Crossref] [PubMed]
  2. J. Fassbender, D. Ravelosona, and Y. Samson, “Tailoring magnetism by light-ion irradiation,” J. Phys. D Appl. Phys. 37(16), R179–R196 (2004).
    [Crossref]
  3. H. Bernas, Material Science with Ion Beams (Springer-Verlag, 2010).
  4. A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
    [Crossref]
  5. O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
    [Crossref]
  6. A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).
  7. D. McGrouther and J. N. Chapman, “Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation,” Appl. Phys. Lett. 87(2), 022507 (2005).
    [Crossref]
  8. J. McCord, L. Schultz, and J. Fassbender, “Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation,” J. Adv. Mater. 20(11), 2090–2093 (2008).
    [Crossref]
  9. J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006).
    [Crossref]
  10. N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
    [Crossref] [PubMed]
  11. J. H. Wesbrook and R. L. Fleischer, Intermetallic Compounds Volume 3: Structural Applications of Intermettalic Compounds (John Wiley and Sons, 2000).
  12. A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
    [Crossref]
  13. J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
    [Crossref]
  14. J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
    [Crossref]
  15. E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
    [Crossref] [PubMed]
  16. R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
    [Crossref] [PubMed]
  17. N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
    [Crossref]
  18. M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
    [Crossref]
  19. J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000).
    [Crossref]
  20. D. J. Sellmyer, C. P. Luo, Y. Qiang, and J. P. Liu, Magnetism of Nanophase Composite Films, Handbook of Thin Film Materials, H. S. Nalwa ed. (Academic Press, 2002).
  21. B. D. Cullity, Introduction to Magnetic Materials, 2nd ed. (John Wiley and Sons, 2009).
  22. E. Fatuzzo, “Theoretical considerations on the switching transient in ferroelectrics,” Phys. Rev. 127(1999), 6 (1962).
    [Crossref]
  23. M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989).
    [Crossref]

2014 (2)

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

2013 (1)

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

2012 (1)

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

2011 (1)

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

2009 (1)

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

2008 (2)

J. McCord, L. Schultz, and J. Fassbender, “Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation,” J. Adv. Mater. 20(11), 2090–2093 (2008).
[Crossref]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

2006 (2)

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006).
[Crossref]

2005 (1)

D. McGrouther and J. N. Chapman, “Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation,” Appl. Phys. Lett. 87(2), 022507 (2005).
[Crossref]

2004 (1)

J. Fassbender, D. Ravelosona, and Y. Samson, “Tailoring magnetism by light-ion irradiation,” J. Phys. D Appl. Phys. 37(16), R179–R196 (2004).
[Crossref]

2003 (1)

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

2001 (1)

O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
[Crossref]

2000 (1)

J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000).
[Crossref]

1998 (2)

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

1989 (1)

M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989).
[Crossref]

1962 (1)

E. Fatuzzo, “Theoretical considerations on the switching transient in ferroelectrics,” Phys. Rev. 127(1999), 6 (1962).
[Crossref]

Amils, X.

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

Andrieu, S.

M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989).
[Crossref]

Baczewski, L. T.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

Baglin, J. E. E.

O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
[Crossref]

Bali, R.

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Baro, M. D.

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

Baró, M. D.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Bauch, J.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Bernas, H.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Bernstein, P.

M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989).
[Crossref]

Bhatia, C. S.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Bocklage, L.

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

Boucher, R.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Camarero, J.

J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000).
[Crossref]

Cambril, E.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Chapman, J. N.

D. McGrouther and J. N. Chapman, “Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation,” Appl. Phys. Lett. 87(2), 022507 (2005).
[Crossref]

Chappert, C.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Chen, Y.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Concustell, A.

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Deevi, S. C.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Devolder, T.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Dobrogowski, W.

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

Facsko, S.

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Fassbender, J.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. McCord, L. Schultz, and J. Fassbender, “Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation,” J. Adv. Mater. 20(11), 2090–2093 (2008).
[Crossref]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006).
[Crossref]

J. Fassbender, D. Ravelosona, and Y. Samson, “Tailoring magnetism by light-ion irradiation,” J. Phys. D Appl. Phys. 37(16), R179–R196 (2004).
[Crossref]

Fatuzzo, E.

E. Fatuzzo, “Theoretical considerations on the switching transient in ferroelectrics,” Phys. Rev. 127(1999), 6 (1962).
[Crossref]

Ferre, J.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Ferré, J.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

Fischer, P.

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

Fullerton, E. E.

O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
[Crossref]

Gaur, N.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Gemming, T.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

Gerhardt, T.

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

Gieniusz, R.

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

Hellwig, O.

O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
[Crossref]

Hernando, A.

J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000).
[Crossref]

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

Heyderman, L. J.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

Hübner, R.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Ibarra, M. R.

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

Im, M.-Y.

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

Jamet, J.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Kellock, A. J.

O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
[Crossref]

Kisielewski, M.

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

Kostylev, M. P.

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

Kottler, V.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Kronast, F.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Kundu, S.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Kurant, Z.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

Labrune, M.

M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989).
[Crossref]

Launois, H.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Liedke, M. O.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

Lindner, J.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

Mathet, V.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Maurer, S. L.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Mazalski, P.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

Maziewski, A.

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

McCord, J.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

J. McCord, L. Schultz, and J. Fassbender, “Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation,” J. Adv. Mater. 20(11), 2090–2093 (2008).
[Crossref]

McGrouther, D.

D. McGrouther and J. N. Chapman, “Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation,” Appl. Phys. Lett. 87(2), 022507 (2005).
[Crossref]

Meier, G.

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

Menéndez, E.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Meutzner, F.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Miguel, J. J.

J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000).
[Crossref]

Miranda, R.

J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000).
[Crossref]

Moller, W.

J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006).
[Crossref]

Möller, W.

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

Mougin, A.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

Mucklich, A.

J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006).
[Crossref]

Neudert, A.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Nogues, J.

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

Nogués, J.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Piramanayagam, S. N.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Potzger, K.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006).
[Crossref]

Rao, K. V.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Ravelosona, D.

J. Fassbender, D. Ravelosona, and Y. Samson, “Tailoring magnetism by light-ion irradiation,” J. Phys. D Appl. Phys. 37(16), R179–R196 (2004).
[Crossref]

Rio, F.

M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989).
[Crossref]

Rogalev, A.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

Rousseaux, F.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Samson, Y.

J. Fassbender, D. Ravelosona, and Y. Samson, “Tailoring magnetism by light-ion irradiation,” J. Phys. D Appl. Phys. 37(16), R179–R196 (2004).
[Crossref]

Schultheiss, H.

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

Schultz, L.

J. McCord, L. Schultz, and J. Fassbender, “Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation,” J. Adv. Mater. 20(11), 2090–2093 (2008).
[Crossref]

Sort, J.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Steen, S. E.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Strache, T.

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

Surinach, S.

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

Suriñach, S.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

Tahir, N.

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

Tan, H. K.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Tekielak, M.

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

Ünal, A. A.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Valencia, S.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

Wawro, A.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

Weber, A.

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

Weller, D.

O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
[Crossref]

Wilhelm, F.

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

Wintz, S.

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

Wong, S. K.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Yang, H.

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Sort, A. Concustell, E. Menéndez, S. Surinach, K. V. Rao, S. C. Deevi, M. D. Baró, and J. Nogués, “Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by nanoindentation of a nonmagnetic intermetallic compound,” Adv. Mater. 18(13), 1717–1720 (2006).
[Crossref]

Appl. Phys. Lett. (3)

O. Hellwig, D. Weller, A. J. Kellock, J. E. E. Baglin, and E. E. Fullerton, “Magnetic patterning of chemically-ordered CrPt3 films,” Appl. Phys. Lett. 79(8), 1151 (2001).
[Crossref]

A. Vogel, S. Wintz, T. Gerhardt, L. Bocklage, T. Strache, M.-Y. Im, P. Fischer, J. Fassbender, J. McCord, and G. Meier, “Field- and current-induced domain-wall motion in permalloy nanowires with magnetic soft spots,” Appl. Phys. Lett. 98(20), 202501 (2011).

D. McGrouther and J. N. Chapman, “Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation,” Appl. Phys. Lett. 87(2), 022507 (2005).
[Crossref]

IEEE Trans. Magn. (1)

N. Tahir, R. Gieniusz, A. Maziewski, R. Bali, M. P. Kostylev, S. Wintz, H. Schultheiss, S. Facsko, K. Potzger, J. Lindner, and J. Fassbender, “Magnetization reversal of disorder-induced ferromagnetic regions in Fe60Al40 thin films,” IEEE Trans. Magn. 50(11), 6101304 (2014).
[Crossref]

J. Adv. Mater. (1)

J. McCord, L. Schultz, and J. Fassbender, “Hybrid soft-magnetic lateral exchange spring films prepared by ion irradiation,” J. Adv. Mater. 20(11), 2090–2093 (2008).
[Crossref]

J. Magn. Magn. Mater. (1)

M. Labrune, S. Andrieu, F. Rio, and P. Bernstein, “Time dependence of the magnetization process RE-TM alloys,” J. Magn. Magn. Mater. 80(2-3), 211–218 (1989).
[Crossref]

J. Phys. Condens. Matter (1)

J. Camarero, J. J. Miguel, R. Miranda, and A. Hernando, “Thickness-dependent coercivity of ultrathin Co films grown on Cu(111),” J. Phys. Condens. Matter 12(35), 7713–7719 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Fassbender, D. Ravelosona, and Y. Samson, “Tailoring magnetism by light-ion irradiation,” J. Phys. D Appl. Phys. 37(16), R179–R196 (2004).
[Crossref]

Nano Lett. (1)

R. Bali, S. Wintz, F. Meutzner, R. Hübner, R. Boucher, A. A. Ünal, S. Valencia, A. Neudert, K. Potzger, J. Bauch, F. Kronast, S. Facsko, J. Lindner, and J. Fassbender, “Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism,” Nano Lett. 14(2), 435–441 (2014).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

J. Fassbender, A. Mucklich, K. Potzger, and W. Moller, “Mixing and subsequent amorphization of ultrathin Ni81Fe19/Ta bilayers by 30 keV Ni implantation,” Nucl. Instrum. Methods Phys. Res., Sect. B 248(2), 343–346 (2006).
[Crossref]

Phys. Rev. (1)

E. Fatuzzo, “Theoretical considerations on the switching transient in ferroelectrics,” Phys. Rev. 127(1999), 6 (1962).
[Crossref]

Phys. Rev. B (3)

A. Maziewski, P. Mazalski, Z. Kurant, M. O. Liedke, J. McCord, J. Fassbender, J. Ferré, A. Mougin, A. Wawro, L. T. Baczewski, A. Rogalev, F. Wilhelm, and T. Gemming, “Tailoring of magnetism in Pt/Co/Pt ultrathin films by ion irradiation,” Phys. Rev. B 85(5), 054427 (2012).
[Crossref]

A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro, and M. R. Ibarra, “Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders,” Phys. Rev. B 58(18), R11864 (1998).
[Crossref]

J. Fassbender, M. O. Liedke, T. Strache, W. Möller, E. Menéndez, J. Sort, K. V. Rao, S. C. Deevi, and J. Nogués, “Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys,” Phys. Rev. B 77(17), 174430 (2008).
[Crossref]

Phys. Status Solidi A (1)

M. Kisielewski, Z. Kurant, M. Tekielak, W. Dobrogowski, A. Maziewski, A. Wawro, and L. T. Baczewski, “Magnetooptical micromagnetometry of ultrathin Co wedge in Au/Co/Au structures,” Phys. Status Solidi A 196(1), 129–132 (2003).
[Crossref]

Sci. Rep. (1)

N. Gaur, S. Kundu, S. N. Piramanayagam, S. L. Maurer, H. K. Tan, S. K. Wong, S. E. Steen, H. Yang, and C. S. Bhatia, “Lateral displacement induced disorder in L10-FePt nanostructures by ion-implantation,” Sci. Rep. 3, 1907 (2013).
[Crossref] [PubMed]

Science (1)

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, “Planar patterned magnetic media obtained by ion irradiation,” Science 280(5371), 1919–1922 (1998).
[Crossref] [PubMed]

Small (1)

E. Menéndez, M. O. Liedke, J. Fassbender, T. Gemming, A. Weber, L. J. Heyderman, K. V. Rao, S. C. Deevi, S. Suriñach, M. D. Baró, J. Sort, and J. Nogués, “Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys,” Small 5(2), 229–234 (2009).
[Crossref] [PubMed]

Other (4)

D. J. Sellmyer, C. P. Luo, Y. Qiang, and J. P. Liu, Magnetism of Nanophase Composite Films, Handbook of Thin Film Materials, H. S. Nalwa ed. (Academic Press, 2002).

B. D. Cullity, Introduction to Magnetic Materials, 2nd ed. (John Wiley and Sons, 2009).

H. Bernas, Material Science with Ion Beams (Springer-Verlag, 2010).

J. H. Wesbrook and R. L. Fleischer, Intermetallic Compounds Volume 3: Structural Applications of Intermettalic Compounds (John Wiley and Sons, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the penetration of ions with different energies. TRIM based calculation shows, that ions with minimum energies of 20keV fully penetrate the film.
Fig. 2
Fig. 2 (a) LMOKE hysteresis for samples with irradiation energies of 2.5, 5, 10 and 30keV respectively. (b) Dependence of coercivity and effective thickness on the irradiation energy
Fig. 3
Fig. 3 Schematic of in-plane applied magnetic field changes for magnetization reversal studies.
Fig. 4
Fig. 4 Magnetic field HII driven evolution of magnetic domain structures with time registered for ion energy E: (i) 2.5keV (first row), HR = 36.8 Oe. a) 1.5 sec, b) 8 sec, c) 74 sec; (ii) 5keV (second row), HR = 44.6 Oe. d) 1.5 sec, e) 10 sec, f) 128sec; (iii) 7.5keV (third row), HR = 28.9 Oe. g) 1.5 sec, h) 45 sec, i) 218 sec; (iv) 30keV (fourth row) HR = 9.6 Oe, j) 1.5 sec, k) 61 sec, l) 232 sec). The black and white arrows show the direction of magnetization in domains.
Fig. 5
Fig. 5 Time dependence of magnetization reversal for samples irradiated with different energy E. (a) 2.5keV, (b) 5keV (inset shows the different MR mechanisms based on [22, 23]), (c) 7.5keV, and (d) dependence of log t1/2 on HR for samples irradiated with energies of 2.5, 5, 7.5, 15 and 30keV.

Metrics