Abstract

A transparent reconfigurable optical add-drop multiplexer (ROADM) module composed of AWG-based wavelength-channel-selectors monolithically integrated with Mach-Zehnder interferometer (MZI) thermo-optic (TO) waveguide switch arrays and arrayed waveguide true-time-delay (TTD) lines is designed and fabricated using polymer photonic lightwave circuit technology. Negative-type fluorinated photoresist and grafting modified organic-inorganic hybrid materials were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. The delay time basic increments are measured from 140 ps to 20 ps. Proposed novel ROADM is flexible and scalable for the dense wavelength division multiplexing network.

© 2014 Optical Society of America

1. Introduction

The reconfigurable optical add-drop multiplexer (ROADM) is one of the key technologies for the dense wavelength division multiplexing (DWDM) all-optical networks [1,2]. The module is quite useful for realizing routing of wavelength channels to the specific destination without transforming the optical signals to electrical signals. As an important device for optical ring networks, the ROADM that applies the add-drop function reuses the wavelengths to enhance the network when the network is troubled. Often, the ROADM helps the network administrators configure the wavelength channels to manage the quality of service for a dynamic network [3,4].

To realize the optical network, several technologies have been developed to build the ROADM, including hybrid fiber Bragg gratings (FBGs) with optical circulators (OCs) [57] as well as variable optical attenuator (VOA) array associated with optical switches (OSWs) [8,9]. The most recent ROADM is based on N × N AWG integrated with OSWs arrays to carry out the add-drop function [1013]. Several material systems [1421] have been used to fabricate the ROADM modules, the notable being lithium niobate, silicon-on-insulator (SOI), InP, and polymers. As a multifunctional material system, polymers exhibit well-controlled refractive indices, highly flexible structures, and large thermo-optic (TO) and electro-optic (EO) coefficients [2227], which can be advantageous to reduce manufacturing costs and open possibility of monolithic integration with functional devices such as lasers and detectors.

In this paper, we propose a novel monolithically integrated ROADM module comprised of 16-channel 100-GHz AWG-based wavelength-channel-selectors, 8-channel MZI TO switch arrays and arrayed waveguide TTD lines using polymer photonic lightwave circuit. Fluorinated photoresist and grafting modified organic-inorganic hybrid materials were synthesized as the waveguide core and cladding, respectively. Wavelength-channel-selected, switch-arrayed and TTD-arrayed characteristics were analyzed, simulated and measured. Novel add-drop functions were given. The fabrication process of the device was described. Optimized structural properties of the waveguides and electrode heaters were provided. Through careful design and fabrication of the integrated ROADM, the excellent performances of the module were achieved.

2. Design and experiments

2.1 Device structure

Novel polymer monolithically integrated ROADM module was designed and fabricated. The operating principle and schematic configuration of the integrated ROADM module are shown in Fig. 1(a). The module consists of 16-channel 100-GHz AWG-based wavelength-channel-selectors, 8-channel MZI TO switch arrays and 8-channel TTD line arrays. The total size is 25 × 18 mm2. The 1st to 7th input/output ports are used as add/drop channels and the 8th as input/output through channel. The 9th to 16th input/output ports are connected by the TTD line arrays. When signals of λ1-λ16 with wavelength spacing 0.8 nm are coupled into the input through channel, they are split into the 16 output ports by the AWG (as a demultiplexer). Wavelengths of λ1-λ7 are dropped by drop channels and λ8 is in the output through channel. As for λ9-λ16, they will pass through the TTD line arrays and again are coupled into the AWG (as a multiplexer) through the 9th to 16th input port separately. Finally they are combined into the output through channel. Thus the wavelengths in the output through channel are λ816. If signals are coupled into the add channels, they will be added into the output through channel together. The wavelength-channel-selection characteristics can be achieved by thermo-optical tuning effect derived from serpentine heaters on arrayed waveguide section of the multifunctional AWG. The MZI TO switch arrays set on the TTD line arrays can modulate the optical intensity and response time of loopback wavelength signals passing through them. The multi-functional integrated TTD line arrays may have potential application in phased array antennas [28]. The structure of the TTD line arrays consist of 180° array bend waveguide with a constant spacing difference ΔR between adjacent waveguides. The two parts of 180° bend waveguides can achieve equivalent time delay Δt for each adjacent array waveguide channel for loopback wavelength signals, given by

Δt=2πΔRngc
where c is the speed of light in vacuum and ng is the group index of the waveguide [29].

 figure: Fig. 1

Fig. 1 The schematic diagram of the integrated chip (a) operating principle and schematic configuration of the integrated ROADM module; (b) description structure of shifts of focal point for AWG-based wavelength selector.

Download Full Size | PPT Slide | PDF

The metal electrodes of the serpentine heaters are set on the arrayed waveguides region of the AWG. The length difference between the adjacent electrodes is ΔLe. The adjacent electrodes are connected to each other end to end. The functional AWG device is based on the grating equation [30]

Δϕ2πm2πnsd/λ=θ
where ns is the effective index of the slab region, m is the diffraction order of the array, d is the arrayed waveguides separation and λ is the wavelength of the incident beam. Equation (2) shows that dispersion angle θ is resulting from a phase difference between adjacent waveguides ΔΦ.

However, if the temperature of the waveguides shifts jΔT (j = 0, ± 1, ± 2, …) owing to the electrodes, the refractive index of the arrayed waveguides with change jΔnc, ΔΦ is determined by two compositions

Δϕ=2πλ(ncΔL+jΔncΔLe)
The relations can be written as
jΔxjΔnc=fΔLnsd
where Δx is the output waveguides separation, and f is the focal length. The variation of the focal position x will depend on the index migration Δnc. When the thermal shift from (T0-jΔT) to (T0 + jΔT), the beam will export from channel –j to channel j. Then the wavelength-channel-selected function is realized. Description structure of shifts of focal point is shown in Fig. 1(b).

2.2 Analysis and simulation

To ensure the low-loss single-mode polymer optical waveguide for planar lightwave circuits (PLCs), Negative-type fluorinated photoresist and organic-inorganic grafting PMMA were used as the waveguide core and cladding, respectively. Highly fluorinated polystyrene derivates (FPSDs) [31] were synthesized by copolymerization of 2,3,4,5,6-pentafluorostyrene (PFS) and fluorinated styrene derivate monomer (FSDM). The fluorinated polymers were doped into epoxy SU-8 resist using diphenyl iodonium salt as a photoacid generator (PAG). The refractive index and crosslinking density of the negative-type fluorinated photoresists can be tuned and controlled by monitoring the feed ratio of comonomers. The SiO2-TiO2 network grafting PMMA material [32] offers some advantages such as low birefringence, good thermal stability and low wavelength dispersion. The refractive index of the sol-gels can be adjusted by monitoring the composition of TiO2 in hybrid materials. The refractive indices (n) of the polymeric core and cladding materials measured with an M-2000UI variable angle incidence spectroscopic ellipsometer are 1.571 and 1.560 at 1550-nm wavelength, respectively. The relative refractive index difference between the core and the cladding is about Δ = (n1-n2)/n1 = 0.7%.

The relations based on the eigenvalue Eqs [33]. between the core thickness b and mode effective refractive indices nc and ns of the slab and the arrayed waveguides for the signal wavelength are shown in Fig. 2, where we take the core width a = b = 4-μm to realize both single-mode propagation and polarization independence of waveguide structure. The device was designed to operate at the grating order of 112, with a path length difference of 111.147-μm for transverse-magnetic (TM) mode, and the free propagation region (FPR) focal length is 1408.4683-μm. The minimum pitch between the neighboring waveguides is 9-μm at the fan-out section. To reduce the insertion loss nonuniformity of the device, the free spectral range of 16.1-nm is chosen, more than the minimum required spectral range of 12.8-nm.

 figure: Fig. 2

Fig. 2 Relations between the core thickness b and the effective refractive indices nc (green dashed lines) and ns (blue solid lines) with a = b.

Download Full Size | PPT Slide | PDF

Figure 3 shows the TM mode spectral response of the integrated ROADM module. There are sixteen peaks in the spectra, obtained at the through port and each of the seven drop ports. One is the through signal, including λ8 which only passes through the demultiplexer, and λ9-λ16 modulated signals which pass through the demultiplexer, TTD lines, thermo-optic switch, and multiplexer. The others (λ1-λ7) are the drop signals. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse electric mode.

 figure: Fig. 3

Fig. 3 Output spectral of transmitted signal lights for each channel.

Download Full Size | PPT Slide | PDF

The temperature distribution of the heating structure of the serpentine electrode heaters on AWG with wavelength-channel-selected function could be written as

T(x,y)=PπKhLWtanh1[sinh(πy2Ls)cosh(πτ2Ls)]dτ
whereL=k=1MLk=ΔLek=1Mk, Lk is the length of the kth electrode, W is the width of the electrodes, Ls is the waveguide thickness which include the core and the cladding thickness, and Kh is the thermal conductivity of the core and cladding materials. The thermal conductivity Kh of fluorinated SU-8 core and sol-gel cladding was 0.28 and 0.2 Wm−1K−1, respectively. Ls is measured as 22-μm and the width electrode W is obtained as 30-μm. The 10-μm thickness top cladding is enough to reduce metal absorption caused by electrodes.

Figure 4 shows the simulation results at different temperature of the serpentine heaters for wavelength-channel-selected function. When the input wavelength is λ1 = 1544.4-nm, the insertion loss of this AWG component is below ~5.37 dB, and the extinction ratio is better than ~31 dB. As temperature changes from 20 °C to 65 °C, We can observe that when the temperature is increased by 3 °C, the signal wavelength can be transferred to the next channel. Heat-driven power of electrodes is about 5.2 mW/channel based on the three-layer active region’s temperature distributions by Fourier transform method [34,35].

 figure: Fig. 4

Fig. 4 Simulated output wavelength-channel-selected characteristics of the integrated module with temperature changing from 20 °C to 65 °C.

Download Full Size | PPT Slide | PDF

Figure 5 shows the modulation of the thermo-optic switch for controlling the intensity of signal wavelength. The maximum modulation depth is ~15 dB under a bias of 1.5 V. The maximum power consumption of a single switch is less than 15 mW. A three-dimensional finite-difference beam propagation method (BeamPROP, Rsoft Co.) was used to numerically calculate the optical switch properties. The temperature field is simulated under the experimental condition with operating a phase difference of π. The result shows that there is a temperature of 3 K between the two phase arms under the operating π phase difference condition. The thermo-optic effect on other switch arrays can also be realized.

 figure: Fig. 5

Fig. 5 Simulated spectral of through signal lights without/with 1.5-V dc bias.

Download Full Size | PPT Slide | PDF

2.3 Fabrication procedure

The fabrication process is shown as Fig. 6. It shows that the organic - inorganic hybrid thin film of 10-μm thickness was formed as the cladding layer by spin coating on Si substrate, and the wafer was done by thermal annealing at 125 °C for 1 h to cross-link the polymer as the bottom layer. The layer thickness of 10-μm is sufficient to reduce the optical leakage into the substrate. A 4-μm thickness fluorinated SU-8 photoresist was spin-coated on the bottom cladding as waveguide layer, and then pre-baked at 65 °C for 10 min and 90 °C for 20 min to remove any traces of the solvent. The pattern exposure was performed at a wavelength of 365 nm using the 350 mW Hg lamp power through a contact chromium mask. The exposure time was 180 s. After post-baking, the resist was developed in propylene glycol-monomethyl ether-acetate (PGMEA) for 40 s, rinsed in isopropyl alcohol and then deionized water, and blown dry to form the channel waveguides. After that, it is very important to curing-bake the wafer at 150 °C for 30 min so that the adhesion between polymeric waveguides and bottom cladding layer can be enhanced well. A 10-μm-thick organic - inorganic hybrid film was spin-coated as the upper cladding layer to further reduce the optical leakage from waveguides into the metal film. Finally, the aluminum electrode heaters were patterned by photolithography and wet etching.

 figure: Fig. 6

Fig. 6 Fabrication process for UV defined waveguide and electrode heater structure.

Download Full Size | PPT Slide | PDF

Scanning electron microscope (SEM) micrographs of the cross sections of the waveguide are shown in Fig. 7(a) and Fig. 7(b). It indicates the cross section of the waveguide by SEM. It shows that the ridge-wall is smooth and almost vertical. There was no any solubility phenomenon between the core layer and cladding. It depicts that the process enables precise control of the core size. Figure 7(c) gives interactional segments patterns of the serpentine electrode heaters by microscope ( × 500). It shows that the parameters designed of the serpentine electrode heaters can be realized very well. The measured total resistance was 800 Ω. Figure 7(d) gives structural patterns of the electrode heaters from switch arrays by microscope ( × 500). The value of the resistance is about 200 Ω.

 figure: Fig. 7

Fig. 7 Profiles of the waveguide and electrode structures: SEM photograph of (a) input and (b) transmission segment patterns of cross-sectional waveguides; the surface profiles of (a) serpentine and (b) switch-arrayed electrode heaters. ( × 500)

Download Full Size | PPT Slide | PDF

2.4 Results and discussion

The propagation loss of a 4-μm-wide straight waveguide, measured by the cutback method at 1550 nm, was found to be 0.5 dB/cm. Schematic photographs of the proposed polymer 16-channel integrated module measured were shown as Fig. 8(a). Figure 8(b) gives the near-field patterns of the device. Signal light from a wide-band erbium-doped optical fiber amplifier (EDFA) was butt-coupled into the input waveguide through standard single-mode fiber. The signals from the output waveguides were magnified ( × 60) by lens and received by the CCD camera. The channel spacing is 0.796 nm/channel, the fiber–fiber insertion loss at each channel is from 6.55 dB to 8.32 dB, and the crosstalk of the 16 channels is about −25 dB.

 figure: Fig. 8

Fig. 8 (a) Schematic photographs of the proposed polymer 16-channel integrated module measured. (b) Near-field guide-mode patterns of the device with signal light from a wide-band EDFA.

Download Full Size | PPT Slide | PDF

Figure 9(a) shows the actual spectral response of the integrated ROADM module at the eighth channel. One is the through signal, including λ8 (1550 nm) which only passes through the demultiplexer, and λ9-λ16 modulated signals which pass through the demultiplexer, TTD lines, thermo-optic switch, and multiplexer. The wavelength transmission loss is from −8 dB to −16 dB and the crosstalk is less than ~25 dB for the TM mode. Figure 9(b) shows the actual effect of wavelength-channel-selected characteristic for the integrated device at different dc voltage of the serpentine heaters. As the driving voltage changes from 1.5 V to 10.5 V, the input signal wavelength (1544.4 nm) can be adjusted from the first channel to the eighth channel. We can observe that when the actual temperature is increased by 4 °C, the signal wavelength can be transferred to the next channel. Heat-driven power of electrodes is 6.5 mW/channel.

 figure: Fig. 9

Fig. 9 (a) Output spectral of through signal light measured from the eighth channel; (b) actual effect of wavelength-channel-selected characteristic for the integrated device at dc voltage of the serpentine heaters.

Download Full Size | PPT Slide | PDF

For the TTD line arrays, 9 th to 16 th wavelength channels will loop back into the AWG and focus into a single-channel waveguide at the output end. Delay lines followed a raceway-like pattern with 5 mm in radius to ensure the bending losses are not contributing [36,37]. The delay length increments are selected to decrease from the channel #9 to 16 by 3.8 mm, corresponding to 20 ps in time delay as seen in the inlet Table 1. This particular design provides maximum relative time delay of 140 ps with 20-ps increments, where the maximum and minimum basic physical delays are 455 ps and 315 ps, respectively. Furthermore, by adjusting the different output channels of the signal wavelengths, the optical delay increment can be freely regulated through the wavelength-channel-selected function of the integrated device. For the integrated module using polymer optical waveguide delay lines, the maximum time-delay error is obtained less than 0.1 ps, corresponding to a radiation angle error of less than 0.5°, which is within the equipment resolution.

Tables Icon

Table 1. The Delay Increments for Each Element (Unit: ps)

Figure 10(a) shows that the thermo-optic switching response observed by applying square–wave voltage at a frequency of 100 Hz. It can be noted that the rise and fall times were 190-μs and 350-μs, respectively. Figure 9(b) gives that channel output intensity versus power consumption of the optical switch at 1550 nm for TM mode. The extinction ratio of the TO switch was measured about ~15.5 dB with 2.4 V bias. The applied electric power as the switching power is actually 9.5 mW.

 figure: Fig. 10

Fig. 10 Performances of the integrated device. (a) TO switch responses obtained by applying square-wave voltage at frequency of 100 Hz. (b) Actual channel output versus power consumption of optical switch at 1550 nm for TM mode.

Download Full Size | PPT Slide | PDF

3. Conclusion

In summary, a transparent ROADM module composed of AWG-based wavelength-channel-selectors monolithically integrated with TO switch arrays and TTD lines is successfully designed and fabricated using polymer photonic lightwave circuit technology. Proper add-drop function was confirmed through C-band spectral channels input. Utilizing the cyclic AWG-based wavelength-channel-selectors, the proposed ROADM allowed to add-drop all the network wavelength channels. The preferable structural profiles of waveguide and electrode were obtained by the pictures of SEM and microscope. These characteristics were advantageous to optimize producing process and enhance optical performances of polymer waveguide devices. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the TM mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. 180° array bend waveguides with a constant spacing difference ΔR between adjacent waveguides. The delay time increments are measured from 140 ps to 20 ps. The integration of various functions onto a single chip improves performances of the device, greatly simplifies the assembly and represents significant cost saving in package. The proposed ROADM module can realize more flexible and efficient DWDM network.

Acknowledgments

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (No. 61107019, 61177027, 61275033, 61205032, 61261130586), Ph.D. Programs Foundation of Ministry of Education of China (No. 20110061120054), China Postdoctoral Science Foundation (No. 2011M500597, 2012M510900), China Postdoctoral Science special Foundation (No.2012T50277), Program for Special Funds of Basic Science & Technology of Jilin University (No. 201103071, 201100253), Science and Technology Development Plan of Jilin Province (No. 20130522151JH, 20140519006JH).

References and links

1. C.-M. Tsai, H. Taga, C.-H. Yang, Y.-L. Lo, and T.-C. Liang, “Demonstration of a ROADM using cyclic AWGs,” J. Lightwave Technol. 29(18), 2780–2784 (2011). [CrossRef]  

2. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009). [CrossRef]  

3. C. M. Tsai and Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007). [CrossRef]  

4. J. S. Cho, Y. K. Seo, H. Yoo, P. K. J. Park, J. K. Rhee, Y. H. Won, and M. H. Kang, “Optical burst add-drop multiplexing technique for sub-wavelength granularity in wavelength multiplexed ring networks,” Opt. Express 15(20), 13256–13265 (2007). [CrossRef]   [PubMed]  

5. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001). [CrossRef]  

6. Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012). [CrossRef]  

7. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011). [CrossRef]   [PubMed]  

8. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009). [CrossRef]  

9. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, and R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010). [CrossRef]   [PubMed]  

10. Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009). [CrossRef]  

11. A. Yeniay and R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010). [CrossRef]  

12. M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010). [CrossRef]  

13. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, and R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010). [CrossRef]   [PubMed]  

14. D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:. [CrossRef]  

15. F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013). [CrossRef]  

16. N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013). [CrossRef]   [PubMed]  

17. N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013). [CrossRef]  

18. F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012). [CrossRef]  

19. S. C. Nicholes, M. L. Masanovic, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010). [CrossRef]  

20. D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

21. J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012). [CrossRef]  

22. R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014). [CrossRef]  

23. N. Bamiedakis, J. Beals IV, R. V. Penty, I. H. White, J. V. DeGroot Jr, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009). [CrossRef]  

24. T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009). [CrossRef]  

25. C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011). [CrossRef]  

26. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010). [CrossRef]   [PubMed]  

27. C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012). [CrossRef]  

28. J.-D. Shin, B.-S. Lee, and B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004). [CrossRef]  

29. C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010). [CrossRef]  

30. G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007). [CrossRef]  

31. Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011). [CrossRef]  

32. C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013). [CrossRef]  

33. K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).

34. Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009). [CrossRef]  

35. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011). [CrossRef]  

36. B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005). [CrossRef]  

37. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. C.-M. Tsai, H. Taga, C.-H. Yang, Y.-L. Lo, and T.-C. Liang, “Demonstration of a ROADM using cyclic AWGs,” J. Lightwave Technol. 29(18), 2780–2784 (2011).
    [Crossref]
  2. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
    [Crossref]
  3. C. M. Tsai and Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
    [Crossref]
  4. J. S. Cho, Y. K. Seo, H. Yoo, P. K. J. Park, J. K. Rhee, Y. H. Won, and M. H. Kang, “Optical burst add-drop multiplexing technique for sub-wavelength granularity in wavelength multiplexed ring networks,” Opt. Express 15(20), 13256–13265 (2007).
    [Crossref] [PubMed]
  5. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
    [Crossref]
  6. Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
    [Crossref]
  7. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
    [Crossref] [PubMed]
  8. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
    [Crossref]
  9. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, and R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
    [Crossref] [PubMed]
  10. Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
    [Crossref]
  11. A. Yeniay and R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
    [Crossref]
  12. M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
    [Crossref]
  13. T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, and R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
    [Crossref] [PubMed]
  14. D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
    [Crossref]
  15. F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
    [Crossref]
  16. N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
    [Crossref] [PubMed]
  17. N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
    [Crossref]
  18. F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
    [Crossref]
  19. S. C. Nicholes, M. L. Masanovic, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
    [Crossref]
  20. D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).
  21. J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
    [Crossref]
  22. R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
    [Crossref]
  23. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
    [Crossref]
  24. T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
    [Crossref]
  25. C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
    [Crossref]
  26. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [Crossref] [PubMed]
  27. C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
    [Crossref]
  28. J.-D. Shin, B.-S. Lee, and B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
    [Crossref]
  29. C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
    [Crossref]
  30. G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
    [Crossref]
  31. Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
    [Crossref]
  32. C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
    [Crossref]
  33. K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).
  34. Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
    [Crossref]
  35. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
    [Crossref]
  36. B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
    [Crossref]
  37. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
    [Crossref] [PubMed]

2014 (1)

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

2013 (4)

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[Crossref]

2012 (5)

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[Crossref]

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

2011 (5)

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett. 36(17), 3320–3322 (2011).
[Crossref] [PubMed]

C.-M. Tsai, H. Taga, C.-H. Yang, Y.-L. Lo, and T.-C. Liang, “Demonstration of a ROADM using cyclic AWGs,” J. Lightwave Technol. 29(18), 2780–2784 (2011).
[Crossref]

2010 (7)

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, and R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
[Crossref] [PubMed]

A. Yeniay and R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[Crossref]

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

T. Segawa, S. Matsuo, T. Kakitsuka, Y. Shibata, T. Sato, Y. Kawaguchi, Y. Kondo, and R. Takahashi, “All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG,” Opt. Express 18(5), 4340–4345 (2010).
[Crossref] [PubMed]

S. C. Nicholes, M. L. Masanovic, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
[Crossref]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

2009 (6)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[Crossref]

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

2007 (5)

C. M. Tsai and Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[Crossref]

J. S. Cho, Y. K. Seo, H. Yoo, P. K. J. Park, J. K. Rhee, Y. H. Won, and M. H. Kang, “Optical burst add-drop multiplexing technique for sub-wavelength granularity in wavelength multiplexed ring networks,” Opt. Express 15(20), 13256–13265 (2007).
[Crossref] [PubMed]

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[Crossref] [PubMed]

G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

2005 (1)

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

2004 (1)

J.-D. Shin, B.-S. Lee, and B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

2001 (1)

V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Andriolli, N.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Back, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Baek, Y.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Bamiedakis, N.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Bauter, J.

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[Crossref]

Beals, J.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Bienstman, P.

Blumenthal, D. J.

Bogaerts, W.

Bogoni, A.

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Bolk, J.

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Bontempi, F.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Bowers, J. E.

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[Crossref]

Chen, C.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

Chen, M. Y.

Chen, R. T.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[Crossref] [PubMed]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Chen, Y.

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Cho, J. S.

Claes, T.

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Coldren, L. A.

Contestabile, G.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Cui, Y.

G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Cui, Z.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Dai, D.

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[Crossref]

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

DeGroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Dentai, A. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Dereux, A.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Dominic, V. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Evans, P. W.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Fang, Q.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Faralli, S.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[Crossref]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

Fei, X.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Gao, R.

A. Yeniay and R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[Crossref]

Gorman, T.

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

Grote, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Grubb, S. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Han, C.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

Han, S.-P.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

Han, Y.-T.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

Hashimoto, T.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

Hassan, K.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Haxha, S.

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

He, Z.

Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[Crossref]

Howley, B.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[Crossref] [PubMed]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Hu, G.

G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Hu, J.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Hurtt, S. K.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Hwang, W.-Y.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

Itoh, M.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

Jevremovic, B.

Jiang, Y.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Joyner, C. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Ju, J. J.

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

Kakitsuka, T.

Kamei, S.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

Kang, M. H.

Kang-hee, P.

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

Kato, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Kauffman, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Kawaguchi, Y.

Keil, N.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Kim, B.-G.

J.-D. Shin, B.-S. Lee, and B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

Kish, F. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Kitoh, T.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

Kondo, Y.

Kriezis, E. E.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Kroh, M.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Kwong, D.-L.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Lambert, D. J. H.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Lee, B.-S.

J.-D. Shin, B.-S. Lee, and B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

Lee, C.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

Lee, H.-J.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

Leijtens, X. J. M.

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Li, R.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Liang, T.-C.

Liu, L.

Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[Crossref]

Liu, Y.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Lively, E.

Lo, G.-Q.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Lo, Y. L.

C. M. Tsai and Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[Crossref]

Lo, Y.-L.

Lu, C.

G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Markey, L.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Masanovic, M. L.

Mathur, A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Matiss, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Matsuo, S.

Mehuys, D. G.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Melle, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Missey, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Mitchell, M. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Murthy, S.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Nagarajan, R.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Nicholes, S. C.

Nilsson, A. C.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Noh, Y.-O.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

Oguma, M.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

Park, H.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

Park, P. K. J.

Park, S.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

Penty, R. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Perkins, D.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Pinna, S.

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

Pitilakis, A.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Pleumeekers, J. L.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Reffle, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Rhee, J. K.

Richter, T.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Sakamaki, Y.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

Salvatore, R. A.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Sato, T.

Schneider, R. P.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Schubert, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Segawa, T.

Seo, J.-K.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

Seo, Y. K.

Shi, Z.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Shibata, Y.

Shin, J.-D.

J.-D. Shin, B.-S. Lee, and B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

Shin, J.-U.

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

Song, J.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Song, K.

V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Steffan, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

Sun, X.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

Taga, H.

Takahashi, H.

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

Takahashi, R.

Theurer, A.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Tran, V.

V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Tsai, C. M.

C. M. Tsai and Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[Crossref]

Tsai, C.-M.

Tsilipakos, O.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Tucker, R. S.

V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Van Leeuwen, M. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Wan, Y.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Wang, F.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

Wang, H.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Wang, J.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Wang, L.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

Wang, X.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 x 2 polymer waveguide switch array,” Appl. Opt. 46(3), 379–383 (2007).
[Crossref] [PubMed]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Wang, Z.

G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Webjorn, J.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Weeber, J.-C.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Welch, D. F.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

White, I. H.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

Won, Y. H.

Wu, X.

Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[Crossref]

Xu, L.

Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[Crossref]

Yan, Y.

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

Yang, C.-H.

Yeniay, A.

A. Yeniay and R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[Crossref]

Yi, Y.

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

Yoo, H.

Yu, M.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Yu, Y.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Yun, B.

G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Zawadzki, C.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Zhang, D.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

Zhang, F.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

Zhang, G.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

Zhang, H.

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

Zhang, T.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Zhang, X.

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Zhang, Y.

Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[Crossref]

Zhang, Z.

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

Zhao, L.

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Zhong, W. D.

V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Zhou, Q.

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Ziari, M.

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, A. Pitilakis, O. Tsilipakos, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett. 99(24), 241110 (2011).
[Crossref]

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[Crossref] [PubMed]

ETRI (1)

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and P. Kang-hee, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI 31(6), 770–777 (2009).
[Crossref]

IEEE J. Lightw. Technol (2)

N. Andriolli, S. Faralli, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Monolithically integrated all-optical regenerator for constant envelope WDM signals,” IEEE J. Lightw. Technol 31(2), 322–327 (2013).
[Crossref]

T. Gorman, S. Haxha, and J. J. Ju, “Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section,” IEEE J. Lightw. Technol 27(1), 68–76 (2009).
[Crossref]

IEEE J. Quantum Electron. (6)

C. Chen, F. Zhang, H. Wang, X. Sun, F. Wang, Z. Cui, and D. Zhang, “UV curable electro-optic polymer switch based on direct photodefinition technique,” IEEE J. Quantum Electron. 47(7), 959–964 (2011).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron. 45(4), 415–424 (2009).
[Crossref]

C. Chen, Y. Yi, F. Wang, Y. Yan, X. Sun, and D. Zhang, “Ultra long compact optical polymeric array waveguide true-time-delay line devices,” IEEE J. Quantum Electron. 46(5), 754–761 (2010).
[Crossref]

C. Chen, C. Han, L. Wang, H. Zhang, X. Sun, F. Wang, and D. Zhang, “650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE J. Quantum Electron. 49(5), 61–66 (2013).
[Crossref]

F. Bontempi, S. Pinna, N. Andriolli, A. Bogoni, X. J. M. Leijtens, J. Bolk, and G. Contestabile, “Multifunctional current-controlled InP photonic integrated delay interferometer,” IEEE J. Quantum Electron. 48(11), 1453–1461 (2012).
[Crossref]

IEEE J. Select Top Quantum Electron. (1)

D. F. Welch, F. A. Kish, S. Melle, R. Nagarajan, M. Kato, C. H. Joyner, J. L. Pleumeekers, R. P. Schneider, J. Back, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Hurtt, A. Mathur, M. L. Mitchell, M. Missey, S. Murthy, A. C. Nilsson, R. A. Salvatore, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, and D. G. Mehuys, “Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks,” IEEE J. Select Top Quantum Electron. 13, 22–31 (2007).

IEEE Photon. Technol. Lett. (8)

J. Wang, M. Kroh, T. Richter, A. Theurer, A. Matiss, C. Zawadzki, Z. Zhang, C. Schubert, A. Steffan, N. Grote, and N. Keil, “Hybrid-integrated polarization diverse coherent receiver based on polymer PLC,” IEEE Photon. Technol. Lett. 24(19), 1718–1721 (2012).
[Crossref]

J.-D. Shin, B.-S. Lee, and B.-G. Kim, “Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines,” IEEE Photon. Technol. Lett. 16(5), 1364–1366 (2004).
[Crossref]

B. Howley, Y. Chen, X. Wang, Q. Zhou, Z. Shi, Y. Jiang, and R. T. Chen, “2-bit reconfigurable true time delay line using 2×2 polymer waveguide switches,” IEEE Photon. Technol. Lett. 25(9), 1944–1946 (2005).
[Crossref]

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G.-Q. Lo, and D.-L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009).
[Crossref]

A. Yeniay and R. Gao, “True time delay photonic circuit based on perfluorpolymer waveguides,” IEEE Photon. Technol. Lett. 22(21), 1565–1567 (2010).
[Crossref]

V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, “Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings,” IEEE Photon. Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, J.-K. Seo, H.-J. Lee, W.-Y. Hwang, H.-H. Park, and Y. Baek, “2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides,” IEEE Photon. Technol. Lett. 24(19), 1757–1760 (2012).
[Crossref]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch array,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[Crossref]

IEICE Electron. Express (1)

M. Oguma, S. Kamei, T. Kitoh, T. Hashimoto, Y. Sakamaki, M. Itoh, and H. Takahashi, “Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide,” IEICE Electron. Express 7(11), 823–826 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

Y. Zhang, X. Wu, Z. He, L. Liu, and L. Xu, “Compact asymmetric 1×2 multimode interference optical switch,” J. Opt. A, Pure Appl. Opt. 11(10), 105401 (2009).
[Crossref]

J. Polym. Sci. A Polym. Chem. (1)

Y. Wan, X. Fei, Z. Shi, J. Hu, X. Zhang, L. Zhao, C. Chen, Z. Cui, and D. Zhang, “Highly Fluorinated Low-Molecular-Weight Photoresists for Optical Waveguides,” J. Polym. Sci. A Polym. Chem. 49(3), 762–769 (2011).
[Crossref]

Light: Science and Applications (1)

D. Dai, J. Bauter, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction,” Light: Science and Applications 1(3), e1 (2012), doi:.
[Crossref]

Opt. Commun. (1)

G. Hu, Y. Cui, B. Yun, C. Lu, and Z. Wang, “A polymeric optical switch array based on arrayed waveguide grating structure,” Opt. Commun. 279(1), 79–82 (2007).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

C. M. Tsai and Y. L. Lo, “Fiber-grating add–drop reconfigurable multiplexer with multi-channel using in bidirectional optical network,” Opt. Fiber Technol. 13(3), 260–266 (2007).
[Crossref]

Opt. Lett. (1)

Photon. Technol. Lett (1)

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” Photon. Technol. Lett 25(22), 2178–2181 (2013).
[Crossref]

Sens. Actuators A Phys. (1)

R. Li, T. Zhang, Y. Yu, Y. Jiang, X. Zhang, and L. Wang, “Physical flexible multilayer substrate based optical waveguides,” Sens. Actuators A Phys. 209(20), 57–61 (2014).
[Crossref]

Other (1)

K. Kawano, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations (Wiley 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The schematic diagram of the integrated chip (a) operating principle and schematic configuration of the integrated ROADM module; (b) description structure of shifts of focal point for AWG-based wavelength selector.
Fig. 2
Fig. 2 Relations between the core thickness b and the effective refractive indices nc (green dashed lines) and ns (blue solid lines) with a = b.
Fig. 3
Fig. 3 Output spectral of transmitted signal lights for each channel.
Fig. 4
Fig. 4 Simulated output wavelength-channel-selected characteristics of the integrated module with temperature changing from 20 °C to 65 °C.
Fig. 5
Fig. 5 Simulated spectral of through signal lights without/with 1.5-V dc bias.
Fig. 6
Fig. 6 Fabrication process for UV defined waveguide and electrode heater structure.
Fig. 7
Fig. 7 Profiles of the waveguide and electrode structures: SEM photograph of (a) input and (b) transmission segment patterns of cross-sectional waveguides; the surface profiles of (a) serpentine and (b) switch-arrayed electrode heaters. ( × 500)
Fig. 8
Fig. 8 (a) Schematic photographs of the proposed polymer 16-channel integrated module measured. (b) Near-field guide-mode patterns of the device with signal light from a wide-band EDFA.
Fig. 9
Fig. 9 (a) Output spectral of through signal light measured from the eighth channel; (b) actual effect of wavelength-channel-selected characteristic for the integrated device at dc voltage of the serpentine heaters.
Fig. 10
Fig. 10 Performances of the integrated device. (a) TO switch responses obtained by applying square-wave voltage at frequency of 100 Hz. (b) Actual channel output versus power consumption of optical switch at 1550 nm for TM mode.

Tables (1)

Tables Icon

Table 1 The Delay Increments for Each Element (Unit: ps)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δt= 2πΔR n g c
Δϕ2πm 2π n s d/λ =θ
Δϕ= 2π λ ( n c ΔL+jΔ n c Δ L e )
jΔx jΔ n c = fΔL n s d
T(x,y)= P π K h LW tan h 1 [ sinh( πy 2 L s ) cosh( πτ 2 L s ) ]dτ

Metrics