Abstract

In this paper, we demonstrate that spoof surface magnon polaritons (SSMPs) can propagate along a corrugated perfect magnetic conductor (PMC) surface. From duality theorem, the existence of surface electromagnetic modes on corrugated PMC surfaces are manifest to be transverse electric (TE) mode compared with the transverse magnetic (TM) mode of spoof surface plasmon plaritons (SSPPs) excited on corrugated perfect electric conductor surfaces. Theoretical deduction through modal expansion method and simulation results clearly verify that SSMPs share the same dispersion relationship with the SSPPs. It is worth noting that this metamaterial will have more similar properties and potential applications as the SSPPs in large number of areas.

© 2014 Optical Society of America

1. Introduction

Surface plasmon polaritons (SPPs), which are localized surface electromagnetic (EM) modes that propagate along the interface between a metal and a dielectric in optical frequencies and decay exponentially in the transverse direction [1,2], have attracted great attentions owing to their huge potential applications in large number of areas [35]. Thereafter, to produce highly confined surface EM waves at lower frequencies, a new plasmonic metamaterial called spoof surface plasmon polaritons (SSPPs) are proposed by Pendry et al. [6] in 2004 and has been verified experimentally in the microwave regimes by Hibbins et al. [7] in 2005. Owing to the advantages of this metamaterial, the cut-off frequency of the SSPPs can be adjusted at will by decorating the metal surfaces with one-dimensional (1D) arrays of subwavelength grooves [8], or 2D arrays of subwavelength holes [68], or 3D perfect electric conductor (PEC) wire with periodical array of radial grooves [9]. And due to their ability to confine EM waves in subwavelength scale with high intensity, both SPPs and SSPPs have found lots of applications from optical to microwave frequency bands [1019].

However, a number of works have shown that magnetic materials can excite surface magnon polaritons (SMPs) in recent years, i.e., strong coupling of photons to quantized magnetization waves due to collective spins [20]. Ruppin showed that surface polariton can exist for both s- and p-polarized waves in left-handed metamaterials [21]. Excitation of SMPs in gyromagnetic materials and anisotropic antiferromagnetic crystals have been discussed by Hartstein et al. [22] and Arakelian et al. [23], respectively. The presence of magnon polaritons was demonstrated in a YIG slab using the attenuated total reflectance technique [24]. The dispersion relations for magnetic polaritons have been obtained for anisotropic systems of ordered ferromagnetic slabs [25] and uniaxial antiferromagnets [26,27]. It has been shown that s-polarized waves can propagate at the interface of media with negative refractive index and negative dielectric constant of low-dimensional nanowaveguides [28,29]. Then the underlying theoretical expressions of the tangential wave vectors and field distributions of s-and p-polarized waves at an interface of two media with arbitrary materials are proposed by Raymond Ooi et al. [30], making SMPs get more attentions nowdays. However, up to now, to our knowledge, the form and manner of existence and implementation of SMPs in the terahertz and microwave regimes are not realized.

So, borrowing the idea of the existence of the SSPPs, in this paper, we propose a corrugated perfect magnetic conductor (PMC) surface to support spoof surface magnon polaritons (SSMPs). In duality, the existence of surface EM modes on corrugated PMC surfaces are obvious to be TE mode compared with the TM mode of the SSPPs excited on corrugated PEC surfaces. Theoretical and simulation results clearly verify that the SSMPs share the same dispersion relationship with the SSPPs and we also show that, as long as the size and spacing of the grooves are much smaller than the wavelength, a perforated PMC surface behaves as an effective medium. It is also worth noting that this metamaterial has more similar properties and applications as the SSPPs in large number of areas.

2. Theoretical analysis

2.1. Modal expansion method

First of all, in Fig. 1(a), a corrugated PMC surface decorated by a periodic array of grooves with depth h, width a and period d is considered. According to the duality theorem in Maxwell equations, we can find the eigenmodes of the SSMPs supported by this surface with the modal expansion method [11]. We are interested in s-polarized surface waves propagating along the x direction with the form of E = ŷEy and H = x̂Hx + ẑHz. In Region I above the surface (z > 0), the electric field component Ey, which is nonradiative and vanishes as z, can be written as

EyI=nAneikx(n)xeqz(n)z,
where An is a constant, kx(n)=kx+2nπ/d (n = 0, 1, 2, 3...), here, the diffraction effects are taken into account and the propagation constant of the surface wave kx lies in the first Brillouin zone, i.e., |kx| ≤ π/d and qz(n)=(kx(n))2k02, k0 is the wave number in free space. The nonradiative property of the fields requires that kx > k0. In Region II under the surface (z ≤ 0), the EM fields are zero everywhere except inside the grooves. Each groove may be viewed as a planar waveguide with length h and one end closed, and we only consider its fundamental mode in the field expansion. In this way, Ey in the groove can be written as
EyII=Bcos[k0(z+h)],
where B is a constant. This field is actually a sum of two waves propagating along the ±z directions in the groove, and the tangential component of the H field vanishes at the bottom of the groove, for example, Hx = 0 at z = −h.

 figure: Fig. 1

Fig. 1 (a) A 1D periodical groove arrays of width a, depth h separated by a period d. We are interested in s-polarized surface modes propagating along the x direction with E lying in the xy plane. (b) In the effective medium approximation the structure displayed in (a) behaves as a homogeneous but anisotropic layer of thickness h on the surface of a PMC.

Download Full Size | PPT Slide | PDF

The magnetic field components Hx and Hz can be directly obtained from Ey through Maxwell’s equations that

Hx=iωμ0Eyz,
Hz=iωμ0Eyx,
where ω is the angular frequency, μ0 is the magnetic permeability in free space. The dispersion relation of the SMPs on the corrugated PMC surfaces can be obtained by imposing the matching conditions of the parallel components of the E and H fields at the interface between Regions I and II. At the interface z = 0, the E field component Ey must be continuous for |x| ≤ a/2 that
nAneikx(n)x=Bcos(k0h),
and by integrating Eq. (5) over this interval, we can obtain
nAnSn=Bcos(k0h),
where
Sn=1aa/2a/2eikx(n)xeqz(n)zdx=sinc(kx(n)a2).

The magnetic field component Hx at the interface must be continuous over the whole period. Thus, for |x| ≤ a/2 we have

niqz(n)ωμ0Aneikx(n)x=ik0ωμ0Bsin(k0h),
and for a/2 < |x| ≤ d/2
niqz(n)ωμ0Aneikx(n)x=0.
By using the orthogonality properties of the functions eikx(n)x, we can obtain the coefficient
An=Bk0aqz(n)dsin(k0h)S0.
Substituting Eq. (10) into Eq. (5), and neglecting the diffraction effects, we can obtain
kx2k02k0=adS02tan(k0h),
which is obviously the same with the dispersion relation (9) in Ref. [8]. Considering that no material parameters are involved in Eq. (11) and only the boundary condition is changed from PEC to PMC, the duality theorem holds for the case from SSPPs to SSMPs.

2.2. Effective medium approximation

Similarly, from the perspective of the effective medium [8], the same dispersion relation could be obtained if we replaced the array of grooves by a single homogeneous but anisotropic layer of thickness h on top of the PMC surface shown in Fig. 1(b). The homogeneous layer would have the following parameters:

μx=a/d,μy=μz=.

As wave propagates in the grooves along the y and z directions with the velocity of light that

μxεy=μxεz,
and thus we can obtain
εy=εz=1/μx=d/a.

For the s-polarized plane wave impinging on the surface of a homogeneous layer of thickness h with μ and ε given by Eqs. (12) and (14), the specular reflection coefficient R can be written as Eq. (15) after some straightforward algebras,

R=(kzμxk0)+(k0+kzμx)ei2k0h(kzμx+k0)(k0kzμx)ei2k0h.

This effective medium implies a bound surface state when there is a divergence in the reflection coefficient of the surface for large values to the case kx > k0 and looking at the zeros of the denominator of R, we can obtain the dispersion relation of the surface modes

kx2k02k0=adtan(k0h).

3. Results and discussions

Note that the Eq. (16) coincides with Eq. (11) in the limit kxa ≪ 1. In Fig. 2, we plot the analytical dispersion relation with Eq. (16) and numerical results for the particular case a/d = 0.4, h/d = 0.8. Though the cutoff frequency of the analytical value is slightly higher than the numerical ones due to the reason that the diffraction effects are neglected, it is worth commenting that the dispersion relations between the SSMPs and the SSPPs are identical, and the cutoff frequency ω also approaches πc0/(2h) according to the dispersion relations and duality of Maxwell’s equations between the PEC and PMC cases. All numerical simulation results in this paper have been performed with the finite element method (FEM) [12]. The corresponding eigenvalue problem is posed in a single unit cell where Bloch boundary conditions are used. The open space is mimicked with PEC or PMC boundary conditions, and the Bloch boundary conditions are employed to model the periodic arrays in the simulations shown in Fig. 3(a) and 3(b). The surface electric and magnetic field vectors on the xoz plane of the PEC and PMC cases are illustrated in Fig. 3(c) and 3(d) with exactly identical field distributions, which further verify the essential characteristics between the SSPPs and SSMPs.

 figure: Fig. 2

Fig. 2 The normalized dispersion relations (ω(k)) of the SSMPs supported by a 1D array of grooves with geometrical parameters a/d = 0.4, h/d = 0.8. The green line is the theoretical result obtained with Eq. (16), the red line and blue line with open circles render the numerical results of the SSPPs and SSMPs respectively, and the dark line is light line.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 Schematic diagrams of the simulation models. (a) and (b) are the geometries of the periodical groove arrays of width a = 0.4d, depth h = 0.8d separated by a period d on the surface of PEC and PMC with infinite in y direction separately. In which, the gray areas in (a) and (b) represent the vacuum, the red lines in (a) represent the PEC boundary conditions and the light blue lines in (b) are the PMC boundary conditions and the black lines in (a) and (b) along z direction are set as Bloch boundary conditions. (c) and (d) are the surface electric field vectors (the red arrow lines in (c) and in V/m) and magnetic field vectors (the light blue arrow lines in (d) and in A/m) of the unit cell on the xoz plane respectively.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we have shown that the existence of the SSMPs in corrugated PMC surfaces, and the dispersion relation is obtained through the duality of Maxwell’s equations combined with modal expansion method, and an effective medium analytical approach is used to depict the physical insight of the new metamaterial. Thanks to this new concept, a whole brunch of surface modes already known in optical region can be transformed to terahertz and microwave frequency bands. This kind of metamaterial may have a very significant impact on both fundamental and applied researches.

Acknowledgments

This work was supported by the National Natural Science Foundation of China for Young Scholars under Grant No. 61102033, the Fundamental Research Funds for the Central Universities under Grant NJ20140009, the Aeronautical Science Foundation of China under grant No. 20128052063 and the priority academic program development of Jiangsu Higher Education Institutions.

References and links

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]   [PubMed]  

2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]  

4. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009). [CrossRef]   [PubMed]  

5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]  

6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004). [CrossRef]   [PubMed]  

7. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005). [CrossRef]   [PubMed]  

8. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005). [CrossRef]  

9. S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef]   [PubMed]  

10. A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009). [CrossRef]  

11. T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009). [CrossRef]  

12. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010). [CrossRef]   [PubMed]  

13. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011). [CrossRef]  

14. T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011). [CrossRef]  

15. X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012). [CrossRef]  

16. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

17. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013). [CrossRef]  

18. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013). [CrossRef]  

19. X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013). [CrossRef]  

20. M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989). [CrossRef]  

21. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000). [CrossRef]  

22. A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973). [CrossRef]  

23. V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997). [CrossRef]  

24. J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983). [CrossRef]  

25. M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980). [CrossRef]  

26. C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982). [CrossRef]  

27. C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993). [CrossRef]  

28. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004). [CrossRef]  

29. Sergey Bozhvolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009).

30. C. H. RaymondOoi, K. C. Low, Ryota Higa, and Tetsuo Ogawa, “Surface polaritons with arbitrary magnetic and dielectric materials: new regimes, effects of negative index, and superconductors” J. Opt. Soc. Am. B 29, 2691–2697 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  4. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
    [Crossref] [PubMed]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  7. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
    [Crossref] [PubMed]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
    [Crossref]
  9. S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [Crossref] [PubMed]
  10. A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
    [Crossref]
  11. T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
    [Crossref]
  12. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
    [Crossref] [PubMed]
  13. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
    [Crossref]
  14. T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
    [Crossref]
  15. X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
    [Crossref]
  16. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).
  17. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
    [Crossref]
  18. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
    [Crossref]
  19. X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
    [Crossref]
  20. M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
    [Crossref]
  21. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
    [Crossref]
  22. A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
    [Crossref]
  23. V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
    [Crossref]
  24. J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
    [Crossref]
  25. M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
    [Crossref]
  26. C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
    [Crossref]
  27. C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
    [Crossref]
  28. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
    [Crossref]
  29. Sergey Bozhvolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009).
  30. C. H. RaymondOoi, K. C. Low, Ryota Higa, and Tetsuo Ogawa, “Surface polaritons with arbitrary magnetic and dielectric materials: new regimes, effects of negative index, and superconductors” J. Opt. Soc. Am. B 29, 2691–2697 (2012).
    [Crossref]

2013 (4)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

2012 (2)

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[Crossref]

C. H. RaymondOoi, K. C. Low, Ryota Higa, and Tetsuo Ogawa, “Surface polaritons with arbitrary magnetic and dielectric materials: new regimes, effects of negative index, and superconductors” J. Opt. Soc. Am. B 29, 2691–2697 (2012).
[Crossref]

2011 (2)

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[Crossref]

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

2010 (2)

2009 (3)

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref] [PubMed]

A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
[Crossref]

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[Crossref]

2008 (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

2006 (1)

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

2005 (2)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

2004 (2)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[Crossref] [PubMed]

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[Crossref]

1997 (1)

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[Crossref]

1993 (1)

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[Crossref]

1983 (1)

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[Crossref]

1982 (1)

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[Crossref]

1980 (1)

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[Crossref]

1973 (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[Crossref]

Andrews, S.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Arakelian, V. H.

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[Crossref]

Bagdassarian, L. A.

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Bozhvolnyi, Sergey

Sergey Bozhvolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009).

Brewer, R.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[Crossref]

Burstein, E.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[Crossref]

Caill, A.

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[Crossref]

Caillé, A.

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[Crossref]

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[Crossref]

Cheng, Q.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

Cottam, M. G.

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[Crossref]

Cui, T. J.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[Crossref]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Fernandez-Dominguez, A. I.

Fernández-Domínguezf, A. I.

Fukui, M.

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[Crossref]

Gao, X.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[Crossref]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Hartstein, A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Higa, Ryota

Jiang, Q.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[Crossref]

Jiang, T.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[Crossref]

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[Crossref]

Kobayashi, T.

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[Crossref]

Li, L. M.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref] [PubMed]

Low, K. C.

Ma, H. F.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[Crossref]

Maier, S.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Maradudin, A. A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[Crossref]

Marchand, M.

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
[Crossref] [PubMed]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and Esteban Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. express 18, 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguezf, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34, 2063–2065 (2009).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Martín-Moreno, L.

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Matsuura, J.

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[Crossref]

Moreno, E.

Moreno, Esteban

Nagpal, P.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref] [PubMed]

Nesterov, M. L.

Norris, D. J.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref] [PubMed]

Ogawa, Tetsuo

Oh, S. H.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Ran, L.

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[Crossref]

Ran, L. X.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

RaymondOoi, C. H.

Ruan, Z. C.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[Crossref]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Shen, L.

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[Crossref]

Shen, L. F.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

Shen, X.

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

Shen, X. P.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[Crossref]

Shu, C.

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[Crossref]

Simonian, S. G.

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[Crossref]

Tada, O.

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[Crossref]

Takahara, J.

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[Crossref]

Thibaudeau, C.

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[Crossref]

Tilley, D. R.

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[Crossref]

Wallis, R. F.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[Crossref]

Wu, J. J.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

Yang, T. J.

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

Zhang, X.

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[Crossref]

Zhou, Y. J.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[Crossref]

Appl. Phys. Lett. (4)

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99, 111904 (2011).
[Crossref]

T. Jiang, L. F. Shen, J. J. Wu, T. J. Yang, Z. C. Ruan, and L. X. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99, 261103 (2011).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102, 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102, 151912 (2013).
[Crossref]

J. Magn. Magn. Mater. (1)

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnon-polaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[Crossref]

J. Opt. A-Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A-Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. C-SolidState Phys. (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media” J. Phys. C-SolidState Phys. 6, 1266–1276 (1973).
[Crossref]

J. Phys. D-Appl. Phys. (1)

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D-Appl. Phys. 45, 505104 (2012).
[Crossref]

Laser Photon. Rev. (1)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 10, 00118 (2013).

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. express (1)

Opt. Lett. (1)

Opt. Photon. News (1)

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[Crossref]

Phys. Lett. A (1)

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[Crossref]

Phys. Rev. Lett. (1)

S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films” Proc. Natl. Acad. Sci. U.S.A. 110, 40–45 (2013).
[Crossref]

Progress in Electromagnetic Research M (1)

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces” Progress in Electromagnetic Research M 8, 91–102 (2009).
[Crossref]

Science (3)

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[Crossref] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces” Science 305, 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental Verification of Designer Surface Plasmons,” Science 308, 670–672 (2005).
[Crossref] [PubMed]

Solid State Commun. (4)

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[Crossref]

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[Crossref]

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[Crossref]

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[Crossref]

Other (3)

Sergey Bozhvolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd, Singapore, 2009).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) A 1D periodical groove arrays of width a, depth h separated by a period d. We are interested in s-polarized surface modes propagating along the x direction with E lying in the xy plane. (b) In the effective medium approximation the structure displayed in (a) behaves as a homogeneous but anisotropic layer of thickness h on the surface of a PMC.
Fig. 2
Fig. 2 The normalized dispersion relations (ω(k)) of the SSMPs supported by a 1D array of grooves with geometrical parameters a/d = 0.4, h/d = 0.8. The green line is the theoretical result obtained with Eq. (16), the red line and blue line with open circles render the numerical results of the SSPPs and SSMPs respectively, and the dark line is light line.
Fig. 3
Fig. 3 Schematic diagrams of the simulation models. (a) and (b) are the geometries of the periodical groove arrays of width a = 0.4d, depth h = 0.8d separated by a period d on the surface of PEC and PMC with infinite in y direction separately. In which, the gray areas in (a) and (b) represent the vacuum, the red lines in (a) represent the PEC boundary conditions and the light blue lines in (b) are the PMC boundary conditions and the black lines in (a) and (b) along z direction are set as Bloch boundary conditions. (c) and (d) are the surface electric field vectors (the red arrow lines in (c) and in V/m) and magnetic field vectors (the light blue arrow lines in (d) and in A/m) of the unit cell on the xoz plane respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E y I = n A n e i k x ( n ) x e q z ( n ) z ,
E y II = B cos [ k 0 ( z + h ) ] ,
H x = i ω μ 0 E y z ,
H z = i ω μ 0 E y x ,
n A n e i k x ( n ) x = B cos ( k 0 h ) ,
n A n S n = B cos ( k 0 h ) ,
S n = 1 a a / 2 a / 2 e i k x ( n ) x e q z ( n ) z d x = sin c ( k x ( n ) a 2 ) .
n i q z ( n ) ω μ 0 A n e i k x ( n ) x = i k 0 ω μ 0 B sin ( k 0 h ) ,
n i q z ( n ) ω μ 0 A n e i k x ( n ) x = 0 .
A n = B k 0 a q z ( n ) d sin ( k 0 h ) S 0 .
k x 2 k 0 2 k 0 = a d S 0 2 tan ( k 0 h ) ,
μ x = a / d , μ y = μ z = .
μ x ε y = μ x ε z ,
ε y = ε z = 1 / μ x = d / a .
R = ( k z μ x k 0 ) + ( k 0 + k z μ x ) e i 2 k 0 h ( k z μ x + k 0 ) ( k 0 k z μ x ) e i 2 k 0 h .
k x 2 k 0 2 k 0 = a d tan ( k 0 h ) .

Metrics