X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010).
[Crossref]
[PubMed]
G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]
W. Xue, S. Sales, J. Capmany, and J. Mork, “Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34, 929–931 (2009).
[Crossref]
[PubMed]
L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34, 2757–2759 (2009).
[Crossref]
[PubMed]
M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
[Crossref]
[PubMed]
J. J. Li and K. D. Zhu, “An efficient optical knob from slow light to fast in a coupled nanomechanical resonator-quantum dot system,” Opt. Express 17, 19874–19881 (2009).
[Crossref]
[PubMed]
R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref]
[PubMed]
X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, and Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008).
[Crossref]
J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[Crossref]
[PubMed]
C. P. Sun, L. F. Wei, Y. X. Liu, and F. Nori, “Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits,” Phys. Rev. A 73, 022318 (2006).
[Crossref]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[Crossref]
[PubMed]
K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Cooling mechanism for a nanomechanical resonator by periodic coupling to a Cooper pair box,” Phys. Rev. Lett. 95, 097204 (2005).
[Crossref]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]
P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering, ” Phys. Rev. B 70, 205304 (2004).
[Crossref]
O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004).
[Crossref]
I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref]
[PubMed]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref]
[PubMed]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref]
[PubMed]
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmansand, and J. E. Mooij, “Coherent quantum dynamics of a super-conducting flux qubit, ” Science 299, 1869–1871 (2003).
[Crossref]
[PubMed]
P. Zhang, Y. D. Wang, and C. P. Sun, “Quantum measurement of a coupled nanomechanical resonator-Cooper-pair box system,” Phys. Rev. B 68, 155311 (2003).
[Crossref]
A. D. Armour, M. P. Blencow, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]
[PubMed]
R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]
A. N. Cleland and M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett. 69, 2653–2655 (1996).
[Crossref]
A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref]
[PubMed]
G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref]
[PubMed]
S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref]
[PubMed]
S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]
S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]
G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]
G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref]
[PubMed]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
A. D. Armour, M. P. Blencow, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]
[PubMed]
O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref]
[PubMed]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref]
[PubMed]
A. D. Armour, M. P. Blencow, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]
[PubMed]
R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref]
[PubMed]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref]
[PubMed]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref]
[PubMed]
R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]
D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]
Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[Crossref]
[PubMed]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmansand, and J. E. Mooij, “Coherent quantum dynamics of a super-conducting flux qubit, ” Science 299, 1869–1871 (2003).
[Crossref]
[PubMed]
S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[Crossref]
[PubMed]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
A. N. Cleland and M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett. 69, 2653–2655 (1996).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010).
[Crossref]
[PubMed]
M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
[Crossref]
[PubMed]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[Crossref]
[PubMed]
Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[Crossref]
[PubMed]
S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref]
[PubMed]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref]
[PubMed]
X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, and Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmansand, and J. E. Mooij, “Coherent quantum dynamics of a super-conducting flux qubit, ” Science 299, 1869–1871 (2003).
[Crossref]
[PubMed]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref]
[PubMed]
S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref]
[PubMed]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]
G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]
I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref]
[PubMed]
A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref]
[PubMed]
X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, and Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008).
[Crossref]
A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref]
[PubMed]
S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref]
[PubMed]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010).
[Crossref]
[PubMed]
M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
[Crossref]
[PubMed]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref]
[PubMed]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref]
[PubMed]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, and Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
C. P. Sun, L. F. Wei, Y. X. Liu, and F. Nori, “Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits,” Phys. Rev. A 73, 022318 (2006).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmansand, and J. E. Mooij, “Coherent quantum dynamics of a super-conducting flux qubit, ” Science 299, 1869–1871 (2003).
[Crossref]
[PubMed]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004).
[Crossref]
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmansand, and J. E. Mooij, “Coherent quantum dynamics of a super-conducting flux qubit, ” Science 299, 1869–1871 (2003).
[Crossref]
[PubMed]
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
C. P. Sun, L. F. Wei, Y. X. Liu, and F. Nori, “Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits,” Phys. Rev. A 73, 022318 (2006).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004).
[Crossref]
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]
P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering, ” Phys. Rev. B 70, 205304 (2004).
[Crossref]
D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010).
[Crossref]
[PubMed]
M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
[Crossref]
[PubMed]
Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[Crossref]
[PubMed]
K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]
A. N. Cleland and M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett. 69, 2653–2655 (1996).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010).
[Crossref]
[PubMed]
M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
[Crossref]
[PubMed]
K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]
A. D. Armour, M. P. Blencow, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]
[PubMed]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering, ” Phys. Rev. B 70, 205304 (2004).
[Crossref]
R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010).
[Crossref]
[PubMed]
M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
[Crossref]
[PubMed]
C. P. Sun, L. F. Wei, Y. X. Liu, and F. Nori, “Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits,” Phys. Rev. A 73, 022318 (2006).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Cooling mechanism for a nanomechanical resonator by periodic coupling to a Cooper pair box,” Phys. Rev. Lett. 95, 097204 (2005).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Quantum measurement of a coupled nanomechanical resonator-Cooper-pair box system,” Phys. Rev. B 68, 155311 (2003).
[Crossref]
O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004).
[Crossref]
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
P. Zhang, Y. D. Wang, and C. P. Sun, “Cooling mechanism for a nanomechanical resonator by periodic coupling to a Cooper pair box,” Phys. Rev. Lett. 95, 097204 (2005).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Quantum measurement of a coupled nanomechanical resonator-Cooper-pair box system,” Phys. Rev. B 68, 155311 (2003).
[Crossref]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
C. P. Sun, L. F. Wei, Y. X. Liu, and F. Nori, “Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits,” Phys. Rev. A 73, 022318 (2006).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[Crossref]
[PubMed]
I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref]
[PubMed]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]
R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]
L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34, 2757–2759 (2009).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mork, “Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34, 929–931 (2009).
[Crossref]
[PubMed]
O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004).
[Crossref]
Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[Crossref]
[PubMed]
D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]
A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref]
[PubMed]
X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, and Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Cooling mechanism for a nanomechanical resonator by periodic coupling to a Cooper pair box,” Phys. Rev. Lett. 95, 097204 (2005).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Quantum measurement of a coupled nanomechanical resonator-Cooper-pair box system,” Phys. Rev. B 68, 155311 (2003).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
J. J. Li and K. D. Zhu, “An efficient optical knob from slow light to fast in a coupled nanomechanical resonator-quantum dot system,” Opt. Express 17, 19874–19881 (2009).
[Crossref]
[PubMed]
X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, and Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref]
[PubMed]
P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering, ” Phys. Rev. B 70, 205304 (2004).
[Crossref]
A. N. Cleland and M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett. 69, 2653–2655 (1996).
[Crossref]
Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scalenanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[Crossref]
[PubMed]
J. Suh, M. D. LaHaye, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator,” Nano Lett. 10, 3990–3994 (2010).
[Crossref]
[PubMed]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9, 179–184 (2013).
[Crossref]
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999).
[Crossref]
M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
[Crossref]
[PubMed]
J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[Crossref]
[PubMed]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]
A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
[PubMed]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13, 023003 (2011).
[Crossref]
X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu, and Y. W. Jiang, “Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system,” New J. Phys. 10, 095016 (2008).
[Crossref]
P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[Crossref]
[PubMed]
W. Xue, S. Sales, J. Capmany, and J. Mork, “Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34, 929–931 (2009).
[Crossref]
[PubMed]
L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34, 2757–2759 (2009).
[Crossref]
[PubMed]
G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref]
[PubMed]
G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]
S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]
R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]
S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref]
[PubMed]
C. P. Sun, L. F. Wei, Y. X. Liu, and F. Nori, “Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits,” Phys. Rev. A 73, 022318 (2006).
[Crossref]
P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of nanomechanical resonators by reservoir engineering, ” Phys. Rev. B 70, 205304 (2004).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Quantum measurement of a coupled nanomechanical resonator-Cooper-pair box system,” Phys. Rev. B 68, 155311 (2003).
[Crossref]
P. Zhang, Y. D. Wang, and C. P. Sun, “Cooling mechanism for a nanomechanical resonator by periodic coupling to a Cooper pair box,” Phys. Rev. Lett. 95, 097204 (2005).
[Crossref]
A. D. Armour, M. P. Blencow, and K. C. Schwab, “Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box,” Phys. Rev. Lett. 88, 148301 (2002).
[Crossref]
[PubMed]
O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, “Quantum noise in the Josephson charge qubit,” Phys. Rev. Lett. 93, 267007 (2004).
[Crossref]
A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[Crossref]
[PubMed]
S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[Crossref]
M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]
D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001).
[Crossref]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref]
[PubMed]
Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref]
[PubMed]
I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref]
[PubMed]
K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmansand, and J. E. Mooij, “Coherent quantum dynamics of a super-conducting flux qubit, ” Science 299, 1869–1871 (2003).
[Crossref]
[PubMed]
R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref]
[PubMed]
M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref]
[PubMed]