Abstract

A polarization splitter based on a new type of dual-core photonic crystal fiber (DC-PCF) is proposed. The effects of geometrical parameters of the DC-PCF on performances of the polarization splitter are investigated by finite element method (FEM). The numerical results demonstrate that the polarization splitter possesses ultra-short length of 119.1 μm and high extinction ratio of 118.7 dB at the wavelength of 1.55 μm. Moreover, an extinction ratio greater than 20 dB is achieved over a broad bandwidth of 249 nm, i.e., from 1417 nm to 1666 nm, covering the S, C and L communication bands.

© 2014 Optical Society of America

1. Introduction

Polarization splitter, a device that can split one light beam into two orthogonal polarization states, is widely used in optical communication systems, and it has been fabricated by conventional fibers [1–3]. However, one major disadvantage of polarization splitters based on conventional fibers is their long length. For example, the length of polarization splitters reported in Refs. [1] and [2] is 262 mm and 25 mm, respectively. With the development of modern optical communication systems toward large capacity and integration, more compacted polarization splitters are desired.

In recent years, photonic crystal fibers (PCFs) have attracted great research attentions due to their unique advantages of controlling light, such as endlessly single-mode [4,5], high nonlinearity [6], large birefringence [7–10] and anomalous dispersion [11–14], etc. Therefore, they provide a new way to design polarization splitters. Compared to conventional fiber-based splitters, the PCFs-based polarization splitters can achieve high extinction ratio, short length and broad bandwidth. In order to reduce the length of polarization splitters, several polarization splitters based on PCFs have been reported in literatures. Florous [15] proposed a 15.4 mm-long polarization splitter based on a DC-PCF with elliptic air holes that distribute uniformly in the cladding. Saitoh [16] obtained a 1.9 mm-long polarization splitter with a extinction ratio better than −20 dB and a bandwidth of 37 nm. Zhang [17,18] proved that polarization dependent coupling can be enhanced by introducing high birefringence, and designed a 1.7 mm-long DC-PCF polarization splitter with a bandwidth of 40 nm. Liu [19] designed a 0.36 mm-long polarization splitter based on a tellurite glass DC-PCF, but its bandwidth is just 20 nm. Although these splitters possess short lengths, their operating band is narrow. Broadband polarization splitters are also studied at the same time. Zhang [20, 21] proposed a 0.63 mm-long polarization splitter based on a coupled elliptical-hole core circular-hole holey fibers, and its bandwidth is 160nm. Rosa [22] obtained a 20 mm-long polarization splitter with a 90 nm-bandwidth by using a square-lattice photonic crystal fiber, and Chen [23] proposed a 5.9 mm-long polarization splitter which has a bandwidth of 101 nm. Li [24] proposed a 4.72 mm-long splitter with a bandwidth of 190 nm, and Lu [25] designed a 72 mm-long splitter with a bandwidth of 400 nm. As we can see above, to some extent, short length and broad bandwidth have not been realized simultaneously. An ultra-short length, high extinction ratio and broad-bandwidth polarization splitter based on a new type of DC-PCF is proposed in this work. It has great potential applications in the development of large-capacity and integrated optical communication systems.

2. Model and theory

The cross section of proposed DC-PCF is shown in Fig. 1. Air holes located in the three middle horizontal rows are arrayed in rectangular lattice with horizontal pitch Λ1 and vertical pitch Λ2, and the other circular air holes arrange in a hexagonal array with lattice constant Λ1. The diameter d of the circular air holes is 1 μm. The elliptic air hole E1 is located in the geometric center. The ellipticties of E1 and E2 are defined as η1 = d1/d and η2 = d2/d, respectively, and the pitch between E1 and E2 is 2Λ1. Besides, the core A and core B are formed by E1, E2 and the circular air holes around them. The background refractive index can be obtained from the Sellmeier formula [26].

 

Fig. 1 Cross section of the proposed DC-PCF

Download Full Size | PPT Slide | PDF

According to the coupled-mode theory, the mode field of a DC-PCF can be regarded as the superimposition of an even mode and an odd mode. The coupling length (CL) [27], which is defined as length of the fiber over that a complete power transfer between core A and core B occurs, is given by

Li=πβievenβiodd=λ2(nievenniodd),
where λ is the wavelength of incident light; β and n denote the propagation constant and the effective refractive index; i represents the x or y polarization direction; the superscript refers to the even mode or odd mode; The values of β and n can be calculated accurately by finite element method. Usually, Lx and Ly are not equal, i.e., a complete power transfer for x polarization and y polarization usually occurs at different lengths. If mLx = nLy = L (m and n are positive integers with opposite parity, L is the length of the splitter), at the end of the splitter light of the X polarization remains in core A while light of the Y polarization is coupled into core B, i.e., the two orthogonal polarization components of the light are separated from each other. So we can design a polarization splitter by the use of the proposed DC-PCF. We define the coupling length ratio (CLR) as
CLR=LyLx=mn.
In order to obtain a short-length and high-performance polarization splitter, the optimal CLR value is 2 (Lx<Ly) or 1/2 (Lx>Ly). In this paper, the key issue is to obtain the optimal CLR value by adjusting geometrical parameters of the proposed DC-PCF. Because the length of the polarization splitter is very short, its transmission loss can be neglected. Assuming that the input port is core A and the input power is Pin, the output powers of X and Y polarized light in core A are calculated as [28]
Piout=Pincos2(πL2Li).
Li can be obtained from Eq. (1). Further, the normalized powers (NP) are as follows:

NPi=PioutPin=cos2(πL2Li).

3. Results and discussions

In order to obtain a short-length and high-performance polarization splitter at some wavelength of interest, the optimal CLR value should be found by adjusting the parameters of the DC-PCF. Through the analysis above, there are four geometrical parameters, i.e., η1, η2, Λ1 and Λ2. In this research, the values of CL and CLR are calculated accurately by finite element method, and a DC-PCF with optimal geometrical parameters is obtained. Finally, a polarization splitter based on the DC-PCF is proposed.

The values of CL and CLR can be calculated from Eqs. (1) and (2). At λ = 1.55μm, the influences of geometrical parameters on CL and CLR are depicted in Fig. 2. Figure 2(a) demonstrates that Ly increases with η1, while Lx stays almost unchanged, that is, η1 has a relatively bigger influence on Ly than on Lx. On the other hand Ly and Lx decrease slowly as η2 increases, as illustrated in Fig. 2(b), i.e., the coupling strength is enhanced. Besides, Fig. 2(a) and Fig. 2(b) also depict that CLR increases with η1 and η2. The increasing rate caused by η1 is larger than that caused by η2. Because Ly and Lx increase with Λ1, as shown in Fig. 2(c), the coupling strength is weakened as Λ1 increases, but it is strengthened as Λ2 increases, as shown in Fig. 2(d). It is clearly seen from Fig. 2(c) and Fig. 2(d) that the CLR has a similar tendency.

 

Fig. 2 CL and CLR versus (a) η1, at λ = 1.55μm, η2 = 1.7, Λ1 = 1.1 μm and Λ2 = 1.7 μm; (b) η2, at λ = 1.55μm, η1 = 1.4, Λ1 = 1.1 μm and Λ2 = 1.7 μm; (c) Λ1, at λ = 1.55μm,η1 = 1.4, η2 = 1.7 μm and Λ2 = 1.7 μm; (d) Λ2, at λ = 1.55μm, η1 = 1.4, η2 = 1.7 μm and Λ1 = 1.1 μm.

Download Full Size | PPT Slide | PDF

The proposed structure enhances the birefringence of the DC-PCF, and results in a high difference between Ly and Lx. Most importantly, it can be seen from the four figures that Lx is always less than Ly in the proposed DC-PCF, and the value of CLR is very close to 2, so it is feasible to design a high-performance polarization splitter by use of the proposed DC-PCF.

Based on the above discussions, Lx is always less than Ly, and the value of CLR is very close to 2 under the geometrical parameters discussed above, therefore, we can get the optimal CLR value by appropriately setting the geometrical parameters of DC-PCF. Through an accurate analysis of Fig. 2, the optimal geometrical parameters are η1 = 1.4, η2 = 1.7, Λ1 = 1.1 μm and Λ2 = 1.7 μm. Figure 3(a) shows the variation of coupling lengths and the confinement losses of different polarizations under the conditions of optimal geometrical parameters. It is obvious that the coupling length decreases as wavelength increases. Numerical results demonstrate that Ly = 118.89 μm, Lx = 59.59 μm and CLR = Ly/Lx = 1.9949 at the wavelength of 1.55 μm. Because the proposed DC-PCF has a leaky core structure in the horizontal direction, the confinement loss of horizontal direction is larger than that of vertical direction. However, the confinement losses can be neglected due to the short coupling lengths. Figure 3(b) shows the field profiles of the first odd mode and the first even mode of two different polarizations. When light of a given polarization is incident upon one of the core (core A, for example), it excites both the odd and the even modes of that polarization. The two modes adds up in core A and cancels out completely in the other core, so that produces a confinement of energy in core A. Because propagation constants of the odd mode and the even mode are different, the relative phase between the two modes changes in propagation. This results in an incomplete cancellation of modal field in core B, corresponds to energy switch between the two cores. The alternative but equivalent view of this is that the incident wave upon core A excites the fundamental mode of this individual core, which is mainly confined in the core area for its modal field. Because of the coupling between the two cores, power transfers between core A and core B.

 

Fig. 3 (a) Coupling lengths and the confinement losses versus wavelength at η1 = 1.4, η2 = 1.7, Λ1 = 1.1μm and Λ2 = 1.7μm; (b) Modal fields, (I) odd mode of X-polarization, (II) odd mode of Y-polarization, (III) even mode of X-polarization, and (IV) even mode of Y-polarization.

Download Full Size | PPT Slide | PDF

The propagation constants of odd and even mode for different polarization states are different, that is LxLy, so the periodic output power which can be obtained from Eq. (3) is different. Assuming that the incident light port is core A at λ = 1.55 μm, the variations of normalized power with propagation distance can be obtained from Eq. (4), as shown in Fig. 4(a). Obviously, after a propagation distance of 119.1μm, the output power of X-polarization reach its peak but the Y-polarization power is almost zero, that is, they are separated from each other at the length of 119.1 μm.

 

Fig. 4 (a) Variations of normalized power with propagation distance at the optimal geometrical parameters; (b) Variation of ER with the wavelength at the optimal geometrical parameters.

Download Full Size | PPT Slide | PDF

As a function of wavelength, extinction ratio (ER) is an important technical parameter for polarization splitter. The two orthogonal polarization states of the incident light are regarded to be separated when the extinction ratio is greater than 20 dB, so ER determines the available bandwidth of a polarization splitter. Assuming that the incident light port is core A, the ER in core A is defined as [16]

ER=10log10(PxoutPyout)

Figure 4(b) illustrates the variation of ER with the wavelength when the propagation length is 119.1 μm. The polarization splitter possesses extremely high extinction ratio of 118.7dB at the wavelength of 1.55μm. Besides, for extinction ratio of greater than 20 dB, bandwidth of the splitter is 249 nm, i.e., from 1417nm to 1666nm, covering all the S, C and L bands.

Finally, in order to obtain the proposed high-performance polarization splitter, it is very important to be able to fabricate the DC-PCF proposed in this work. By now, PCFs with different structures have been fabricated by stack-and-draw technique [29, 30], die-cast process [31], performs drilling method [32], and sol-gel casting method [33], etc. Therefore, with the development of relevant techniques, it is feasible to fabricate the proposed DC-PCF.

4. Conclusions

To summarize, a novel high-performance polarization splitter based on a dual-core photonic crystal fiber is proposed, and its performance is numerically investigated by finite element method. Under the optimal condition of η1 = 1.4, η2 = 1.7, Λ1 = 1.1μm and Λ2 = 1.7μm, an ultra-short length, high extinction ratio and broad bandwidth is achieved for the polarization splitter. Because of its excellent performance, we believe that this type of polarization splitter could be widely useful in the development of large-capacity, broad-bandwidth and integrated optical communication systems.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 60607005, 60877033 and 60588502).

References and links

1. G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990). [CrossRef]  

2. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993). [CrossRef]  

3. C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995). [CrossRef]  

4. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef]   [PubMed]  

5. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998). [CrossRef]  

6. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999). [CrossRef]   [PubMed]  

7. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000). [CrossRef]   [PubMed]  

8. M. J. Steel and R. M. Osgood Jr., “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001). [CrossRef]  

9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001). [CrossRef]   [PubMed]  

10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001). [CrossRef]  

11. S. Kim and C.-S. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17(18), 15885–15890 (2009). [CrossRef]   [PubMed]  

12. M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010). [CrossRef]  

13. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14(2), 893–900 (2006). [CrossRef]   [PubMed]  

14. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002). [CrossRef]   [PubMed]  

15. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13(19), 7365–7373 (2005). [CrossRef]   [PubMed]  

16. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004). [CrossRef]   [PubMed]  

17. L. Zhang and C. X. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11(9), 1015–1020 (2003). [CrossRef]   [PubMed]  

18. L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22(5), 1367–1373 (2004). [CrossRef]  

19. L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012). [CrossRef]  

20. Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014). [CrossRef]  

21. Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014). [CrossRef]  

22. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic-crystal fiber,” Opt. Lett. 31(4), 441–443 (2006). [CrossRef]   [PubMed]  

23. M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49(16), 3042–3048 (2010). [CrossRef]   [PubMed]  

24. J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011). [CrossRef]  

25. W. Lu, S. Lou, X. Wang, L. Wang, and R. Feng, “Ultra- broadband polarization splitter based on three-core photonic crystal fibers,” Appl. Opt. 52(3), 449–455 (2013). [CrossRef]   [PubMed]  

26. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]  

27. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11(24), 3188–3195 (2003). [CrossRef]   [PubMed]  

28. M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991). [CrossRef]  

29. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001). [CrossRef]   [PubMed]  

30. M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004). [CrossRef]  

31. Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45(18), 4433–4436 (2006). [CrossRef]   [PubMed]  

32. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004). [CrossRef]   [PubMed]  

33. P. Domachuk, A. Chapman, E. Mägi, M. J. Steel, H. C. Nguyen, and B. J. Eggleton, “Transverse characterization of high air-fill fraction tapered photonic crystal fiber,” Appl. Opt. 44(19), 3885–3892 (2005). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
    [Crossref]
  2. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
    [Crossref]
  3. C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
    [Crossref]
  4. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  5. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
    [Crossref]
  6. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999).
    [Crossref] [PubMed]
  7. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  8. M. J. Steel and R. M. Osgood., “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001).
    [Crossref]
  9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
    [Crossref]
  11. S. Kim and C.-S. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17(18), 15885–15890 (2009).
    [Crossref] [PubMed]
  12. M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
    [Crossref]
  13. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14(2), 893–900 (2006).
    [Crossref] [PubMed]
  14. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
    [Crossref] [PubMed]
  15. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13(19), 7365–7373 (2005).
    [Crossref] [PubMed]
  16. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004).
    [Crossref] [PubMed]
  17. L. Zhang and C. X. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11(9), 1015–1020 (2003).
    [Crossref] [PubMed]
  18. L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22(5), 1367–1373 (2004).
    [Crossref]
  19. L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
    [Crossref]
  20. Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
    [Crossref]
  21. Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
    [Crossref]
  22. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic-crystal fiber,” Opt. Lett. 31(4), 441–443 (2006).
    [Crossref] [PubMed]
  23. M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49(16), 3042–3048 (2010).
    [Crossref] [PubMed]
  24. J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
    [Crossref]
  25. W. Lu, S. Lou, X. Wang, L. Wang, and R. Feng, “Ultra- broadband polarization splitter based on three-core photonic crystal fibers,” Appl. Opt. 52(3), 449–455 (2013).
    [Crossref] [PubMed]
  26. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  27. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11(24), 3188–3195 (2003).
    [Crossref] [PubMed]
  28. M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
    [Crossref]
  29. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  30. M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
    [Crossref]
  31. Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45(18), 4433–4436 (2006).
    [Crossref] [PubMed]
  32. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
    [Crossref] [PubMed]
  33. P. Domachuk, A. Chapman, E. Mägi, M. J. Steel, H. C. Nguyen, and B. J. Eggleton, “Transverse characterization of high air-fill fraction tapered photonic crystal fiber,” Appl. Opt. 44(19), 3885–3892 (2005).
    [Crossref] [PubMed]

2014 (2)

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

2013 (1)

2012 (1)

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

2011 (1)

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

2010 (2)

M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49(16), 3042–3048 (2010).
[Crossref] [PubMed]

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

2009 (1)

2006 (3)

2005 (2)

2004 (4)

2003 (2)

2002 (1)

2001 (4)

2000 (1)

1999 (1)

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

1997 (1)

1995 (1)

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

1993 (1)

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

1991 (1)

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
[Crossref]

1990 (1)

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

1965 (1)

Aliramezani, M.

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

Arriaga, J.

Bennett, P. J.

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Broderick, N. G. R.

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Chang, H. C.

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

Chapman, A.

Chen, M. Y.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

Chen, M.-Y.

Chu, P. L.

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

Cox, F.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Cucinotta, A.

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

Domachuk, P.

Eggleton, B. J.

Eguchi, M.

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

Eisenmann, M.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
[Crossref]

Fellew, M.

Feng, R.

Florous, N.

Foroni, M.

Fu, X.-X.

Fujisawa, T.

Fujita, M.

Guiyao, Z.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Henry, G.

Issa, N. A.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Kawanishi, S.

Kee, C.-S.

Kim, S.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Koshiba, M.

Kubota, H.

Lantian, H.

Large, M. C.

Li, J. H.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Liu, Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Lou, S.

Lu, W.

Mägi, E.

Malitson, I. H.

Mangan, B. J.

Miliou, A. N.

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

Monro, T. M.

Nejad, S. M.

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

Nguyen, H. C.

Ortigosa-Blanch, A.

Osgood, R. M.

Peng, G. D.

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

Poli, F.

Ramaswamy, R. V.

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

Reeves, W. H.

Richardson, D. J.

Roberts, P.

Rosa, L.

Russell, P. S. J.

Saitoh, K.

Sato, Y.

Selleri, S.

Shuguang, L.

Shu-Guang, L.

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

Shuo, L.

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Srivastava, R.

A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μm directional coupler polarization splitter by Ion exchange,” J. Lightwave Technol. 11(2), 220–225 (1993).
[Crossref]

Steel, M. J.

Sun, B.

Suzuki, K.

Tanaka, M.

Tjugiarto, T.

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

Tsuji, Y.

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

van Eijkelenborg, M. A.

Wada, K.

Wadsworth, W. J.

Wang, J. Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Wang, L.

Wang, R.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Wang, X.

Weidel, E.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beam splitting,” J. Lightwave Technol. 9(7), 853–858 (1991).
[Crossref]

Wu, C. W.

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

Wu, T. L.

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

Yang, C.

Yang, C. X.

Ying, D.

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

Yu, R. J.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

Zhang, L.

Zhang, Y.-K.

Zhang, Z.

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers,” J. Lightwave Technol. 32(23), 3956–3962 (2014).
[Crossref]

Zhao, A. P.

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

Zhiyun, H.

Appl. Opt. (4)

Electron. Lett. (2)

G. D. Peng, T. Tjugiarto, and P. L. Chu, “Polarization beam splitting using twin-elliptic-core optical fibers,” Electron. Lett. 26(10), 682–683 (1990).
[Crossref]

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34(13), 1347–1348 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. W. Wu, T. L. Wu, and H. C. Chang, “A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters,” IEEE Photon. Technol. Lett. 7(7), 786–788 (1995).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Z. Zhang, Y. Tsuji, and M. Eguchi, “Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers,” IEEE Photon. Technol. Lett. 26(6), 541–543 (2014).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. A-Pure Appl. Opt. (1)

M. Y. Chen, R. J. Yu, and A. P. Zhao, “Highly birefringent rectangular lattice photonic crystal fibres,” J. Opt. A-Pure Appl. Opt. 6(10), 997–1000 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (9)

K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11(24), 3188–3195 (2003).
[Crossref] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

S. Kim and C.-S. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17(18), 15885–15890 (2009).
[Crossref] [PubMed]

T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14(2), 893–900 (2006).
[Crossref] [PubMed]

W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
[Crossref] [PubMed]

N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13(19), 7365–7373 (2005).
[Crossref] [PubMed]

K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004).
[Crossref] [PubMed]

L. Zhang and C. X. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11(9), 1015–1020 (2003).
[Crossref] [PubMed]

Opt. Laser Technol. (3)

M. Aliramezani and S. M. Nejad, “Numerical analysis and optimization of a dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Laser Technol. 42(8), 1209–1217 (2010).
[Crossref]

L. Shuo, L. Shu-Guang, and D. Ying, “Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber,” Opt. Laser Technol. 44(6), 1813–1817 (2012).
[Crossref]

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43(4), 795–800 (2011).
[Crossref]

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cross section of the proposed DC-PCF
Fig. 2
Fig. 2 CL and CLR versus (a) η1, at λ = 1.55μm, η2 = 1.7, Λ1 = 1.1 μm and Λ2 = 1.7 μm; (b) η2, at λ = 1.55μm, η1 = 1.4, Λ1 = 1.1 μm and Λ2 = 1.7 μm; (c) Λ1, at λ = 1.55μm,η1 = 1.4, η2 = 1.7 μm and Λ2 = 1.7 μm; (d) Λ2, at λ = 1.55μm, η1 = 1.4, η2 = 1.7 μm and Λ1 = 1.1 μm.
Fig. 3
Fig. 3 (a) Coupling lengths and the confinement losses versus wavelength at η1 = 1.4, η2 = 1.7, Λ1 = 1.1μm and Λ2 = 1.7μm; (b) Modal fields, (I) odd mode of X-polarization, (II) odd mode of Y-polarization, (III) even mode of X-polarization, and (IV) even mode of Y-polarization.
Fig. 4
Fig. 4 (a) Variations of normalized power with propagation distance at the optimal geometrical parameters; (b) Variation of ER with the wavelength at the optimal geometrical parameters.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L i = π β i even β i odd = λ 2( n i even n i odd ) ,
CLR= L y L x = m n .
P iout = P in cos 2 ( πL 2 L i ).
N P i = P iout P in = cos 2 ( πL 2 L i ).
ER=10 log 10 ( P xout P yout )

Metrics