Abstract

In this work we present for the first time, to the best of our knowledge, a stretched-pulse mode-locked fiber laser based on topological insulator. As a saturable absorber (SA) a ~0.5 mm thick lump of antimony telluride (Sb2Te3) deposited on a side-polished fiber was used. Such a SA introduced 6% modulation depth with 43% of non-saturable losses, which is sufficient for supporting stretched-pulse mode-locking. The ring laser resonator based on Er-doped active fiber with managed intracavity dispersion was capable of generating ultrashort optical pulses with full width at half maximum (FWHM) of 30 nm centered at 1565 nm. The pulses with duration of 128 fs were repeated with a frequency of 22.32 MHz.

© 2014 Optical Society of America

1. Introduction

Laser sources generating ultrashort optical pulses are desired by variety of applications, like basic science, material processing and precise optical metrology. Most of such lasers are based on passive mode-locking mechanism which requires saturable absorbers (SA). The SA can be artificial, like in nonlinear polarization evolution mode-locking mechanism [1,2] or a real component, based on semiconductors (saturable absorber mirrors - SESAMs) [3,4] and different kinds of nanomaterials like: carbon nanotubes [57], and graphene [719]. The fast development of nanomaterials-based SAs is caused by some limitations of commonly used SESAMs. The relatively narrow operation bandwidth and complicated manufacturing technology of SESAMs cause that materials with almost wavelength independent absorption spectra are extensively developed. Graphene was the first of such nanomaterials widely used in mode-locked fiber [716] and bulk [1719] lasers. It has been already used for ultrashort pulse generation in broad wavelength range, spanning from 800 nm [17] to 2500 nm [18,19] and allows also to generate optical pulses at different wavelengths simultaneously [15,16].

Recently, a new class of materials called topological insulators (TI) is intensively investigated [2023]. TIs are characterized by linear dispersion relation between the energy and momentum. The graphene-like band structure of the three-dimensional TI [23] and its nonlinear response to high-intensity pulse excitation [2426] cause that those materials can be used as a SA for mode-locked lasers. Up till now SAs based on TI were manufactured by mechanical exfoliation [27,28], mechanical triturating [29], polyol method [30,31] and as composites based on polymer matrices [32]. In all those cases, the topological insulator is typically deposited onto the fiber ferrule. Due to large material losses, the thickness of the TI layer needs to be limited to several nanometers. The recent results presented by Lee et al. [33] and Jung et al. [34] show, that the thickness of the TI can be increased to the micrometer scale when the topological insulator is deposited onto a side-polished fiber. In this case, the saturable absorption is based on the interaction between the material and the evanescent field propagating in the fiber clad. Up till now, saturable absorbers manufactured in this technology were based on bismuth telluride (Bi2Te3) and were used in mode-locked fiber lasers operating at 1550 nm [33] and 1935 nm [34]. The shortest pulse generated so far from a fiber laser mode-locked by a topological insulator was achieved by Lin et al. (403 fs [29],). Nevertheless, all previous reports on TI mode-locked fiber lasers were related to cavities without any dispersion compensation mechanism [2734]. Therefore, the generated pulses were optical solitons, with pulse duration strongly limited by the soliton area theorem [35,36]. In order to achieve pulses shorter than 200 fs it is required to manage the cavity dispersion and force so called stretched-pulse regime [2,10,36,37].

In this paper we present for the first time, to the best of our knowledge, a dispersion managed, stretched-pulse mode-locked fiber laser with a TI used as a SA. The Sb2Te3 SA was prepared by deposition of a bulk material on the side-polished fiber with the presence of low refractive index (RI) polymer. The interaction between the evanescent electromagnetic field leaking to the fiber clad with the TI surface results in absorption modulation of 6%. The linear absorption and non-saturable loses were of 50% and 43%, respectively. Such a prepared SA was spliced to the dispersion managed laser resonator based on Er-doped fiber. The ring laser generates Gaussian pulses centered at 1565 nm with FWHM of 30 nm and 128 fs duration. The average power and pulse energy of pulses repeated with frequency of 22.32 MHz were 1 mW and 44.8 pJ, respectively.

2. Preparation and characterization of the Sb2Te3-based saturable absorber

The SA was prepared by deposition of a bulk piece of commercially available Sb2Te3 material (Goodfellow) on the surface of a side-polished single-mode fiber with the presence of UV curable low-RI polymer. The surface of the selected flat lump of Sb2Te3 was cleaned through mechanical exfoliation process using scotch tape. The cleaning process was stopped when the lump surface was uniform in macroscopic scale. The thickness of the prepared Sb2Te3 lump was around 0.5 mm. Such a piece of Sb2Te3 was then pressed to the side-polished fiber (Phoenix Photonics). The polished region length and its distance to the fiber core were 17 mm and 1 µm, respectively. Before the topological insulator lump was finally positioned onto the polished region, the fiber was spliced into an all-anomalous dispersion laser, which easily supported soliton mode-locking. During laser operation, the position of the Sb2Te3 lump was aligned to achieve saturable absorption. When the mode-locked operation was observed, the lump position was further slightly aligned to obtain the possible broad optical spectrum and finally fixed using UV curable low-RI polymer. The pressure force has been then released and the mode-locking was not lost. Such a prepared SA as well as its cross-section are presented in Fig. 1(a) and (b).

 figure: Fig. 1

Fig. 1 Prepared Sb2Te3 and side-polished fiber based SA: a) photograph, b) cross-section. c) EDS spectrum taken from the Sb2Te3 lump placed onto the side-polished fiber containing typical lines characteristics for Sb2Te3 (inset graph: the Raman spectrum measured at 532 nm).

Download Full Size | PPT Slide | PDF

The material composition was confirmed with energy-dispersive X-ray spectroscopy (EDS). The spectrum taken using Hitachi SU 6600 scanning electron microscope equipped with a NORAN System 7 energy dispersive spectrometer (EDS) is depicted in Fig. 1(c). It consist of typical lines characteristics for Sb2Te3 [38]. The crystalline structure of the Sb2Te3 lump was confirmed by the Raman spectrum measured at 532 nm and presented in the inset graph of Fig. 1(c). It contains three main peaks located at 69 cm−1, 112 cm−1 and 166cm−1 which are close to that theoretically calculated by Soso et al. [39].

The linear absorption of the SA was measured in the range from 1500 nm to 1600 nm using white light source (Yokogawa AQ4305) and optical spectrum analyzer (Yokogawa AQ6370B). The measurement range was limited to the 100 nm span because the side-polished fiber was optimized for that range. The linear absorption was at the level of 50% ± 2% (Fig. 2(a)) and was characterized by a very flat profile. The nonlinear power-dependent transmission measurement was carried out using a 100 MHz repetition rate picosecond laser source and an all-fiber setup, similar to that commonly used for nonlinear measurements of graphene or CNT [7]. When the peak power intensity was increased the saturation of absorption was observed. The SA transmission was increased about 6% (Δα- modulation depth) to the level of 57% in comparison to linear absorption (Fig. 2(b)).

 figure: Fig. 2

Fig. 2 Prepared Sb2Te3 based SA absorption measured for: a) low intensities (linear absorption at the level of 50%), b) high intensities (nonlinear absorption with modulation depth and non-saturable loses of 6% and 43%, respectively).

Download Full Size | PPT Slide | PDF

The calculation of the exact value of peak power intensity is limited knowledge of the absorbing layer cross-section area that interacts with laser radiation and the amount of interacting light. In our calculations we take into account the light crossing the area limited by the mode filed diameter (10.5 µm@1550 nm for SMF-28 fiber). This approach allows for comparison of different SA based on an evanescent field interaction with the absorbing layer. The saturation intensity was at the level of 31 MW/cm2 which corresponded to the peak power of 29 W. The peak power at saturation is comparable to that reported by Lee et al. [33] for Bi2Te3 based SA prepared in the similar way. Hence, the transmission of the side-polished fibers is polarization dependent the polarization-dependent (PLD) losses of the SA were also investigated and were of 3.2 dB. The minimum insertion losses were at the level of 1 dB.

3. Experimental setup

The setup of the stretched-pulse mode-locked laser is depicted in Fig. 3. The laser consists of an Er-doped active fiber (EDF) (OFS EDF80) pumped by a 980 nm laser diode via a fused 980/1550 nm wavelength division multiplexer (WDM). The signal was coupled out using 30% output coupler (OC). Fiber-based in-line polarization controller (PC) allows to adjust the intra-cavity polarization and start the mode-locked operation. The signal counter-direction propagation was forced by a fiber isolator. In order to obtain the stretched-pulse configuration the anomalous dispersion of the SMF-28 (β2 = −0.022 ps2/m) and HI1060 (β2 = −0.007 ps2/m) fibers was compensated by the dispersion compensation fiber (DCF, β2 = 0.049 ps2/m), and EDF (β2 = 0.061 ps2/m). The laser resonator consists of: 0.46 m EDF, 0.22 m HI1060 fiber, 2.1 m DCF and 6.38 m SMF-28 which results in a cavity net group delay dispersion (GDD) of approx. −0.0109 ps2. The slightly anomalous net GDD is typical for stretched-pulse lasers [2,10,36,37].

 figure: Fig. 3

Fig. 3 Experimental setup of the stretched-pulse fiber mode-locked laser based on Sb2Te3 SA.

Download Full Size | PPT Slide | PDF

The performance of the laser was observed using an optical spectrum analyzer (Yokogawa AQ6375), 12 GHz digital oscilloscope (Agilent Infiniium DSO91304A), 7 GHz RF spectrum analyzer (Agilent EXA N9010A) coupled with a 12 GHz photodetector (Discovery Semiconductors DSC2-50S), and an optical autocorrelator (APE PulseCheck).

3. Experimental results

The laser starts to operate in mode-locked regime when the pump power was increased to 80 mW and the intracavity polarization was aligned using the PC. In order to obtain the stable operation without peaks originating from the continuous wave (CW) lasing, it was needed to decrease the pump power. The mode-locking remained stable for pump powers in the range form 30 mW – 50 mW. The slightly anomalous intracavity dispersion allows the generation of optical pulses centered at 1565 nm with the FWHM bandwidth of 30 nm (Fig. 4(a)). The generated pulses were positively chirped at the laser output and were compressed to 128 fs (Fig. 4(b)) using a 140 cm-long piece of SMF-28 fiber. The autocorrelation trace shows that the pulses were still slightly chirped which results in time-bandwidth-product (TBP) of 0.47. In order to exclude the possibility of self-mode-locking the laser setup was tested with clean side-polished fibers. No signs of mode-locked operation were observed.

 figure: Fig. 4

Fig. 4 a) Optical spectrum of the generated pulses, b) autocorrelation trace measured after the 140 cm long SMF-28 fiber.

Download Full Size | PPT Slide | PDF

The RF spectrum of the laser with the repetition rate of 22.32 MHz is depicted in Fig. 5(a). The electrical signal to noise ratio (SNR) measured with 80 Hz resolution bandwidth (RBW) at 2 MHz span was higher than 65 dB. The corresponding oscilloscope trace is depicted in Fig. 5(b). The pulses are equally spaced by approx. 44.8 ns, corresponding to 22.32 MHz repetition frequency and 9.16 m cavity length. The pulse energy and peak power calculated for the 1 mW average power are 44.8 pJ and 328 W, respectively.

 figure: Fig. 5

Fig. 5 a) RF spectrum of the mode-locked laser output measured with 2 MHz frequency span and 100 Hz RBW. Inset: spectrum in 3 GHz span, b) corresponding pulse train.

Download Full Size | PPT Slide | PDF

4. Summary

Concluding, the paper presents the first demonstration of a stretched-pulse fiber mode-locked laser based on topological insulator. As a SA the bulk Sb2Te3 deposited onto the side-polished fiber was used. The flat linear absorption spectrum in the range 1500 nm to 1600 nm and modulation depth of 6% allows to generate broad optical spectrum in dispersion managed laser resonator. The laser spectrum with characteristic for stretched-pulse shape was centered at 1565 nm with FWHM of 30 nm. Such a broad optical spectrum allows for generation of 128 fs pulses with a repetition rate of 22.32 MHz and S/N ratio better than 65 dB. The obtained results as well as previously presented by Lee et al. [33] and Jung et al. [34] show that the SAs based on topological insulators integrated with side-polished fibers are promising devices for ultrashort pulses generation in various spectral regions.

Acknowledgments

This work was partially supported by the Polish Ministry of Science and Higher Education under the project entitled “Investigation of saturable absorbers based on graphene oxide and reduced graphene oxide” (project no. IP2012 052072). The authors acknowledge Wojciech Macherzynski for his contribution to this work.

References and links

1. M. E. Fermann, M. L. Stock, M. J. Andrejco, and Y. Silberberg, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), 894–896 (1993). [CrossRef]   [PubMed]  

2. M. Nikodem and K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun. 283(1), 109–112 (2010). [CrossRef]  

3. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999). [CrossRef]   [PubMed]  

4. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef]   [PubMed]  

5. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004). [CrossRef]   [PubMed]  

6. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013). [CrossRef]  

7. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009). [CrossRef]  

8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]  

9. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef]   [PubMed]  

10. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010). [CrossRef]  

11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010). [CrossRef]  

12. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010). [CrossRef]   [PubMed]  

13. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013). [CrossRef]  

14. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013). [CrossRef]   [PubMed]  

15. J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21(16), 18994–19002 (2013). [CrossRef]   [PubMed]  

16. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014). [CrossRef]   [PubMed]  

17. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012). [CrossRef]  

18. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013). [CrossRef]   [PubMed]  

19. N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014). [CrossRef]   [PubMed]  

20. M. Z. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010). [CrossRef]  

21. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008). [CrossRef]   [PubMed]  

22. J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010). [CrossRef]   [PubMed]  

23. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009). [CrossRef]  

24. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper NTh1A.5.

25. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013). [CrossRef]   [PubMed]  

26. S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014). [CrossRef]  

27. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014). [CrossRef]  

28. J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014). [CrossRef]  

29. Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014). [CrossRef]  

30. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012). [CrossRef]   [PubMed]  

31. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012). [CrossRef]  

32. H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014). [CrossRef]   [PubMed]  

33. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014). [CrossRef]   [PubMed]  

34. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014). [CrossRef]   [PubMed]  

35. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997). [CrossRef]  

36. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993). [CrossRef]   [PubMed]  

37. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013). [CrossRef]  

38. Q. Yuan, Q. Nie, and D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009). [CrossRef]  

39. G. C. Sosso, S. Caravati, and M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, M. L. Stock, M. J. Andrejco, and Y. Silberberg, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), 894–896 (1993).
    [Crossref] [PubMed]
  2. M. Nikodem and K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun. 283(1), 109–112 (2010).
    [Crossref]
  3. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
    [Crossref] [PubMed]
  4. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  5. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004).
    [Crossref] [PubMed]
  6. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
    [Crossref]
  7. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
    [Crossref]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  9. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  10. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
    [Crossref]
  11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
    [Crossref]
  12. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
    [Crossref] [PubMed]
  13. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
    [Crossref]
  14. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
    [Crossref] [PubMed]
  15. J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21(16), 18994–19002 (2013).
    [Crossref] [PubMed]
  16. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
    [Crossref] [PubMed]
  17. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
    [Crossref]
  18. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
    [Crossref] [PubMed]
  19. N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014).
    [Crossref] [PubMed]
  20. M. Z. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
    [Crossref]
  21. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
    [Crossref] [PubMed]
  22. J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
    [Crossref] [PubMed]
  23. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
    [Crossref]
  24. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper NTh1A.5.
  25. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
    [Crossref] [PubMed]
  26. S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
    [Crossref]
  27. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
    [Crossref]
  28. J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
    [Crossref]
  29. Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
    [Crossref]
  30. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
    [Crossref] [PubMed]
  31. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  32. H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
    [Crossref] [PubMed]
  33. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014).
    [Crossref] [PubMed]
  34. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
    [Crossref] [PubMed]
  35. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  36. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
    [Crossref] [PubMed]
  37. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
    [Crossref]
  38. Q. Yuan, Q. Nie, and D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009).
    [Crossref]
  39. G. C. Sosso, S. Caravati, and M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009).
    [Crossref] [PubMed]

2014 (9)

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014).
[Crossref] [PubMed]

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
[Crossref] [PubMed]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014).
[Crossref] [PubMed]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

2013 (7)

2012 (3)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

2010 (7)

M. Z. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
[Crossref] [PubMed]

M. Nikodem and K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun. 283(1), 109–112 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
[Crossref] [PubMed]

2009 (5)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Q. Yuan, Q. Nie, and D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009).
[Crossref]

G. C. Sosso, S. Caravati, and M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009).
[Crossref] [PubMed]

2008 (1)

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

2004 (1)

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

1999 (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1993 (2)

Abramski, K. M.

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21(16), 18994–19002 (2013).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
[Crossref] [PubMed]

M. Nikodem and K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun. 283(1), 109–112 (2010).
[Crossref]

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Andrejco, M. J.

Bae, S.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
[Crossref] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Bao, Q.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Bao, Q. L.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Bernasconi, M.

G. C. Sosso, S. Caravati, and M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009).
[Crossref] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Caravati, S.

G. C. Sosso, S. Caravati, and M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009).
[Crossref] [PubMed]

Cava, R. J.

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

Chen, K. P.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Chen, S.

Chen, T.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Chen, Y.

Cizmeciyan, M. N.

Dai, X.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Fang, Z.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Fermann, M. E.

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Fuse, K.

Gallmann, L.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Grodecki, K.

Hasan, M. Z.

M. Z. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

Hasan, T.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[Crossref] [PubMed]

Hong, B. H.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
[Crossref] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Hor, Y. S.

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

Hsieh, D.

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

Huang, H.

Huo, D.

Q. Yuan, Q. Nie, and D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009).
[Crossref]

Inoue, Y.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[Crossref] [PubMed]

Jablonski, M.

Jhon, Y. M.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Jung, M.

Kaczmarek, P.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kane, C.

M. Z. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Kim, J. W.

Koo, J.

Krajewska, A.

Krzempek, K.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Lee, J.

Lee, J. H.

Lee, K.

Lee, S.

Li, M.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Li, Y.

Lin, B.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Lin, G.-R.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Lin, S.-F.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Lin, Y.-H.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Liu, C. X.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Liu, H.

Liu, M.

Loh, K. P.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, S.

Lu, Y.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Luo, A.-P.

Luo, Z.-C.

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014).
[Crossref]

Martinez, A.

Maruyama, S.

Matuschek, N.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
[Crossref] [PubMed]

Murakami, Y.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[Crossref] [PubMed]

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Nie, Q.

Q. Yuan, Q. Nie, and D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009).
[Crossref]

Nikodem, M.

M. Nikodem and K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun. 283(1), 109–112 (2010).
[Crossref]

Paletko, P.

Park, J.

Pasternak, I.

Popa, D.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qi, X. L.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Qian, D.

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

Rotermund, F.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
[Crossref] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Sennaroglu, A.

Set, S. Y.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Silberberg, Y.

Sobon, G.

Song, Y.-W.

Sorokin, E.

Sorokina, I. T.

Sosso, G. C.

G. C. Sosso, S. Caravati, and M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009).
[Crossref] [PubMed]

Sotor, J.

Steinmeyer, G.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Stock, M. L.

Strupinski, W.

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Sutter, D. H.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993).
[Crossref] [PubMed]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Tang, D.

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tarka, J.

Tjin, S. C.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Tolstik, N.

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Tseng, W.-H.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Wang, Q.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wang, Z.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wen, S.

Wen, S.-C.

Wray, L.

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

Wu, C.-I.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Xia, Y.

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

Xu, B.

Xu, W.-C.

Yaguchi, H.

Yamashita, S.

Yang, C.-Y.

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Yeom, D. I.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Yuan, Q.

Q. Yuan, Q. Nie, and D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009).
[Crossref]

Zhang, B.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Zhang, H.

S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
[Crossref] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Zhang, S. C.

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Zhao, C.

Zhao, C.-J.

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

Zhao, N.

Zheng, X.-W.

Zou, Y.

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009).
[Crossref]

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Appl. Phys. Express (1)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Appl. Phys. Lett. (3)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Curr. Appl. Phys. (1)

Q. Yuan, Q. Nie, and D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009).
[Crossref]

J. Phys. Condens. Matter (1)

G. C. Sosso, S. Caravati, and M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009).
[Crossref] [PubMed]

Laser Phys. Lett. (4)

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, and G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Nat. Phys. (1)

H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009).
[Crossref]

Nature (3)

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008).
[Crossref] [PubMed]

J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010).
[Crossref] [PubMed]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Nikodem and K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun. 283(1), 109–112 (2010).
[Crossref]

Opt. Express (10)

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010).
[Crossref] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013).
[Crossref] [PubMed]

J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21(16), 18994–19002 (2013).
[Crossref] [PubMed]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
[Crossref] [PubMed]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014).
[Crossref] [PubMed]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (2)

Rev. Mod. Phys. (1)

M. Z. Hasan and C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

Science (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999).
[Crossref] [PubMed]

Other (1)

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper NTh1A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Prepared Sb2Te3 and side-polished fiber based SA: a) photograph, b) cross-section. c) EDS spectrum taken from the Sb2Te3 lump placed onto the side-polished fiber containing typical lines characteristics for Sb2Te3 (inset graph: the Raman spectrum measured at 532 nm).
Fig. 2
Fig. 2 Prepared Sb2Te3 based SA absorption measured for: a) low intensities (linear absorption at the level of 50%), b) high intensities (nonlinear absorption with modulation depth and non-saturable loses of 6% and 43%, respectively).
Fig. 3
Fig. 3 Experimental setup of the stretched-pulse fiber mode-locked laser based on Sb2Te3 SA.
Fig. 4
Fig. 4 a) Optical spectrum of the generated pulses, b) autocorrelation trace measured after the 140 cm long SMF-28 fiber.
Fig. 5
Fig. 5 a) RF spectrum of the mode-locked laser output measured with 2 MHz frequency span and 100 Hz RBW. Inset: spectrum in 3 GHz span, b) corresponding pulse train.

Metrics