Abstract

The smooth surface of the metallic nanostructure is essential for thepropagation of surface plasmon polaritons. In this paper, we present a novel method to fabricate the metallic nanopatterns with ultra-smooth surface on various substrates. By using a silica film as the sacrificial layer, we show that the prefabricated metallic nanopatterns produced by electron beam lithography and film deposition can be hydrolyzed and transferred onto a designated substrate. The ultra-smooth surface morphology of nanopatterns has been characterized and verified by scanning electron microscopy and atomic force microscopy. More importantly, we demonstrate that this method can successfully produce a variety of nanostructures with high product yield, even onto the uneven substrate. The results indicate that our proposed method is a promising and versatile means to fabricate multiplicate smooth metallic nanostructure on various substrates for the application of nanophotonic devices.

© 2013 Optical Society of America

1. Introduction

Surface plasmon polaritons (SPPs) are light waves coupled with free electron oscillations bound to a metal-dielectric interface [1]. The fascinating features of SPPs, such as strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs, have found a variety of great applications [24]. In particularly, the propagation of SPPs in metal strips, waveguides, and arrays has been considered as a means to transport and process optical signals in nanophotonic devices [59]. The common methods used for the fabrication of plasmonic devices include the focused ion beam (FIB) [1012] lithography, electron beam lithography (EBL) [13, 14], nanoimprint lithography (NIL) [1517], and stencil lithography [1820], to name a few. Each method has its own distinct advantages, however, can also constantly introduce the deformation of designed patterns and related roughness surface, resulting in the poor performance of the SPPs propagation due to severe Ohmic dissipation and scattering losses from the surface roughness, grain boundaries, and other imperfections [21].

Previous reports by Wagner [22], Ederth [23] and Hegner [24] have shown that the template stripping (TS) method can be used to fabricate metallic film with ultra-smooth surface. The method starts with the deposition of metal film on the substrate with very smooth surface such as silicon, silicon oxide and mica, then the metal film is peeled off using a back layer such as epoxy, resulting in the reversed surface of metal film as smooth as that of the substrate. By combining with other nanofabrication techniques such as UV lithography, EBL and nanosphere lithography, the TS method could be more efficient and versatile for producing the ultrafine and smooth plasmonics nanostructures [11, 21, 2528]. Unfortunately, the deformation and the cracks of the metallic nanostructure occur frequently during the peeling process with a back support of epoxy layer. Herein, instead of the stripping processing, we introduce a new method to fabricate the intact metallic nanopatterns onto various substrates through hydrolysis of a sacrificial layer and transfer process (HSLT). As compared to the TS method, our proposed HSLT method cannot only produce less cracks and deformation of the nanopatterns, but also result in a much higher yield of products with ultrasmooth surface morphologies. Furthermore, we demonstrate that the HSLT method can also be applied onto uneven substrates and therefore have a potential application in the future 3-D plasmonics nano-devices.

2. Fabrication method

The main process of the HSLT method is presented schematically in Fig. 1. It started with the spin-coating of poly (methyl methacrylate) (PMMA) (950 K A4, 4 wt%, Micro Chem) resist on 1cm × 1cm silicon substrate covered with 300 nm thickness thermal oxide silica film (Silicon Valley Microelectronics Inc.), as shown in Fig. 1(a). The thickness of the PMMA resist is 280 nm obtained from 2000 rpm spin-coating followed by baking on a hot-plate for 2 minutes at 180 °C. The resist template patterns shown in Fig. 1(b) were produced by EBL system (Raith e-Line) at an extra high tension (EHT) of 21 kV with the exposure dose of 130 uC/cm2, and then developed in MIBK: IPA = 1:1 for one minute and stopped in IPA for 40 seconds. The template was then covered by sputtering a gold film with 500 nm thickness at the speed of 3 nm/min, as shown in Fig. 1(c). Because Au film was thicker than PMMA resist, a continuous Au film was formed above the PMMA resist even in the hollow areas. The sample was then immersed into KOH solution (1M) at the temperature of 95 °C (Fig. 1(d)). After about 20 minutes soaking, the metallic film detached from the substrate due to the hydrolysis of SiO2 layer in KOH solution. After rinsed in DI water for several times to clean off the remained KOH, the film was then transferred to an arbitrary substrate, as shown in Fig. 1(e). It should be noted that during the transfer process, the metallic film was reversed in order to turn the ultrasmooth metallic nanopatterns face up. After the removal of PMMA resist in acetone, the full metallic nanostructures were remained on the designated substrate, as shown in Fig. 1(f). Considering that, in our designed metallic pattern, the most of SiO2 surface is covered by the PMMA film. Therefore, we propose one possible mechanism for the hydrolysis process as follow: the PMMA film will form hydrogen bonds with the SiO2 surface through C-H and O-Si interaction when it is spun onto the substrate. When PMMA/SiO2 immersed into KOH solution, the ion of OH- will break the hydrogen bonds quickly and detaches the PMMA from SiO2, while KOH can react with the SiO2 and result in partially etching of its surface.

 figure: Fig. 1

Fig. 1 Schematic of the processing of HSLT method. (a) Spin coating of PMMA on SiO2/Si substrate. (b) Patterned and developed PMMA. (c) Deposition of the gold film. (d) Detachment of Au/PMMA film through etching of silica layer with KOH. (e)Transfer of patterned Au/PMMA film onto arbitrary substrate. (f) Removal of PMMA film in acetone.

Download Full Size | PPT Slide | PDF

3. Results and discussions

The scanning electron microscope (SEM) images of several Au nanostructures fabricated by HSLT method are shown in Fig. 2. As seen, all nanostructures demonstrate perfectly intact and retain high resolution, while their shape and thickness can be controlled readily with the negative PMMA resist template produced by EBL. Figure 2(a) shows a nano-triangle cavities with the height of 280 nm, while the side length and width of the triangle are 1.5 μm and 500 nm, respectively. We also produced a bowtie nanostructure with 20 nm narrow gap, as seen in Fig. 2(b), which has widely applications in plasmonics device [29, 30]. Figure 2(c) shows a square split-ring resonator (SRR) with 250 nm gap, which can be used as a metamaterial device for the frequency tunable optical sensors [3133]. Moreover, more intricate G-shape metallic nanostructures are also produced, as shown in Fig. 2(d). Figures 2(e)-2(h) are the side view SEM images of above mentioned nanopatterns.

 figure: Fig. 2

Fig. 2 The SEM images of various Au nanostructures with good smooth surface morphologies. Top view SEM images of (a) triangle cavity, (b) bow-tie nanogap, (c) square split-ring resonator, (d) G-shape nanostructures. (e-h) the side view SEM images of above mentioned nanopatterns.

Download Full Size | PPT Slide | PDF

It is noteworthy that the smooth surface of the nanostructure is prerequisite for realizing the efficient interference and the propagation of SPP, which is unfortunately rather difficult to achieve with conventional FIB, EBL and NIL techniques [25]. Remarkably, such a difficulty can be simply overcome by our proposed HSLT method because of the following two reasons. On the one hand, the upper surface of the nanopatterns is directly contacted with the SiO2 substrate before hydrolysis, making it as a surface replica of the substrate to enable inheriting the substrate’s smooth feature. On the other hand, the side wall of the nanopatterns can also keep fine and flat as well as that of PMMA resist, due to its tightly contacting with the resist before the removal of PMMA.

In order to evaluate the morphology character of the fabricated nanostructure, we investigated the surface roughness with atomic force microscopy (AFM) (SPA-300HV Seiko Instruments Co.). The characterization was performed with tapping model at 180 kHz. The same Si cantilever and the tip with 30 nm radius were used for all samples. Figure 3 shows a typical result of the triangle cavity nanostructure. The whole morphology image of the nanostructure is shown in Fig. 3(a), in which the surfaces on the top of triangle cavity and the base region are the replica ones of SiO2 substrate and PMMA resist, respectively. Figure 3(b) and Fig. 3(c) show the topographies of selected areas of top triangle cavity (red square in Fig. 3(a)) and base area (green square in Fig. 3(a)), and the related root-mean-square roughness (RMS) of the surface is estimated to be about 0.25 nm and 0.87 nm, respectively. The result is on a par with, or ahead of the TS method [25]. The finding also demonstrates that the surface roughness of the metallic nanostructure is strongly dependent on the morphologies of the substrates, and the replica surface from SiO2 is much smoother than that from PMMA. Nevertheless, both surfaces possess better smoothness than those of the films fabricated by the direct deposition method, with typical RMS ~5.2 nm [25], indicating that the HSLT method is a very promising approach to produce high quality plasmonic nanostructures.

 figure: Fig. 3

Fig. 3 AFM image of the triangle cavity nanostructures. (a) AFM image of a single gold nano-triangle cavity. Surface topographies of Au nanostructure (b) replicated from SiO2 substrate (c) replicated from PMMA resist.

Download Full Size | PPT Slide | PDF

With the hydrolysis process of a sacrificial layer in HSLT method instead of the stripping process in TS method, the disadvantage of the fractures and loss of the metallic patterns happened in the TS method can be significantly suppressed. As a consequence, the successful product yield of metallic nanopatterns is also obviously improved. As shown in the SEM image of Fig. 4(a), a variety of metallic nanopatterns transferred from the SiO2 substrate demonstrate intact feature. For well understanding the distinguished difference between TS and HSLT methods, we schematize the key process of both methods in Fig. 4(b) and compare the possible factors that may influence the product yield. As seen, two adhesive forces are mainly involved in TS method during the stripping process with back adhesive layer (here is the epoxy): F1 existed between the side walls of metallic patterns and PMMA resist, while F2 is between the metallic surface and the substrate. If either F1 or F2 is larger than the cohesive force of the metallic nanostructures, the edge cracks or the loss of nanopatterns occurs. By contrast, there are no forces involved in the HSLT method. With SiO2 as a sacrificial layer, both the crack and the loss of nanopatterns can be avoided in the mild hydrolysis process in KOH solution. Note that this peculiarity of HSLT method makes it more suitable to fabricate ultrafine nanopatterns. As shown in Fig. 4(c), we have successfully fabricated nano-rectangle cavities array with the width as smaller as 90 nm, which is very difficult to achieve with TS method [25].

 figure: Fig. 4

Fig. 4 (a) SEM images of the intact Au nanostructure arrays. (b) Schematic of the forces involved in TS method, while no force involved in HSLT method. (c) SEM image of ultrafine rectangle cavity nanostructures.

Download Full Size | PPT Slide | PDF

In order to evaluate the quality of our fabricated nanocavity, we measured the optical spectra of three kinds of designed plasmonic nanocavities by the cathodoluminescence (CL). The CL spectra were collected by the use of a Gatan Mono-CL3 system attached to a FEI SIRION-200 FESEM through the electron beam excited on the cavity center with 30 kV acceleration voltages. The typical result is shown in Fig. 5. As seen, several resonant peaks can be observed clearly from each Ag nanocavity. Herein, we only focus on three modes in the square nanocavity with the resonant wavelength at ~420 nm, 500 nm and 620 nm. The resonant condition of (m, n) mode for the square cavity can be simply determined with the expression [34]:

L=m2+n2λSPP2,
where L is the cavity size and λSPP is the SPP wavelength. Note that λSPP can be further obtained by λSPP=2πRe(kSPP)and and kSPP=λ02πεAgεairεAg+εair , in which kSPP is the wavevector at the Ag/air interface, λ0 is the wavelength of free light in air, εAg and εAir are the dielectric constant of silver and air [35]. As to square cavity with L ~940 nm, the calculation result demonstrates that the SPP resonance with the wavelength at ~420 nm, 500 nm and 620 nm can be ascribed to the (3, 4), (1, 4) and (1, 3) mode. Moreover, their corresponding Q factor is estimated to be about 14, 16 and 13, respectively. The result is comparable to the previously reported values from the ultrafine plasmonic cavity by Yu group [25], indicating that the energy dissipation is very weak in our fabricated Ag nanocavity and its ultrasmooth surface can facilitate the SPP propagation and resonance. Moreover, the mode volume of the square nanocativy can be written as [34]:
V=λSPP3(1+|εm'|)32π|εm'|,
where εm’ is the real part of the permittivity of Ag. For mode (1, 4), the λSPP = 456nm, εm’ = -7.8 [35], so the calculated V = 0.003 μm3, and the figure of merit (defined as Q/V [36]) of this cavity can be estimated to be about 5330 μm-3.

 figure: Fig. 5

Fig. 5 CL spectra and SEM images of different Ag nanocavaties. The spectrum is vertical shifted for clarity.

Download Full Size | PPT Slide | PDF

Plasmonic nanostructures applied in biosensor [28, 36, 37] and optics devices [38] often refer to an uneven substrate, which often makes it very difficult to employ the traditional nanotechnologies because the failure of resist coating and the beam focusing. Only a few methods such as NIL [39], FIB lithography [11, 40] and self-assembly [41] can fabricate nanostructures on certain uneven substrates. Thanks to the absence of back layer and the softness of metallic and PMMA film in HSLT method, the film with prefabricated nanostructure can now be readily transferred and printing onto any uneven substrates. Additionally, during the process, the capillary force between the film and the substrate can spontaneously pull the film onto the substrate tightly. For instance, Fig. 6 shows the SEM images of various metallic nanopatterns on the cylinder surface of glass fiber with different diameter 20 ~200 μm. As seen, all these nanopatterns have smooth surface and no obvious cracks and deformation after the transfer process, indicating that the HSLT method possesses great potential for fabricating the nanopatterns on various uneven substrates.

 figure: Fig. 6

Fig. 6 The SEM images of various nanopatterns fabricated on the non-planar substrate. (a) Au nano-square patterns on the surface of glass fiber with the diameter 200 μm, (b) 100μm and (c) 20 μm. (d) Au nano-triangles pattern on the surface of glass fiber with the diameter 50 μm.

Download Full Size | PPT Slide | PDF

4. Conclusion

In this letter, we propose and verify experimentally a novel HSLT method to fabricate the ultrasmooth and ultrafine metallic nanopatterns on various substrates. SEM observations indicate that the side wall of the nanopattern is sharp and the upper surface is very smooth. AFM characteristics demonstrate that the RMS of the pattern surface is only sub-nanometer, much smaller than that of the film produced by direct depositions. As compared to the TS method, the HSLT method is capable of fabricating the nanopatterns with high product yield and sub-100 nm nanostructures. More importantly, the softness of metal/PMMA film makes the HSLT method even suitable for the fabrication of the nanopattern on the nonplane substrate. All these results indicate that the HSLT method offer a simple, but powerful way to fabricate multiplicate metallic nanostructures with ultrasmooth surface for various plasmonic applications.

Acknowledgments

This work is supported by MOST of China (2011CB921403), NSFC (under Grant Nos. 11374274, 11074231, 11004179 and 21121003) as well as by CAS (XDB01020000).

References and links

1. R. Heintz, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, London, 1986).

2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef]   [PubMed]  

3. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013). [CrossRef]   [PubMed]  

4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef]   [PubMed]  

5. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef]   [PubMed]  

6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef]   [PubMed]  

7. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011). [CrossRef]  

8. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011). [CrossRef]   [PubMed]  

9. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011). [CrossRef]   [PubMed]  

10. M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013). [CrossRef]   [PubMed]  

11. N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013). [CrossRef]   [PubMed]  

12. V. A. Tamma, Y. H. Cui, and W. Park, “Scattering reduction at near-infrared frequencies using plasmonic nanostructures,” Opt. Express 21(1), 1041–1056 (2013). [CrossRef]   [PubMed]  

13. S. Y. Lee, G. F. Walsh, and L. Dal Negro, “Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection,” Opt. Express 21(4), 4945–4957 (2013). [CrossRef]   [PubMed]  

14. A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008). [CrossRef]   [PubMed]  

15. J. C. Song, W. K. Jung, N. H. Kim, and K. M. Byun, “Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination,” Opt. Lett. 37(18), 3915–3917 (2012). [CrossRef]   [PubMed]  

16. B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008). [CrossRef]  

17. V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005). [CrossRef]   [PubMed]  

18. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010). [CrossRef]   [PubMed]  

19. O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012). [CrossRef]   [PubMed]  

20. O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011). [CrossRef]   [PubMed]  

21. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009). [CrossRef]   [PubMed]  

22. P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995). [CrossRef]  

23. T. Ederth, “Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range,” Phys. Rev. A 62(6), 062104 (2000). [CrossRef]  

24. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993). [CrossRef]  

25. X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010). [CrossRef]   [PubMed]  

26. A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013). [CrossRef]   [PubMed]  

27. N. Vogel, J. Zieleniecki, and I. Köper, “As flat as it gets: ultrasmooth surfaces from template-stripping procedures,” Nanoscale 4(13), 3820–3832 (2012). [CrossRef]   [PubMed]  

28. H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011). [CrossRef]   [PubMed]  

29. Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011). [CrossRef]   [PubMed]  

30. Y. P. Yang, R. Singh, and W. L. Zhang, “Anomalous terahertz transmission in bow-tie plasmonic antenna apertures,” Opt. Lett. 36(15), 2901–2903 (2011). [CrossRef]   [PubMed]  

31. L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013). [CrossRef]   [PubMed]  

32. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006). [CrossRef]   [PubMed]  

33. Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18(9), 9561–9569 (2010). [CrossRef]   [PubMed]  

34. X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010). [CrossRef]   [PubMed]  

35. E. D. Palik, Handbook of Optical Constants of Solids. (Academic Press, New York, 1985)

36. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef]   [PubMed]  

37. W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011). [CrossRef]   [PubMed]  

38. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013). [CrossRef]   [PubMed]  

39. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012). [CrossRef]   [PubMed]  

40. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010). [CrossRef]   [PubMed]  

41. S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. R. Heintz, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, London, 1986).
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
    [Crossref] [PubMed]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  5. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  7. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
    [Crossref]
  8. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
    [Crossref] [PubMed]
  9. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
    [Crossref] [PubMed]
  10. M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
    [Crossref] [PubMed]
  11. N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
    [Crossref] [PubMed]
  12. V. A. Tamma, Y. H. Cui, and W. Park, “Scattering reduction at near-infrared frequencies using plasmonic nanostructures,” Opt. Express 21(1), 1041–1056 (2013).
    [Crossref] [PubMed]
  13. S. Y. Lee, G. F. Walsh, and L. Dal Negro, “Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection,” Opt. Express 21(4), 4945–4957 (2013).
    [Crossref] [PubMed]
  14. A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
    [Crossref] [PubMed]
  15. J. C. Song, W. K. Jung, N. H. Kim, and K. M. Byun, “Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination,” Opt. Lett. 37(18), 3915–3917 (2012).
    [Crossref] [PubMed]
  16. B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
    [Crossref]
  17. V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005).
    [Crossref] [PubMed]
  18. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
    [Crossref] [PubMed]
  19. O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
    [Crossref] [PubMed]
  20. O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
    [Crossref] [PubMed]
  21. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009).
    [Crossref] [PubMed]
  22. P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995).
    [Crossref]
  23. T. Ederth, “Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range,” Phys. Rev. A 62(6), 062104 (2000).
    [Crossref]
  24. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
    [Crossref]
  25. X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
    [Crossref] [PubMed]
  26. A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
    [Crossref] [PubMed]
  27. N. Vogel, J. Zieleniecki, and I. Köper, “As flat as it gets: ultrasmooth surfaces from template-stripping procedures,” Nanoscale 4(13), 3820–3832 (2012).
    [Crossref] [PubMed]
  28. H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
    [Crossref] [PubMed]
  29. Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
    [Crossref] [PubMed]
  30. Y. P. Yang, R. Singh, and W. L. Zhang, “Anomalous terahertz transmission in bow-tie plasmonic antenna apertures,” Opt. Lett. 36(15), 2901–2903 (2011).
    [Crossref] [PubMed]
  31. L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
    [Crossref] [PubMed]
  32. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [Crossref] [PubMed]
  33. Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18(9), 9561–9569 (2010).
    [Crossref] [PubMed]
  34. X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
    [Crossref] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids. (Academic Press, New York, 1985)
  36. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006).
    [Crossref] [PubMed]
  37. W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
    [Crossref] [PubMed]
  38. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
    [Crossref] [PubMed]
  39. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012).
    [Crossref] [PubMed]
  40. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
    [Crossref] [PubMed]
  41. S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
    [Crossref] [PubMed]

2013 (8)

W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
[Crossref] [PubMed]

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
[Crossref] [PubMed]

V. A. Tamma, Y. H. Cui, and W. Park, “Scattering reduction at near-infrared frequencies using plasmonic nanostructures,” Opt. Express 21(1), 1041–1056 (2013).
[Crossref] [PubMed]

S. Y. Lee, G. F. Walsh, and L. Dal Negro, “Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection,” Opt. Express 21(4), 4945–4957 (2013).
[Crossref] [PubMed]

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

2012 (4)

C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012).
[Crossref] [PubMed]

N. Vogel, J. Zieleniecki, and I. Köper, “As flat as it gets: ultrasmooth surfaces from template-stripping procedures,” Nanoscale 4(13), 3820–3832 (2012).
[Crossref] [PubMed]

J. C. Song, W. K. Jung, N. H. Kim, and K. M. Byun, “Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination,” Opt. Lett. 37(18), 3915–3917 (2012).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

2011 (8)

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
[Crossref] [PubMed]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

Y. P. Yang, R. Singh, and W. L. Zhang, “Anomalous terahertz transmission in bow-tie plasmonic antenna apertures,” Opt. Lett. 36(15), 2901–2903 (2011).
[Crossref] [PubMed]

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

2010 (7)

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18(9), 9561–9569 (2010).
[Crossref] [PubMed]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (1)

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

2008 (3)

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[Crossref]

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

2007 (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (1)

2000 (1)

T. Ederth, “Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range,” Phys. Rev. A 62(6), 062104 (2000).
[Crossref]

1995 (1)

P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995).
[Crossref]

1993 (1)

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[Crossref]

Adato, R.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Aksu, S.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Alonso-Gonzalez, P.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Altug, H.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Anker, J.

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Artar, A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Arzubiaga, L.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bao, W.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Berini, P.

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brugger, J.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Byun, K. M.

Cabrini, S.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Cai, H.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Casanova, F.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Chang, Y. T.

Chen, C. K.

Chen, L.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Chin, C.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[Crossref]

Chung, S. E.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Cui, Y. H.

Dai, Y.

Dal Negro, L.

S. Y. Lee, G. F. Walsh, and L. Dal Negro, “Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection,” Opt. Express 21(4), 4945–4957 (2013).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Desiatov, B.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Ding, H.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Ederth, T.

T. Ederth, “Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range,” Phys. Rev. A 62(6), 062104 (2000).
[Crossref]

Etrich, C.

Fan, L. R.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

Fang, Z. Y.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

Feng, N. N.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Fernandez-Cuesta, I.

Friesen, S. A.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

Fu, Q.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Gargas, D.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Geim, A. K.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Giessen, H.

Gopinath, A.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Goykmann, I.

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Guntherodt, H. J.

P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995).
[Crossref]

Guo, L. J.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[Crossref]

Hall, A. S.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

Hall, W. P.

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

Han, X. B.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Hegner, M.

P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995).
[Crossref]

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[Crossref]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Hua, F.

Huang, M.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Hueso, L. E.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Huynh, C.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Im, H.

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

Ishikawa, A.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Johnson, T. W.

N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
[Crossref] [PubMed]

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jung, W. K.

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
[Crossref] [PubMed]

Kim, J. S.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[Crossref]

Kim, N. H.

Köper, I.

N. Vogel, J. Zieleniecki, and I. Köper, “As flat as it gets: ultrasmooth surfaces from template-stripping procedures,” Nanoscale 4(13), 3820–3832 (2012).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Kristensen, A.

Kuhl, J.

Kwon, S.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Lai, Y. C.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Lederer, F.

Lee, S. A.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Lee, S. H.

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

Lee, S. Y.

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Levy, U.

Li, C. T.

Li, Z. Y.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

Liao, Z. M.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Lin, C. F.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

Lin, Y.

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

Lindquist, N. C.

N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
[Crossref] [PubMed]

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Lucas, B. D.

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Ma, Y.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Mack, N. H.

Mallouk, T. E.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

Malyarchuk, V.

Meixner, A. J.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

Melli, M.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Modica, J.

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

Mrksich, M.

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Nagpal, P.

N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
[Crossref] [PubMed]

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Norris, D. J.

N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
[Crossref] [PubMed]

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Nuzzo, R. G.

Ogletree, D. F.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Oh, S. H.

N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
[Crossref] [PubMed]

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Oh, S.-H.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Pan, N.

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Park, W.

V. A. Tamma, Y. H. Cui, and W. Park, “Scattering reduction at near-infrared frequencies using plasmonic nanostructures,” Opt. Express 21(1), 1041–1056 (2013).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Polyakov, A.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Ren, W.

Rockstuhl, C.

Rogers, J. A.

Sannomiya, T.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Savu, V.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Schuck, P. J.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Scipioni, L.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Semenza, G.

P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995).
[Crossref]

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[Crossref]

Shin, S.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Singh, R.

Smith, C. L. C.

Song, J. C.

Tamma, V. A.

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
[Crossref] [PubMed]

Tjahjana, L.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
[Crossref] [PubMed]

Tobing, L. Y. M.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
[Crossref] [PubMed]

Tosun, M.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

Vazquez-Mena, O.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Velasquez, V. T.

Villanueva, L. G.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Vogel, N.

N. Vogel, J. Zieleniecki, and I. Köper, “As flat as it gets: ultrasmooth surfaces from template-stripping procedures,” Nanoscale 4(13), 3820–3832 (2012).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Voros, J.

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

Wagner, P.

P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995).
[Crossref]

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[Crossref]

Walsh, G. F.

Wang, X.

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
[Crossref] [PubMed]

Weber-Bargioni, A.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
[Crossref] [PubMed]

White, J. O.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wittenberg, N. J.

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

Wu, X. F.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Xiong, Q. H.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
[Crossref] [PubMed]

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
[Crossref] [PubMed]

Xu, J.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Yang, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Yang, Y. P.

Yanik, A. A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

Yen, T. J.

Yin, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Yu, D. P.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Zentgraf, T.

Zhang, D.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

Zhang, D. H.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
[Crossref] [PubMed]

Zhang, J. S.

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

Zhang, Q.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Zhang, Y.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Zhu, X.

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

Zhu, X. L.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zieleniecki, J.

N. Vogel, J. Zieleniecki, and I. Köper, “As flat as it gets: ultrasmooth surfaces from template-stripping procedures,” Nanoscale 4(13), 3820–3832 (2012).
[Crossref] [PubMed]

ACS Nano (4)

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, and J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012).
[Crossref] [PubMed]

O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, “Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications,” ACS Nano 5(2), 844–853 (2011).
[Crossref] [PubMed]

H. Im, S. H. Lee, N. J. Wittenberg, T. W. Johnson, N. C. Lindquist, P. Nagpal, D. J. Norris, and S. H. Oh, “Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing,” ACS Nano 5(8), 6244–6253 (2011).
[Crossref] [PubMed]

Adv. Mater. (2)

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. 22(39), 4345–4349 (2010).
[Crossref] [PubMed]

B. D. Lucas, J. S. Kim, C. Chin, and L. J. Guo, “Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays,” Adv. Mater. 20(6), 1129–1134 (2008).
[Crossref]

Langmuir (1)

P. Wagner, M. Hegner, H. J. Guntherodt, and G. Semenza, “Formation and in-situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces,” Langmuir 11(10), 3867–3875 (1995).
[Crossref]

Nano Lett. (7)

Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
[Crossref] [PubMed]

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

W. P. Hall, J. Modica, J. Anker, Y. Lin, M. Mrksich, and R. P. Van Duyne, “A conformation- and ion-sensitive plasmonic biosensor,” Nano Lett. 11(3), 1098–1105 (2011).
[Crossref] [PubMed]

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10(7), 2511–2518 (2010).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Nanoscale (1)

N. Vogel, J. Zieleniecki, and I. Köper, “As flat as it gets: ultrasmooth surfaces from template-stripping procedures,” Nanoscale 4(13), 3820–3832 (2012).
[Crossref] [PubMed]

Nat Commun (1)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun 2, 387 (2011).
[Crossref] [PubMed]

Nat. Mater. (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, “Guided and fluidic self-assembly of microstructures using railed microfluidic channels,” Nat. Mater. 7(7), 581–587 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Nature (2)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Opt. Express (8)

W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
[Crossref] [PubMed]

V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005).
[Crossref] [PubMed]

V. A. Tamma, Y. H. Cui, and W. Park, “Scattering reduction at near-infrared frequencies using plasmonic nanostructures,” Opt. Express 21(1), 1041–1056 (2013).
[Crossref] [PubMed]

S. Y. Lee, G. F. Walsh, and L. Dal Negro, “Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection,” Opt. Express 21(4), 4945–4957 (2013).
[Crossref] [PubMed]

C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18(9), 9561–9569 (2010).
[Crossref] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

T. Ederth, “Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range,” Phys. Rev. A 62(6), 062104 (2000).
[Crossref]

Phys. Rev. Lett. (1)

X. L. Zhu, Y. Ma, J. S. Zhang, J. Xu, X. F. Wu, Y. Zhang, X. B. Han, Q. Fu, Z. M. Liao, L. Chen, and D. P. Yu, “Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy,” Phys. Rev. Lett. 105(12), 127402 (2010).
[Crossref] [PubMed]

Sci Rep (2)

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3, 2437 (2013).
[Crossref] [PubMed]

N. C. Lindquist, T. W. Johnson, P. Nagpal, D. J. Norris, and S. H. Oh, “Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture,” Sci Rep 3, 1857 (2013).
[Crossref] [PubMed]

Science (1)

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Surf. Sci. (1)

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids. (Academic Press, New York, 1985)

R. Heintz, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, London, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the processing of HSLT method. (a) Spin coating of PMMA on SiO2/Si substrate. (b) Patterned and developed PMMA. (c) Deposition of the gold film. (d) Detachment of Au/PMMA film through etching of silica layer with KOH. (e)Transfer of patterned Au/PMMA film onto arbitrary substrate. (f) Removal of PMMA film in acetone.
Fig. 2
Fig. 2 The SEM images of various Au nanostructures with good smooth surface morphologies. Top view SEM images of (a) triangle cavity, (b) bow-tie nanogap, (c) square split-ring resonator, (d) G-shape nanostructures. (e-h) the side view SEM images of above mentioned nanopatterns.
Fig. 3
Fig. 3 AFM image of the triangle cavity nanostructures. (a) AFM image of a single gold nano-triangle cavity. Surface topographies of Au nanostructure (b) replicated from SiO2 substrate (c) replicated from PMMA resist.
Fig. 4
Fig. 4 (a) SEM images of the intact Au nanostructure arrays. (b) Schematic of the forces involved in TS method, while no force involved in HSLT method. (c) SEM image of ultrafine rectangle cavity nanostructures.
Fig. 5
Fig. 5 CL spectra and SEM images of different Ag nanocavaties. The spectrum is vertical shifted for clarity.
Fig. 6
Fig. 6 The SEM images of various nanopatterns fabricated on the non-planar substrate. (a) Au nano-square patterns on the surface of glass fiber with the diameter 200 μm, (b) 100μm and (c) 20 μm. (d) Au nano-triangles pattern on the surface of glass fiber with the diameter 50 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L= m 2 + n 2 λ SPP 2 ,
V= λ SPP 3 (1+| ε m ' |) 32π | ε m ' | ,

Metrics