Abstract

We propose a scheme to realize parity-time (PT) symmetry via electromagnetically induced transparency (EIT). The system we consider is an ensemble of cold four-level atoms with an EIT core. We show that the cross-phase modulation contributed by an assisted field, the optical lattice potential provided by a far-detuned laser field, and the optical gain resulted from an incoherent pumping can be used to construct a PT-symmetric complex optical potential for probe field propagation in a controllable way. Comparing with previous study, the present scheme uses only a single atomic species and hence is easy for the physical realization of PT-symmetric Hamiltonian via atomic coherence.

© 2013 Optical Society of America

1. Introduction

In recent years, a lot of efforts have been made on a class of non-Hermitian Hamiltonian with parity-time (PT) symmetry, which in a definite range of system parameters may have an entirely real spectrum [1,2]. PT symmetry requires that the real (imaginary) part of the complex potential in the Hamiltonian is an even (odd) function of space, i.e. V(r) = V*(−r). Even though the Hermiticity of quantum observables has been widely accepted, there is still great interest in PT symmetry because of the motivation for constructing a framework to extend or replace the Hermiticity of the Hamiltonian in ordinary quantum mechanics. The concept of PT symmetry has also stimulated many other studies, such as quantum field theory [3], non-Hermitian Anderson models [4], and open quantum systems [5], and so on.

Although a large amount of theoretical works exist, the experimental realization of PT-symmetric Hamiltonian in the fields mentioned above was never achieved. Recently, much attention has been paid to various optical systems where PT-symmetric Hamiltonians can be realized experimentally by balancing optical gain and loss [69]. In optics, PT symmetry is equivalent to demand a complex refractive index with the property n(r) = n*(−r). Such refractive index has been realized experimentally using two-wave mixing in an Fe-doped LiNbO3 substrate [10]. The optical realization of PT symmetry has motivated various designs of PT-synthetic optical materials exhibiting many intriguing features, including non-reciprocal or unidirectional reflectionless wave propagation [1013], coherent perfect absorber [14, 15], giant wave amplification [16], etc. Experimental realization of PT symmetry using plasmonics [17], synthetic lattices [18], and LRC circuits [19] were also reported.

In a recent work Hang et al. [20] proposed a double Raman resonance scheme to realize PT symmetry by using a two-species atomic gas with Λ-type level configuration. This scheme is quite different from those based on solid systems mentioned above [6, 1019], and possesses many attractive features. For instance, the PT-symmetric refractive index obtained in [20] is valid in the whole space; furthermore, the refractive index can be actively controlled and precisely manipulated by changing the system parameters in situ.

In the present article, we suggest a new scheme to realize the PT symmetry in a lifetime-broadened atomic gas based on the mechanism of electromagnetically induced transparency (EIT), a typical and important quantum interference phenomenon widely occurring in coherent atomic systems [21]. Different from the two-species, double Raman resonance scheme proposed in [20], the scheme we suggest here is a single-species, EIT one. And due to the complexity of the susceptibility [20], it is difficult to design some PT potentials we wish, however, in our scheme, we can design many different periodic potentials and non-periodic potentials in light of our will, and the size of potential can also be adjusted conveniently. Especially, compared with the traditional idea that PT symmetric potential must be combined by the gain and loss parts, we utilize the atomic decay rate to design the imaginary part of PT potential, and use the giant cross-phase modulation (CPM) effect [21,22] of the resonant EIT system to realize the real part. We shall show that the cross-phase modulation contributed by the assisted field, the optical lattice potential provided by a far-detuned laser field, and the optical gain resulted from an incoherent pump can be used to construct a complex optical potential with PT symmetry for probe field propagation in a controllable way. The present scheme uses a single atomic species only and hence is simple for physical realization.

The rest of the article is arranged as follows. In the next section, a description of our scheme and basic equations for the motion of atoms and light field are presented. In Sec. III, the envelope equation of the probe field and its realization of PT symmetry are derived and discussed. The final section is the summary of our main results.

2. Model and equations of motion

2.1. Model

The system under consideration is a cold, lifetime-broadened 87Rb atomic gas with N-type level configuration; see Figure 1. The levels of the system are taken from the D1 line of 87Rb atoms, with |1〉 = |5S1/2, F = 1〉, |2〉 = |5S1/2, F = 2〉, |3〉 = |5P1/2, F = 1〉, and |4〉 = |5P1/2, F = 2〉. A weak probe field Ep = exp(z, t) exp [i(kpzωpt)] + c.c. and a strong control field Ec = exc exp [i(−kcyωct)] + c.c. interact resonantly with levels |1〉 → |3〉 and |2〉 → |3〉, respectively. Here ej and kj (j) are respectively the polarization unit vector in the jth direction and the wave number (envelope) of the jth field. The levels |l〉 (l = 1, 2, 3) together with Ep and Ec constitute a well-known Λ-type EIT core.

 figure: Fig. 1

Fig. 1 (a) Energy-level diagram and excitation scheme used for obtaining a PT symmetric model. (b) Possible experimental arrangement. All the notation are defined in the text.

Download Full Size | PPT Slide | PDF

Furthermore, we assume an assisted filed

Ea=eya(x)exp[i(kazωat)]+c.c.
is coupled to the levels |2〉 → |4〉, where a(x) is field-distribution function in transverse direction. The assisted filed Ea, when assumed to be weak (satisfying pac), will contribute a CPM effect to the probe field Ep. Note that the levels |l〉 (l = 1, 2, 3, 4) together with Ep, Ec, and Ea form a N-type system, which was considered firstly by Schmidt Imamoǧlu [22] for obtaining giant CPM via EIT.

In addition, we assume there is another far-detuned (Stark) optical lattice field

EStark=ey2Es(x)cos(ωLt)
is applied to the system, where Es(x) and ωL are respectively the field-distribution function and angular frequency. Due to the existence of EStark, a small and x-dependent Stark shift of level Ej to the state |j〉 occurs, i.e., EjEj + ΔEj with ΔEj=12αjEStark2t=12αj|Es(x)|2, here αj is the scalar polarizability of the level |j〉, and 〈···〉t denotes the time average in an oscillating cycle. The explicit forms of a(x) and Es(x) in (1) and (2) will be chosen later on according to the requirement of PT symmetry (see Sec. 3.2).

As will be shown below, the CPM effect contributed by the assisted field Ea given by (1) and the Stark shift contributed by the far-detuned Stark field EStark given by (2) will provide periodic complex refractive index to the evolution of probe-filed envelope. However, they are still not enough to obtain a refractive index with PT symmetry since a gain to the probe field is needed. Therefore, we introduce an incoherent optical pumping which can pump atoms from the ground-state level |1〉 to the excited-state level |3〉 with the pumping rate Γ31 [see equations (18a) and (18c) in Appendix]. Such optical pumping can be realized by many techniques, such as intense atomic resonance lines emitted from hollow-cathode lamps or from microwave discharge lamps [23].

In Fig. 1(a), Γ13, Γ23, and Γ24 are spontaneous emission rates denoting the population decays respectively from |3〉 to |1〉, |3〉 to |2〉, and |4〉 to |2〉; Ωp = (ex · p13)p/h̄, Ωc = (ex · p23)c/h̄, and Ωa = (ey · p24)a/h̄ are respectively the half Rabi frequencies of the probe, control, and assisted fields, here pij signifies the electric dipole matrix element of the transition from state |i〉 to |j〉, Δ3, Δ2, and Δ4 are respectively one-, two-, and three-photon detunings in relevant transitions. Fig. 1(b) shows a possible experimental arrangement.

2.2. Maxwell-Bloch equations

Under electric-dipole and rotating-wave approximations, the Hamiltonian of the system in interaction picture reads H^int=h¯j=14Δj|jj|h¯(Ωp|31|+Ωc|32|+Ωa|42|+h.c.), where h.c. denotes Hermitian conjugate, and

Δj=Δj+αj2h¯|Es(x)|2.
The motion of atoms interacting with the light fields is described by the Bloch equation
σt=ih¯[H^int,σ]Γσ,
where σjl is the density-matrix elements in the interaction picture, Γ is a 4×4 relaxation matrix. Explicit expressions of Eq. (4) are presented in Appendix, in which an incoherent optical pumping (represented by Γ31) from the level |1〉 to the level |3〉 is introduced [see equations (18a) and (18c)].

Under a slowly varying envelope approximation, Maxwell equation of the probe field is reduced to

i(z+1ct)Ωp+c2ωp2Ωpx2+κ13σ31=0,
where κ13 = p|ex · p13|2/(2ε0h̄c) with N being the atomic concentration. Note that, for simplicity, we have assumed Ωp is independent on y, which is valid only for the probe beam having a large width in the y-direction so that the diffraction term 2Ωp/∂y2 can be neglected; in addition, we have also assumed that the dynamics of Ωa is negligible during probe-field evolution, which is a reasonable approximation because the assisted field couples to the levels |2〉 and |4〉 that have always vanishing population due to the EIT effect induced by the strong control field.

3. Realization of PT symmetric potential

3.1. Equation of the probe-field envelope

The Maxwell equation (5) governs the propagation of the probe field. To solve it one must know σ31, which is controlled by the Bloch equation (4) and hence coupled to Ωp. For simplicity, we assume Ωp has a large time duration τ0 so that Γ31τ0 >> 1. In this case a continuous wave approximation can be taken. As a result, the time derivatives in the Maxwell-Bloch (MB) equations (4) and (5) (i.e. the dispersion effect of the probe field) can be neglected, and only the diffraction effect of the probe field in x direction is considered. In addition, because the probe field is weak, a perturbation expansion can be used for solving coupled equations (4) and (5) analytically [24, 25].

We take the expansion σij=σij(0)+εσij(1)+ε2σij(2)+ε3σij(3)+, Ωp=εΩp(1)+ε3Ωp(3)+. Here ε is a small parameter characterizing the typical amplitude of the probe field (i.e Ωp,maxc). Substituting such expansion to equations (4) and (5), we obtain a series of linear but inhomogeneous equations for σij(l) and Ωp(l) (l = 1, 2, 3,...) that can be solved order by order. To get a divergence-free perturbation expansion, σij(l) and Ωp(l) are considered as functions of the multiple scale variables zl = εlz (l = 0, 2) and x1 = εx [24, 25]. In addition, we assume Ωa=εΩa(1)(x1), Es=εEs(1)(x1). Thus we have dij=dij(0)=ε2dij(2) with dij(0)=ΔiΔj+iγij and dij(2)=[(αiαj)/(2h¯)]|Es(1)|2.

At 𝒪(1)-order, we obtain non-zero density-matrix elements σ11(0)=1(2X1)X2, σ22(0)=(1X1)X2, σ33(0)=X2, σ32(0)=[Ωc*/(d32(0))*]X1X2, with X1=Γ23/[2Im(|Ωc/d32(0)|2)] and X2 = Γ31/[Γ13 + Γ31(2 − X1)]. It is the base state solution of the MB equations (i.e., the solution for Ωp = Ωa = 0). We see that due to the existence of the incoherent optical pumping (i.e., Γ31 ≠ 0) there are populations in the states |1〉, |2〉, and |3〉. Because Γ31 takes the order of MHz in our model, the populations in |2〉 and |3〉 are small. In particular, σ22(0)=σ33(0)=0, σ11(0)=1 when Γ31 = 0.

At 𝒪(ε)-order, the solution is given by

Ωp(1)=FeiKz0,
σ21(1)=Ωc*(σ33(0)σ11(0))d31(0)σ23(0)D1FeiKz0α21(1)FeiKz0,
σ31(1)=Kκ13FeiKz0α31(1)FeiKz0,
σ42(1)=d43(0)σ22(0)+Ωcσ23(0)D2Ωa(1)α42(1)Ωa(1),
σ43(1)=Ωc*σ22(0)+d42(0)σ23(0)D2Ωa(1)α43(1)Ωa(1),
with other σjl(1)=0. Here F is yet to be determined envelope function, D1=|Ωc|2d21(0)d31(0), D2=|Ωc|2d42(0)d43(0), and
K=κ13d21(0)(σ11(0)σ33(0))+Ωcσ23(0)D1.
Obviously, in the linear case ΩpeiKz, and K is complex. Thus K, particularly its imaginary part, controls the behavior of the probe-field propagating along z.

Figure 2 shows the imaginary part ImK of K as a function of Δ3/γ3 for Δ2 = Δ3. The system parameters used are [26]γ1 = Δ1 = 0Hz, 2γ2 = 1 × 103 Hz, Γ3 = 2γ3 = 36MHz, κ13 = 1.0 × 1010 cm−1 Hz. Solid (red), dashed (green), and dashed-dotted (blue) lines correspond to (Ωc, Γ31) = (0, 0), (5 × 107 Hz, 0), and (5 × 107 Hz, 0.7γ3), respectively.

 figure: Fig. 2

Fig. 2 The imaginary part ImK of K as a function of Δ3/γ3 for Δ2 = Δ3. Solid (red), dashed (green), and dashed-dotted (blue) lines correspond to (Ωc, Γ31) = (0, 0), (5 × 107 Hz, 0), and (5 × 107 Hz, 0.7γ3), respectively. For illustration, the value of dashed-dotted (green) line has been amplified 7.8 times.

Download Full Size | PPT Slide | PDF

From the solid line of Figure 2, we see that in the absence of the control field and incoherent pumping (i.e., Ωc = Γ31 = 0), the probe field has a very large absorption; however, when the incoherent pumping still absent but Ωc takes the value of 5 × 107 Hz, a transparency window is opened (as shown by the dashed line). This is well-known EIT quantum interference phenomenon induced by the control field [21]. However, there is still a small absorption (i.e., ImK > 0, which can not be seen clearly due to the resolution of the figure). That is to say, although EIT can suppress largely the absorption, it can not make the absorption become zero.

The dashed-dotted line in Fig. 2 is the situation when the incoherent pumping (Γ31 = 0.7γ3) is introduced. One sees that a gain (i.e., negative ImK in the region near Δ3 = 0) occurs. Such gain is necessary to get a PT-symmetric optical potential for the probe-field propagation, as shown below.

At 𝒪(ε3)-order of the perturbation expansion, we obtain the closed equation for F, which can be converted to the equation for Ωp:

iΩpz+c2ωp2Ωpx2+V˜(x)Ωp=0
after returning to original variables, with
V˜(x)=α12|eyp24|2h¯2|a(x)|2+α13|Es(x)|2+K,
where Ωp = εF exp(iKz), the coefficients α12 and α13 are given in Appendix.

We now make some remarks about the potential (x) given by Eq. (9):

  1. The coefficients α12 and α13 are complex. We stress that the occurrence of a complex potential for the evolution of probe-field envelope is a general feature in the system with resonant interactions. The reason is that, due to the resonance, the finite lifetime of atomic energy states must be taken into account. As a result, the variation of the probe-field wavevector resulted by the external light laser fields (here the Stark and the assisted fields) are complex. It is just this point that provides us the possibility to realize a PT symmetric potential in our system by using the periodic external laser fields.
  2. If the incoherent pumping is absent, the probe field has only absorption but no gain and hence not possible to realize PT symmetry. With the incoherent pumping present, the parameter K [given by the Eq. (7)] in the Eq. (9) is complex and has negative imaginary part in the region near Δ3 = 0, which can be used to suppress an absorption constant (i.e. the term not dependent on x) appearing in the previous two terms of (x).
  3. It is easy to show that if only a single external laser field (the Stark or the assisted field) is applied, it is impossible to realize a PT symmetry. That is why the two separated light fields (i.e. both the Stark and the assisted fields) have been adopted. We shall show below that the joint action between the Stark field, the assisted field, and the incoherent pumping can give PT-symmetric potentials in the system.

The susceptibility of the probe field is given by χ(x) = 2cṼ(x)/ωp. Because the potential (9) is a complex function of x, which is equivalent to a space-dependent complex refractive index n(x)=1+χ(x)1+cV˜(x)/ωp for the probe-field propagation. PT symmetry requires *(−x) = (x), which is equivalent to the condition n*(−x) = n(x).

3.2. The design of PT symmetric potential

Equation (8) is a linear Schrödinger equation with the “external” potential (9). To realize a PT-symmetric model we assume the field-distribution functions in (1) and (2) taking the forms

a(x)=Ea0[cos(x/R)+sin(x/R)],
Es(x)=Es0cos(x/R),
with Ea0 and Es0 being typical amplitudes and R−1 being typical “optical lattice” parameter. For convenience of later discussion, we write Eq. (8) into the following dimensionless form
ius+2uξ2+V(ξ)u=0,
with
V(ξ)=(g12+g12sin2ξ)+g13cos2ξ+K0,
where u = Ωp/U0, s = z/Ldiff, ξ = x/R, g12=α12|eyp24|2Ea02Ldiff/h¯2, g13=α13Es02Ldiff, and K0 = KLdiff. Here, Ldiff 2ωpR2/c is the typical diffraction length and U0 denotes the typical Rabi frequency of the probe field.

PT symmetry of Eq. (12) requires V*(−ξ) = V(ξ). In general, such requirement is difficult to be satisfied because resonant atomic systems have very significant absorption. However, in the system suggested here the absorption can be largely suppressed by the EIT effect induced by the control field. The remainder small absorption that can not be eliminated by the EIT effect may be further suppressed by the introduction of the incoherent optical pumping. If the optical pumping is large enough, the system can acquire a gain. This point can be understood from Fig. 2 for the case of (Ωc, Γ31) = (5 × 107 Hz, 0.7γ3) where near the EIT transparency window ImK is negative, which means that the probe field acquires a gain contributed by the optical pumping. Such gain can be used to suppress the imaginary parts of g12 and g13 through choosing suitable system parameters, and hence one can realize a PT symmetry of the system.

For a practical example, we select the D1 line of 87Rb atoms, with the energy levels indicated in the beginning of Sec. 2.1. The system parameters are given by 2γ2 = 1 × 103 Hz, Γ3,4 =2γ3,4 = 36 MHz, |p24| = 2.54 × 1027 C cm, ωp = 2.37 × 1015 s−1. Other (adjustable) parameters are taken as κ13 = 2.06 × 1011 cm−1s−1, R = 2.5 × 10−3 cm, Ωc = 4.0 × 108 s−1, Δ2 = −5.0 × 105 s−1, Δ3 = 5.0 × 108 s−1, and Δ4 = 0. Then we have Ldiff = 1.0 cm, and

a(x)=0.1(cosξ+sinξ)V/cm,
Es(x)=4.51×105cosξV/cm,
Γ31=7.0×105Hz.
Based on these data and the assisted laser field (14), the far-detuned laser field (15) and the optical pumping (16), we have g12 = 0.01 + 0.4i, g13 = 1.00 + 0.03i, and K0 = −11.7 − 0.4i. Here, the imaginary parts of g12 and K0 can be alone controlled by a(x) and κ13, respectively. As a result, we obtain
V(ξ)=11.7+cos2ξ+0.4isin2ξ+𝒪(102).
Equation (17) satisfies the PT-symmetry requirement V*(−ξ) = V(ξ) when exact to the accuracy 𝒪(10−2). The constant term −11.7 in V(ξ) can be removed by using a phase transformation uuexp(−i11.7s). Equation (17) is a kind of PT-symmetric periodic potential. In fact, one can design many different periodic potentials or non-periodic potentials with PT symmetry in our system by using different assisted and far-detuned laser fields. Consequently, our system has obvious advantages for actively designing different PT-symmetric optical potentials and manipulating them in a controllable way.

4. Conclusion

We have proposed a scheme to realize PT symmetry via EIT. The system we considered is an ensemble of cold four-level atoms with an EIT core. We have shown that the cross-phase modulation contributed by an assisted field, the optical lattice potential provided by a far-detuned laser field, and the optical gain coming from an incoherent pumping can be used to construct a PT-symmetric complex optical potential for probe field propagation in a controllable way. Comparing with previous study in [20], our scheme has the following advantages: (i) Our scheme uses only one atomic species, which is much simpler than that in [20]. (ii) The mechanism of realizing the PT-symmetric potential is based on EIT, which is different from that in [20] where a double Raman resonance was used. (iii) One can design many different PT-symmetric potentials at will in our scheme in a simple way.

Appendix Explicit expression of Eq. (4)

Equations of motion for σij are given by

itσ11+iΓ31σ11iΓ13σ33+Ωp*σ31Ωpσ31*=0,
itσ22iΓ23σ33iΓ24σ44+Ωc*σ32Ωcσ32*+Ωa*σ42Ωaσ42*=0,
i(t+Γ3)σ33iΓ31σ11Ωp*σ31+Ωpσ31*Ωc*σ32+Ωcσ32*=0,
i(t+Γ4)σ44Ωa*σ42+Ωaσ42*=0,
(it+d21)σ21+Ωc*σ31+Ωa*σ41Ωpσ32*=0,
(it+d31)σ31+Ωp(σ11σ33)+Ωcσ21=0,
(it+d41)σ41+Ωaσ21Ωpσ43=0,
(it+d32)σ32+Ωc(σ22σ33)+Ωpσ21*Ωaσ43*=0,
(it+d42)σ42+Ωa(σ22σ44)Ωcσ43=0,
(it+d43)σ43+Ωaσ32*Ωp*σ41Ωc*σ42=0,
with djl = Δ′j − Δ′l + Δ′j is given by Eq. (3)), γjl=(Γj+Γl)/2+γjldph(j3,l1), γ31=(Γ3+Γ31)/2+γ31dph, and Γl = ∑Ej<ElΓjl. Here γjldph denotes the dipole dephasing rates caused by atomic collisions; Γjl is the rate at which population decays from |l〉 to |j〉. Especially, Γ31 is the incoherent pumping rate from |1〉 to |3〉.

Perturbation expansion of the MB equations

The coefficients of Eq. (9) are given by where with Γ = Γ13 + Γ31.

α12=κ13ΩcD1α41(2)+κ13ΩcD1α23G(2)+κ13d21(0)D1(α11G(2)α33G(2)),
α13=κ13(α3α1)2h¯D1d21(0)α31(1),

Acknowledgments

This work was supported by the NSF-China under Grant Nos. 11074221, 11174080, and 11204274, and by the discipline construction funds of ZJNU under Grant No. ZC323007110; and in part by the Open Fund from the State Key Laboratory of Precision Spectroscopy, ECNU.

References and links

1. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007). [CrossRef]  

2. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011). [CrossRef]  

3. C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004). [CrossRef]  

4. I. Y. Goldsheid and B. A. Khoruzhenko, “Distribution of Eigenvalues in Non-Hermitian Anderson Models,” Phys. Rev. Lett. 80, 2897–2900 (1998). [CrossRef]  

5. I. Rotter, “A non-Hermitian Hamilton operator and the physics of open quantum systems,” J. Phys. A: Math. Theor. 42, 153001 (2009). [CrossRef]  

6. A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen. 38, L171–L176 (2005). [CrossRef]  

7. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007). [CrossRef]   [PubMed]  

8. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008). [CrossRef]   [PubMed]  

9. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]   [PubMed]  

10. C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010). [CrossRef]  

11. M. Kulishov, J. M. Laniel, N. Be langer, J. Azaña, and D. V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13, 3068–3078 (2005). [CrossRef]   [PubMed]  

12. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011). [CrossRef]   [PubMed]  

13. L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013). [CrossRef]  

14. S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010). [CrossRef]  

15. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010). [CrossRef]   [PubMed]  

16. V. V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376, 2750–2753 (2012). [CrossRef]  

17. H. Benisty, A. Degiron, A. Lupu, A. DeLustrac, S. Cheńais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lérondel, “Implementation of PT symmetric devices using plasmonics: principle and applications,” Opt. Express 19, 18004–18019 (2011). [CrossRef]   [PubMed]  

18. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012). [CrossRef]  

19. J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011). [CrossRef]  

20. C. Hang, G. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013). [CrossRef]   [PubMed]  

21. M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]  

22. H. Schmidt and A. Imamoǧlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef]   [PubMed]  

23. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (3rd ed.) (Springer, Berlin, 2003), Chap. 10. [CrossRef]  

24. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005). [CrossRef]  

25. H.-j. Li, Y.-p. Wu, and G. Huang, “Stable weak-light ultraslow spatiotemporal solitons via atomic coherence,” Phys. Rev. A 84, 033816 (2011). [CrossRef]  

26. D. A. Steck, Rubidium 87 D Line Data, http://steck.us/alkalidata/.

References

  • View by:
  • |
  • |
  • |

  1. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007).
    [Crossref]
  2. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011).
    [Crossref]
  3. C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004).
    [Crossref]
  4. I. Y. Goldsheid and B. A. Khoruzhenko, “Distribution of Eigenvalues in Non-Hermitian Anderson Models,” Phys. Rev. Lett. 80, 2897–2900 (1998).
    [Crossref]
  5. I. Rotter, “A non-Hermitian Hamilton operator and the physics of open quantum systems,” J. Phys. A: Math. Theor. 42, 153001 (2009).
    [Crossref]
  6. A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen. 38, L171–L176 (2005).
    [Crossref]
  7. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).
    [Crossref] [PubMed]
  8. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008).
    [Crossref] [PubMed]
  9. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
    [Crossref] [PubMed]
  10. C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
    [Crossref]
  11. M. Kulishov, J. M. Laniel, N. Be langer, J. Azaña, and D. V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13, 3068–3078 (2005).
    [Crossref] [PubMed]
  12. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
    [Crossref] [PubMed]
  13. L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
    [Crossref]
  14. S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
    [Crossref]
  15. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  16. V. V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376, 2750–2753 (2012).
    [Crossref]
  17. H. Benisty, A. Degiron, A. Lupu, A. DeLustrac, S. Cheńais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lérondel, “Implementation of PT symmetric devices using plasmonics: principle and applications,” Opt. Express 19, 18004–18019 (2011).
    [Crossref] [PubMed]
  18. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
    [Crossref]
  19. J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
    [Crossref]
  20. C. Hang, G. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
    [Crossref] [PubMed]
  21. M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  22. H. Schmidt and A. Imamoǧlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [Crossref] [PubMed]
  23. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (3rd ed.) (Springer, Berlin, 2003), Chap. 10.
    [Crossref]
  24. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
    [Crossref]
  25. H.-j. Li, Y.-p. Wu, and G. Huang, “Stable weak-light ultraslow spatiotemporal solitons via atomic coherence,” Phys. Rev. A 84, 033816 (2011).
    [Crossref]
  26. D. A. Steck, Rubidium 87 D Line Data, http://steck.us/alkalidata/ .

2013 (2)

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

C. Hang, G. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

2012 (2)

V. V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376, 2750–2753 (2012).
[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

2011 (5)

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
[Crossref]

H. Benisty, A. Degiron, A. Lupu, A. DeLustrac, S. Cheńais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lérondel, “Implementation of PT symmetric devices using plasmonics: principle and applications,” Opt. Express 19, 18004–18019 (2011).
[Crossref] [PubMed]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

H.-j. Li, Y.-p. Wu, and G. Huang, “Stable weak-light ultraslow spatiotemporal solitons via atomic coherence,” Phys. Rev. A 84, 033816 (2011).
[Crossref]

2010 (3)

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

2009 (1)

I. Rotter, “A non-Hermitian Hamilton operator and the physics of open quantum systems,” J. Phys. A: Math. Theor. 42, 153001 (2009).
[Crossref]

2008 (2)

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008).
[Crossref] [PubMed]

Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (4)

A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen. 38, L171–L176 (2005).
[Crossref]

M. Kulishov, J. M. Laniel, N. Be langer, J. Azaña, and D. V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13, 3068–3078 (2005).
[Crossref] [PubMed]

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (1)

C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004).
[Crossref]

1998 (1)

I. Y. Goldsheid and B. A. Khoruzhenko, “Distribution of Eigenvalues in Non-Hermitian Anderson Models,” Phys. Rev. Lett. 80, 2897–2900 (1998).
[Crossref]

1996 (1)

Almeida, V. R.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Azaña, J.

Barbillon, G.

Be langer, N.

Bender, C. M.

C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007).
[Crossref]

C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004).
[Crossref]

Benisty, H.

Bersch, C.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Besbes, M.

Blaize, S.

Brody, D. C.

C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004).
[Crossref]

Bruyant, A.

Cao, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Chen, Y.-F.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Chenais, S.

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Christodoulides, D. N.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011).
[Crossref]

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008).
[Crossref] [PubMed]

Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).
[Crossref] [PubMed]

Christodoulides, D.N.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Degiron, A.

Delgado, F.

A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen. 38, L171–L176 (2005).
[Crossref]

DeLustrac, A.

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (3rd ed.) (Springer, Berlin, 2003), Chap. 10.
[Crossref]

Deng, L.

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

El-Ganainy, R.

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011).
[Crossref]

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008).
[Crossref] [PubMed]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).
[Crossref] [PubMed]

Ellis, F. M.

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
[Crossref]

Fegadolli, W. S.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Feng, L.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Forget, S.

Ge, L.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Goldsheid, I. Y.

I. Y. Goldsheid and B. A. Khoruzhenko, “Distribution of Eigenvalues in Non-Hermitian Anderson Models,” Phys. Rev. Lett. 80, 2897–2900 (1998).
[Crossref]

Hang, C.

C. Hang, G. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

Huang, G.

C. Hang, G. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

H.-j. Li, Y.-p. Wu, and G. Huang, “Stable weak-light ultraslow spatiotemporal solitons via atomic coherence,” Phys. Rev. A 84, 033816 (2011).
[Crossref]

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

H. Schmidt and A. Imamoǧlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
[Crossref] [PubMed]

Jones, H. F.

C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004).
[Crossref]

Khoruzhenko, B. A.

I. Y. Goldsheid and B. A. Khoruzhenko, “Distribution of Eigenvalues in Non-Hermitian Anderson Models,” Phys. Rev. Lett. 80, 2897–2900 (1998).
[Crossref]

Kip, D.

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Konotop, V. V.

C. Hang, G. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

V. V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376, 2750–2753 (2012).
[Crossref]

Kottos, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
[Crossref]

Kulishov, M.

Laniel, J. M.

Lérondel, G.

Li, A.

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
[Crossref]

Li, H.-j.

H.-j. Li, Y.-p. Wu, and G. Huang, “Stable weak-light ultraslow spatiotemporal solitons via atomic coherence,” Phys. Rev. A 84, 033816 (2011).
[Crossref]

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Longhi, S.

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

Lu, M.-H.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Lupu, A.

Makris, K. G.

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011).
[Crossref]

Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008).
[Crossref] [PubMed]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).
[Crossref] [PubMed]

Makris, K. R.

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Miri, M.-A.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Muga, J. G.

A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen. 38, L171–L176 (2005).
[Crossref]

Musslimani, Z. H.

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011).
[Crossref]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008).
[Crossref] [PubMed]

Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007).
[Crossref] [PubMed]

Oliveira, J. E. B.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Onishchukov, G.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Payne, M. G.

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Peschel, U.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Plant, D. V.

Ramezani, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Regensburger, A.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Rotter, I.

I. Rotter, “A non-Hermitian Hamilton operator and the physics of open quantum systems,” J. Phys. A: Math. Theor. 42, 153001 (2009).
[Crossref]

Ruschhaupt, A.

A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen. 38, L171–L176 (2005).
[Crossref]

Rüter, C. E.

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Scherer, A.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Schindler, J.

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
[Crossref]

Schmidt, H.

Segev, M.

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Shchesnovich, V. S.

V. V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376, 2750–2753 (2012).
[Crossref]

Stone, A. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Wu, Y.-p.

H.-j. Li, Y.-p. Wu, and G. Huang, “Stable weak-light ultraslow spatiotemporal solitons via atomic coherence,” Phys. Rev. A 84, 033816 (2011).
[Crossref]

Xu, Y.-L.

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Zezyulin, D. A.

V. V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376, 2750–2753 (2012).
[Crossref]

Zheng, M. C.

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
[Crossref]

Int. J. Theor. Phys. (1)

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT symmetric periodic optical potentials,” Int. J. Theor. Phys. 50, 1019–1041 (2011).
[Crossref]

J. Phys. A: Math. Gen. (1)

A. Ruschhaupt, F. Delgado, and J. G. Muga, “Physical realization of PT-symmetric potential scattering in a planar slab waveguide,” J. Phys. A: Math. Gen. 38, L171–L176 (2005).
[Crossref]

J. Phys. A: Math. Theor. (1)

I. Rotter, “A non-Hermitian Hamilton operator and the physics of open quantum systems,” J. Phys. A: Math. Theor. 42, 153001 (2009).
[Crossref]

Nat. Phys. (1)

C. E. Rüter, K. R. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Nature (London) (1)

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature (London) 488, 167–171 (2012).
[Crossref]

Nature Mat. (1)

L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nature Mat. 12, 108–113 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

V. V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, “Giant amplification of modes in parity-time symmetric waveguides,” Phys. Lett. A 376, 2750–2753 (2012).
[Crossref]

Phys. Rev. A (3)

H.-j. Li, Y.-p. Wu, and G. Huang, “Stable weak-light ultraslow spatiotemporal solitons via atomic coherence,” Phys. Rev. A 84, 033816 (2011).
[Crossref]

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A 84, 040101 (2011).
[Crossref]

Phys. Rev. D (1)

C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004).
[Crossref]

Phys. Rev. E (1)

G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005).
[Crossref]

Phys. Rev. Lett. (6)

I. Y. Goldsheid and B. A. Khoruzhenko, “Distribution of Eigenvalues in Non-Hermitian Anderson Models,” Phys. Rev. Lett. 80, 2897–2900 (1998).
[Crossref]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” Phys. Rev. Lett. 100, 103904 (2008).
[Crossref] [PubMed]

Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical Solitons in PT Periodic Potentials,” Phys. Rev. Lett. 100, 030402 (2008).
[Crossref] [PubMed]

C. Hang, G. Huang, and V. V. Konotop, “PT Symmetry with a System of Three-Level Atoms,” Phys. Rev. Lett. 110, 083604 (2013).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D.N. Christodoulides, “Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Other (2)

D. A. Steck, Rubidium 87 D Line Data, http://steck.us/alkalidata/ .

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (3rd ed.) (Springer, Berlin, 2003), Chap. 10.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) Energy-level diagram and excitation scheme used for obtaining a PT symmetric model. (b) Possible experimental arrangement. All the notation are defined in the text.
Fig. 2
Fig. 2 The imaginary part ImK of K as a function of Δ3/γ3 for Δ2 = Δ3. Solid (red), dashed (green), and dashed-dotted (blue) lines correspond to (Ωc, Γ31) = (0, 0), (5 × 107 Hz, 0), and (5 × 107 Hz, 0.7γ3), respectively. For illustration, the value of dashed-dotted (green) line has been amplified 7.8 times.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

E a = e y a ( x ) exp [ i ( k a z ω a t ) ] + c . c .
E Stark = e y 2 E s ( x ) cos ( ω L t )
Δ j = Δ j + α j 2 h ¯ | E s ( x ) | 2 .
σ t = i h ¯ [ H ^ int , σ ] Γ σ ,
i ( z + 1 c t ) Ω p + c 2 ω p 2 Ω p x 2 + κ 13 σ 31 = 0 ,
Ω p ( 1 ) = F e i K z 0 ,
σ 21 ( 1 ) = Ω c * ( σ 33 ( 0 ) σ 11 ( 0 ) ) d 31 ( 0 ) σ 23 ( 0 ) D 1 F e i K z 0 α 21 ( 1 ) F e i K z 0 ,
σ 31 ( 1 ) = K κ 13 F e i K z 0 α 31 ( 1 ) F e i K z 0 ,
σ 42 ( 1 ) = d 43 ( 0 ) σ 22 ( 0 ) + Ω c σ 23 ( 0 ) D 2 Ω a ( 1 ) α 42 ( 1 ) Ω a ( 1 ) ,
σ 43 ( 1 ) = Ω c * σ 22 ( 0 ) + d 42 ( 0 ) σ 23 ( 0 ) D 2 Ω a ( 1 ) α 43 ( 1 ) Ω a ( 1 ) ,
K = κ 13 d 21 ( 0 ) ( σ 11 ( 0 ) σ 33 ( 0 ) ) + Ω c σ 23 ( 0 ) D 1 .
i Ω p z + c 2 ω p 2 Ω p x 2 + V ˜ ( x ) Ω p = 0
V ˜ ( x ) = α 12 | e y p 24 | 2 h ¯ 2 | a ( x ) | 2 + α 13 | E s ( x ) | 2 + K ,
a ( x ) = E a 0 [ cos ( x / R ) + sin ( x / R ) ] ,
E s ( x ) = E s 0 cos ( x / R ) ,
i u s + 2 u ξ 2 + V ( ξ ) u = 0 ,
V ( ξ ) = ( g 12 + g 12 sin 2 ξ ) + g 13 cos 2 ξ + K 0 ,
a ( x ) = 0.1 ( cos ξ + sin ξ ) V / cm ,
E s ( x ) = 4.51 × 10 5 cos ξ V / cm ,
Γ 31 = 7.0 × 10 5 Hz .
V ( ξ ) = 11.7 + cos 2 ξ + 0.4 i sin 2 ξ + 𝒪 ( 10 2 ) .
i t σ 11 + i Γ 31 σ 11 i Γ 13 σ 33 + Ω p * σ 31 Ω p σ 31 * = 0 ,
i t σ 22 i Γ 23 σ 33 i Γ 24 σ 44 + Ω c * σ 32 Ω c σ 32 * + Ω a * σ 42 Ω a σ 42 * = 0 ,
i ( t + Γ 3 ) σ 33 i Γ 31 σ 11 Ω p * σ 31 + Ω p σ 31 * Ω c * σ 32 + Ω c σ 32 * = 0 ,
i ( t + Γ 4 ) σ 44 Ω a * σ 42 + Ω a σ 42 * = 0 ,
( i t + d 21 ) σ 21 + Ω c * σ 31 + Ω a * σ 41 Ω p σ 32 * = 0 ,
( i t + d 31 ) σ 31 + Ω p ( σ 11 σ 33 ) + Ω c σ 21 = 0 ,
( i t + d 41 ) σ 41 + Ω a σ 21 Ω p σ 43 = 0 ,
( i t + d 32 ) σ 32 + Ω c ( σ 22 σ 33 ) + Ω p σ 21 * Ω a σ 43 * = 0 ,
( i t + d 42 ) σ 42 + Ω a ( σ 22 σ 44 ) Ω c σ 43 = 0 ,
( i t + d 43 ) σ 43 + Ω a σ 32 * Ω p * σ 41 Ω c * σ 42 = 0 ,
α 12 = κ 13 Ω c D 1 α 41 ( 2 ) + κ 13 Ω c D 1 α 23 G ( 2 ) + κ 13 d 21 ( 0 ) D 1 ( α 11 G ( 2 ) α 33 G ( 2 ) ) ,
α 13 = κ 13 ( α 3 α 1 ) 2 h ¯ D 1 d 21 ( 0 ) α 31 ( 1 ) ,

Metrics